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analysis identifies PYCARD
as a key pyroptosis-related
gene in osteoarthritis
synovial macrophages
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Zhuolun Wang1,2,3,4, Haiyan Zhang1,2,3,4*,
Daozhang Cai1,2,3,4* and Xiangjiang Wang5*

1Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China, 2Department of Orthopedics, Orthopedic Hospital of
Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China, 3The Third School of Clinical Medicine, Southern
Medical University, Guangzhou, China, 4Guangdong Provincial Key Laboratory of Bone and Joint
Degeneration Diseases, Guangzhou, China, 5Department of Orthopedics, The Affiliated Qingyuan
Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
Background: Osteoarthritis (OA) is a chronic joint disease that significantly

impairs quality of life. Synovitis plays a pivotal role in OA progression, and

pyroptosis, a form of programmed cell death associated with innate immune

inflammation, may contribute to the pathogenesis of OA synovitis. Nevertheless,

the precise role of pyroptosis in OA pathogenesis remains poorly understood.

Methods:We performed an analysis of bulk RNA sequencing data to examine the

expression profiles of pyroptosis-related genes in the OA synovium. A LASSO-

Cox regression model was employed to identify pivotal genes. Single-cell RNA

sequencing data were used to validate the expression of these genes in specific

synovial cell clusters. Differentially expressed genes (DEGs) in macrophages with

high or low expression levels of core genes were subjected to enrichment

analysis. A protein-protein interaction (PPI) network was constructed to

identify hub genes, and potential therapeutic compounds were predicted.

Consensus clustering analysis was performed to examine the correlations

between hub genes and disease status. After identifying PYCARD as the core

pyroptosis gene in OA macrophages, we assessed the expression levels of

PYCARD in the OA synovium and validated the expression of PYCARD and its

related core genes in M1 macrophages.

Results: A total of twenty pyroptosis-related DEGs were identified, and six core

genes were selected through LASSO regression. PYCARD was identified as the

key pyroptosis gene in macrophages. Furthermore, 57 therapeutic compounds

targeting these genes were predicted. Validation confirmed the upregulation of

PYCARD in the OA synovium and M1 macrophages.

Conclusion: PYCARD was identified as the core pyroptosis gene in OA

macrophages, and 57 potential therapeutic compounds were identified. This

study offers valuable insights into potential treatment targets for OA.
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1 Introduction
Osteoarthritis (OA), the most prevalent joint disorder leading

to disability, significantly reduces quality of life. Between 1990 and

2019, the global prevalence of OA increased by 48%. In 2019, OA

was the 15th leading cause of years lived with disability worldwide,

accounting for 2% of the total global YLD burden (1). As a complex

disease with multifactorial origins, its development appears to be

linked to factors such as mechanical overloading, trauma,

inflammation, metabolic disturbances, and genetic susceptibility

(2). Despite extensive research, the ambiguous pathogenesis of OA

has hindered the identification of an effective cure. Current

treatments focus primarily on pain management and joint

lubrication, whereas knee replacement surgery remains the only

viable solution for patients with advanced OA to regain some motor

function (3). These findings underscore the importance of

uncovering the underlying mechanisms of OA to advance

prevention and treatment strategies.

Pathological changes in cartilage, subchondral bone, ligaments,

menisci, fat pads, and synovium illustrate the systemic nature of OA

as a disease impacting the entire joint (4). Notably, synovial

abnormalities emerge at the early stages of OA, often preceding

observable cartilage degradation, and the severity of synovitis is

closely tied to disease progression (5). Synovial macrophages, the

primary immune cells in this tissue, have been increasingly

recognized for their critical role in OA pathogenesis (6). M1

macrophages, also known as classically activated macrophages,

possess pro-inflammatory and antimicrobial functions. These cells

secrete a variety of pro-inflammatory cytokines and mediators. In

contrast to the pro-inflammatory M1 macrophages, M2

macrophages (also called alternatively activated macrophages) are

primarily known for their anti-inflammatory functions,

contributing to tissue repair, resolution of inflammation, and

wound healing (7). In OA, the activation of M1 macrophages is

often a response to damage-associated molecular patterns caused by

joint tissue degeneration. An imbalance, with a higher proportion of

M1 macrophages compared to M2 macrophages, exacerbates

inflammation and tissue destruction, driving the progression of

the disease (8). Therefore, targeting synovial macrophages is a

promising avenue for developing OA therapies.

Pyroptosis is a distinct form of inflammatory cell death,

separating it from noninflammatory processes such as apoptosis.

Pyroptosis occurs through three distinct pathways—canonical,

noncanonical, and alternative—each characterized by specific

molecular mechanisms. The process unfolds in two main stages:

initiation and activation. In the initiation phase of the canonical

pathway, pathogen-associated molecular patterns and damage-

associated molecular patterns interact with toll-like receptors,
02
stimulating the MAPK and NF-kB signaling pathways. This leads

to the cytoplasmic synthesis of the NLRP3 inflammasome, which is

driven by alterations in mitochondrial DNA and reactive oxygen

species. During the activation phase, the NLRP3 inflammasome

subsequently activates caspase-1 (9–11). The study of pyroptosis

has demonstrated a marked increase, particularly in its association

with OA (12). Pyroptosis impacts a variety of tissues and cells,

including osteoarthritis cartilage, the extracellular matrix,

subchondral bone, the synovium, and joint fluid, in various ways.

Although numerous studies have investigated pyroptosis-related

molecules in OA, there remains no clear consensus on which cells

are primarily affected or which undergo pyroptosis first (12, 13).

This research focused on analyzing the expression patterns of

pyroptosis-associated genes in OA synovial cell clusters and

pinpointing core genes and potential drugs related to pyroptosis.

Key pyroptosis-related genes in the OA synovium were identified

through extensive RNA sequencing data analysis. Single-cell RNA

sequencing (scRNA-seq) data were analyzed to map the locations of

pyroptosis-related genes to specific cell clusters. DEGs and enriched

pathways were compared between cells with high and low

expression levels of pyroptosis-related genes. Cytoscape software

was used to identify hub genes among the cluster-specific DEGs. On

the basis of the identified hub genes, candidate drugs for OA

treatment were screened via the Drug–Gene Interaction Database

(DGIdb). Among all pyroptosis-related genes, PYCARD was found

to be upregulated in OA synovial macrophages. Hub genes of cells

with high PYCARD expression were further validated to be

upregulated in macrophages stimulated with LPS and IFNg.
Additionally, the candidate drug Butein was shown to alleviate

macrophage pyroptosis, inflammatory polarization, and the

expression of the hub gene ITGB2. Therefore, the pyroptosis-

related gene PYCARD represents a potential biomarker for OA

diagnosis and treatment.
2 Methods

2.1 Human synovial tissue

Samples of synovial tissue were collected from 10 patients with

late-stage osteoarthritis who had knee replacement surgery and

from 10 patients who had arthroscopy for trauma or joint problems.

People suffering from hypertension, diabetes, high lipid levels,

rheumatoid arthritis, other joint ailments, or a body mass index

above 35 were excluded from the research. Table 1 provides a

summary of the participants’ demographic details, such as sex, age,

and BMI. All participants provided informed consent, and the study

received approval from the ethics committee of the Third Affiliated

Hospital of Southern Medical University.
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2.2 Destabilization of the medial meniscus
in an animal model

Ten-week-old male C57BL/6 mice were purchased from the

Guangdong Experimental Animal Center, China. All animals were

housed in pathogen-free cages with a temperature of 24 ± 5°C and a

relative humidity of 40%. The study was conducted in strict

adherence to the guidelines for animal welfare and ethical review

of experimental animals (GB/T 35892-2018) and was approved by

the Animal Care and Use Review Committee of Southern Medical

University (License No: 2021-Ethical Review-053). All surgeries

were performed under anesthesia using 0.3% pentobarbital sodium,

and every effort was made to minimize suffering. For the medial

meniscal instability OA model, mice were intraperitoneally injected

with 0.3% pentobarbital sodium anesthetic. An incision was made

along the medial collateral ligament, and the joint capsule was

exposed. The femoral lateral condyle was exposed, and the medial

meniscus was detached from its attachmeial plateau. After releasing

the medial meniscus, the joint capsule and skin were sutured.

Control mice underwent only skin incision and suturing. Mice

were euthanized, and knee specimens were collected 8 weeks after

surgery, as described previously (14).
2.3 Immunofluorescence staining

We deparaffinized and rehydrated mid-sagittal sections (4 mm
thick) of paraffin-embedded clinical synovial samples. Mid-sagittal

sections, 4 mm thick, of paraffin-embedded clinical synovial samples

were deparaffinized and rehydrated. Antigen retrieval was achieved

by placing the slides in Tris–EDTA buffer with a pH of 9.0 and

applying microwave heating for 10 minutes. Following three washes

with PBS, the slides were subjected to a 10-minute treatment with

3% hydrogen peroxide at room temperature. After blocking with

10% bovine serum (Solarbio, Beijing, China) for 1 hour at room

temperature, the slides were incubated with primary antibodies at 4°

C for 16 hours. The slides underwent a 1-hour incubation with the

fluorescent dye at room temperature and were then mounted using

DAPI mounting medium from Thermo Fisher Scientific. For the

immunofluorescence assay, the reagents used included rabbit anti-

PYCARD (Proteintech, 1:200, 10500-1-AP), mouse anti-CD68

(Proteintech, 1:200, 66231-2-Ig), mouse anti-F4/80 (Proteintech,

1:200, 27044-1-AP), and species-matched Alexa-488-or-594-
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labeled secondary antibodies (Life Technologies, Carlsbad,

CA, USA).
2.4 Cell culture and cell transfection

THP-1 monocytes (American Type Culture Collection) were

maintained in 1640 medium (Gibco, Carlsbad, CA, USA)

supplemented with 10% fetal bovine serum, 100 units/mL

penicillin, and 100 mg/mL streptomycin (Gibco). Differentiation

into macrophages was induced by incubating monocytes for 24

hours with 150 nM phorbol 12-myristate 13-acetate (PMA, MCE,

HY-18739), followed by an additional 24-hour incubation in 1640

medium. Macrophages were pre-treated with various

concentrations of butein (5 mM and 10 mM) (MedChemExpress,

#HY-16558) for 4 hours. To polarize the macrophages into M1

macrophages, the cells were treated with 20 ng/mL IFN-g (R&D

Systems, #285-IF) and 500 ng/mL LPS (Invitrogen, San Diego, CA,

USA). Macrophage pyroptosis was induced by 200 ng/mL LPS for 5

hours, followed by ATP (5 mM) for 1 hour. PYCARD mRNA

inhibition was achieved using small interfering RNA (siPYCARD).

siPYCARD (80 nM) or siRNA negative control (siNC)

(GenePharma, Suzhou, China) was transfected into macrophage

cells using Lipofectamine 3000 (3 mL/mL) for 24 hours, following

the manufacturer’s protocols.
2.5 qRT−PCR

M1 macrophages were cultured in 6-well plates, and total RNA

was extracted using 1 mL of TRIzol reagent per well (Takara Bio

Inc., Shiga, Japan). A reverse transcription kit from Vazyme Biotech

in Nanjing, China, was employed to transcribe a 1 mg RNA sample

into cDNA. Quantitative PCR (qPCR) tests were performed to

measure the expression levels of PYCARD, TYROBP, FCER1G,

AIF1, ITGB2, SPI1, CYBB, LAPTM5, C1QA, CD14, and HLA-

DPA1 mRNAs in comparison to GAPDHmRNA. The experiments

were conducted using a real-time PCR mix from Vazyme Biotech

along with 2 × ChamQ SYBR qPCR Master Mix from the same

company. The primers used for qPCR are listed in Table 2.
2.6 Western blot analysis

THP-1 cells were differentiated into macrophages by PMA

stimulation and cultured in 6-well plates as previously described.

Macrophages were lysed with 150 mL of radioimmunoprecipitation

assay (RIPA) buffer containing protease and phosphatase inhibitors.

Proteins were transferred to polyvinylidene difluoride (PVDF)

membranes following electrophoresis. Membranes were incubated

with primary antibodies diluted in 5% BSA in TBST for 14-16 hours

at 4°C. The membranes were then incubated with secondary

antibodies for 1 hour at room temperature. Target bands were

visualized using FDbio-Dura ECL (FDbio Science, Hangzhou,
TABLE 1 Clinical characteristics of the study groups.

NC (n=10) OA (n=10) P value

Sex 1

Female 5 6

Male 5 4

Age 62.8 (4.85) 64.5 (4.45) 0.402

BMI 26.25 (0.87) 25.43 (1.97) 0.269
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China). The following antibodies were used for western blotting:

anti-iNOS (Abcam, 1:1000, ab178945, USA), anti-ITGB2

(Proteintech, 1:1000, #10554-1-AP, China), anti-CD80

(Proteintech, 1:1000, #14292-1-AP, China), anti-GSDMD-N

(Proteintech, 1:1000, #30695-1-AP, China), anti-NLRP3 (Abcam,

1:1000, ab263899, USA), and species-matched horseradish

peroxidase-conjugated secondary antibodies (Jackson

ImmunoResearch Laboratories, West Grove, PA, USA).
2.7 Data download

The datasets for synovial bulk RNA-seq include GSE55235 (10

healthy and 10 OA synovium samples), GSE55457 (10 healthy and

10 OA synovium samples), GSE82107 (7 healthy and 10 OA

synovium samples), GSE55584 (6 OA synovium samples), and

GSE89408 (28 healthy samples and 22 OA synovium samples),

were retrieved from the Gene Expression Omnibus (GEO) database.

Furthermore, the synovial scRNA-seq dataset GSE152805,

consisting of 3 OA synovium samples, was obtained from GEO.
Frontiers in Immunology 04
2.8 DEGs analysis

Differentially expressed genes (DEGs) were identified between

the OA-related and control groups using the limma package, with

the criteria of an FDR-adjusted p-value < 0.05 and a fold change

(FC) > 1.5 or < 0.67 (15). Using the ggboxplot function from the

‘ggpubr’ R package, a boxplot was created to show pyroptosis-

related genes in both normal and OA synovium groups (16). The

‘ggplot2’ R package’s ggplot function was employed to construct the

volcano plot (17). The pheatmap function from the ‘pheatmap’ R

package was used to create a heatmap.
2.9 Correlation analysis

The expression correlations of 20 DEGs related to pyroptosis

were calculated for all samples and OA samples. The ‘Hmisc’ R

package’s rcorr function was employed to conduct Pearson’s

correlation analysis (18), and The results were displayed using the

‘corrplot’ package in R (19).
2.10 LASSO−Cox regression modeling

To develop a predictive model for osteoarthritis (OA) based on

pyroptosis-related genes, LASSO regression analysis was conducted

utilizing the “glmnet” R package (20). Given that OA is a nonfatal

condition, survival times were standardized to a uniform value to

mitigate their impact on the model. Healthy samples were

designated as the baseline (0), while OA samples were assigned a

status of 1 to represent the presence of OA. We standardized the

survival times to a uniform value to allow the expression data to be

processed in a consistent manner across all samples, without

skewing the model due to the inherent differences in time-related

factors in non-fatal diseases. The receiver operating characteristic

(ROC) curve for each pyroptosis-related gene was generated using

the roc function and subsequently visualized with the “pROC,”

“survminer,” and “ggplot2” R packages (21, 22).
2.11 scRNA−seq quality check and batch
effect correction

The raw gene expression data from GSE152805 were

transformed into a Seurat object using the “Seurat” R package.

Cells that had less than 200 expressed genes, more than 10,000

expressed genes, or more than 20% UMIs originating from the

mitochondrial or ribosomal genome were removed. For the

remaining cells, gene expression values were normalized on

the basis of the total read count and mitochondrial percentage

using the NormalizeData function, followed by standardization

using the ScaleData function (23).
TABLE 2 Primers used in this study.

Gene Primers Sequences

PYCARD Forward Sequence AGCTCACCGCTAACGTGCTGC

Reverse Sequence GCTTGGCTGCCGACTGAGGAG

TYROBP Forward Sequence TGGTGCTGACAGTGCTCATTGC

Reverse Sequence CTGATAAGGCGACTCGGTCTCA

FCER1G Forward Sequence GTGCGAAAGGCAGCTATAACCAG

Reverse Sequence GGTGGTTTCTCATGCTTCAGAGT

AIF1 Forward Sequence CCCTCCAAACTGGAAGGCTTCA

Reverse Sequence CTTTAGCTCTAGGTGAGTCTTGG

ITGB2 Forward Sequence AGTCACCTACGACTCCTTCTGC

Reverse Sequence CAAACGACTGCTCCTGGATGCA

SPI1 Forward Sequence GACACGGATCTATACCAACGCC

Reverse Sequence CCGTGAAGTTGTTCTCGGCGAA

CYBB Forward Sequence CTCTGAACTTGGAGACAGGCAAA

Reverse Sequence CACAGCGTGATGACAACTCCAG

LAPTM5 Forward Sequence TTCCATCGCCTTCATCACTGTCC

Reverse Sequence CTCTTCTCCTCCACCGAGTTCA

C1QA Forward Sequence CGAGCACCAGACGGGAAGAAAG

Reverse Sequence AGGTTCCCCCTGGTCTCCTTTA

CD14 Forward Sequence CTGGAACAGGTGCCTAAAGGAC

Reverse Sequence GTCCAGTGTCAGGTTATCCACC

HLA-DPA1 Forward Sequence ATCCAGCGTTCCAACCACACTC

Reverse Sequence CGTTGAGCACTGGTGGGAAGAA
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2.12 Dimensionality reduction
and clustering

Principal components were calculated using the RunPCA function

(23). To account for batch effects, Harmony was used to correct them

(24). For visualization, the first 20 Harmony-aligned coordinates were

plotted with the default settings of the RunTSNE function. Differential

gene expression was assessed with the FindAllMarkers function, where

the minimum percentage of expression was set to 0.25, and the

threshold for log fold change was set to 0.25. Cell markers that are

recognized by synovial cell clusters were identified and used for

clustering analysis. The identified marker genes were then visualized

using the dotplot function (25).
2.13 Differential gene expression and
enrichment analyses

For the single-cell sequencing dataset, cells were divided into

two clusters based on the median threshold of the target gene

expression, and DEGs was assessed using the FindMarkers function

in the Seurat R package. The following parameters were applied:

logfc.threshold = 0.25 and p_val_adj = 0.05 (24). The biological

functions of the identified DEGs across distinct clusters were

evaluated using Gene Ontology (GO) enrichment analysis and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis, which were conducted with the “clusterProfiler” R

package (26). For the GO analysis, enriched biological processes,

molecular functions, and cellular components were examined. A p-

value adjusted to < 0.05 was considered statistically significant for

the enrichment analysis, and the top 10 results from each category

were selected for visualization.
2.14 Protein-protein interaction network
construction and hub gene
network identification

PYCARD-related DEGs and their associated genes were used to

construct a PPI network using the STRING database. The “Multiple

protein”mode was selected, with the organism set to “Homo sapiens”

and the minimum interaction score set to a high confidence threshold

of 0.700. The PPI network was visualized using Cytoscape (version

3.7.2) (27), and the cytoHubba plugin was employed to rank genes

within the network based on their degree centrality values. The

betweenness algorithm was applied within cytoHubba, while the

Maximal Clique Centrality (MCC) algorithm was used for topology

analysis and scoring the degree of interactions. Hub genes were

defined as those with the top 10 highest scores (28).
2.15 Prediction of drug–gene interactions

The key genes identified as potential pharmaceutical targets for

OA treatment were submitted to the DGIdb (http://www.dgidb.org/)

to identify potential existing drugs or small organic compounds. For
Frontiers in Immunology 05
each drug–gene interaction, the reliability of the interaction was

assessed based on evidence from relevant drug databases, such as

DrugBank. The top 30 drugs with the highest interaction scores

were selected as candidate therapeutic options for OA. A Sankey

diagram was created using an online tool (https://www.lddgo.net/

chart/sankey-chart) to visualize the drug–gene interactions.
2.16 Merge and batch effect correction of
bulk RNA−seq datasets

The merging and batch effect correction of bulk RNA

sequencing datasets were conducted by normalizing the GEO

datasets GSE55457, GSE55235, GSE55584, GSE82107, and

GSE89408. Data merging was conducted using the R package

inSilicoMerging, and batch effect correction was handled using

the R package sva with method set as COMBAT (29).
2.17 Sample clustering on the basis of
PYCARD and its related genes

The expression matrix of PYCARD and its related genes from

the merged bulk RNA-seq dataset was used for sample clustering

and visualization via the R package ConsensusClusterPlus. The

maximum number of clusters was set to 10, with 10 subsamples, a

sampling proportion of 0.8, and the Pearson distance as the metric

(30). The highest cluster consensus was achieved when k = 2.

Principal component analysis was performed on clusters C1 and C2

via the prcomp function from the R package stats, and the results

were visualized via the ggplot2 function.

2.18 Estimation of immune cell infiltration

The xCell algorithm is a gene signature-based approach that

assigns relative infiltration scores to 64 immune and stromal cell

types via gene expression data obtained from microarray sequencing

(31). In this study, we applied the xCell algorithm and quanTIseq to

assess the specific infiltration of immune cells across different clusters.
2.19 Statistical analyses

Data are presented as the mean ± standard deviation (SD). For

comparisons between two groups, the Shapiro-Wilk test was

performed to assess the normality of the data, followed by an

unpaired Student’s t-test if the data met parametric assumptions. P-

values less than 0.05 were considered statistically significant.

3 Results

3.1 Defining the expression patterns of
pyroptosis-related genes in OA

This study adhered to the workflow outlined in Figure 1. The

bulk RNA-seq dataset GSE89408 was used to find genes associated
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with pyroptosis that show differential expression and to create a

LASSO-Cox regression model for identifying key pyroptosis-related

genes in the OA synovium. Subsequent analysis of the scRNA-seq

dataset GSE152805 was conducted to pinpoint the locations of these

core genes. DEGs and enriched pathways were then compared

between cells with high and low expression levels of the core

pyroptosis-related genes. Cytoscape software was utilized to

identify hub genes among cluster-specific DEGs. Through the

DGIdb database, these hub genes were screened to find potential

drugs for OA treatment. A combined dataset from five GEO

datasets (GSE55457, GSE55235, GSE55584, GSE82107, and

GSE89408) was downloaded and analyzed for GSVA enrichment

and immune infiltration of hub genes (32). These results

highlighted a significant association between PYCARD and OA

synovial macrophages. PYCARD expression was analyzed in

clinical samples and in a destabilization of the medial meniscus

animal model. The hub genes identified among the DEGs were

further validated using qRT-PCR analysis in macrophages.
Frontiers in Immunology 06
Fifty-seven pyroptosis-related genes were identified from the

literature (see Supplementary Table S1) (33). Our primary objective

was to investigate alterations in the expression profiles and levels of

pyroptosis-related genes in the OA synovium. Analysis of dataset

GSE89408 from bulk RNA-seq identified 789 genes with higher

expression and 63 genes with lower expression in OA synovium

versus controls, revealing a unique expression pattern under OA

conditions (Figure 2A). The expression levels of the 57 pyroptosis-

related genes were further analyzed, and the results are presented as

heatmaps for individual synovial samples and boxplots for all

sample groups (Figures 2B, C). Of these genes, 20 (CASP4,

CASP1, NLRC4, CASP8, IL1B, IL18, CASP5, CASP3, DHX8,

TNF, PYCARD, NOD2, IL6, CASP6, IRF2, IL1A, CYCS,

CHMP2B, CHMP3, and CHMP2A) were differentially expressed.

The upregulation of these genes in the OA synovium suggests the

involvement of pyroptosis in OA. We examined the expression

correlation of the 20 pyroptosis-related DEGs in both the entire

sample set and the OA sample subset from the GSE89408 dataset
FIGURE 1

Study flowchart. Flowchart illustrating the bioinformatics analysis process for studying pyroptosis-related genes in osteoarthritis (OA) synovium. The
analysis begins with the identification of differentially expressed pyroptosis-related DEGs (Differentially Expressed Genes) in OA synovium from bulk
RNA sequencing data (GSE89408). LASSO-Cox regression modeling is applied to these DEGs to identify relevant genes. The localization of these
genes in synovial cells is examined, followed by a comparison of high and low expression levels. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses are conducted to further investigate the functional roles of these genes. A molecular network construction is
performed to explore the interactions between these genes. Drug predictions are made through the Drug-Gene Interaction Database, and the GSVA
enrichment and immune infiltration analysis are carried out using additional RNA-seq datasets from GSE55235, GSE55457, GSE55584, GSE82107,
and GSE89408. Finally, experimental validation is proposed to confirm the findings.
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FIGURE 2

Expression of pyroptosis-related genes in OA. (A) Volcano plot of differentially expressed genes in OA vs. healthy synovium. Red and blue points
represent genes significantly upregulated or downregulated in OA synovium (FDR < 0.05 and |fold change| > 1.5). The two vertical dashed lines
represent ± log2(1.5) fold change, and the horizontal dashed line represents −log10(FDR-adjusted p-value cutoff of 0.05). (B) Heatmap showing the
expression of key pyroptosis-related genes in OA and healthy synovium samples. (C) Box plots of key pyroptosis gene expression in OA and control
groups. Red and green boxes indicate the expression levels of pyroptosis-related DEGs in OA and healthy synovium samples. *P < 0.05, **P < 0.01,
***P < 0.001, ns, not significant. (D) Correlation matrix of pyroptosis-related genes in the all samples. The size and color intensity of the circles
represent the strength of the correlation, with positive correlations in red and negative correlations in green. (E) Correlation matrix of pyroptosis-
related genes in the OA samples, showing similar visualization as (D). The correlation coefficients are indicated within the circles.
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(Figures 2D, E). The results revealed that all DEGs were positively

correlated. Notably, a significant positive correlation was observed

between CASP3 and CASP4 expression in both the complete

sample set and the OA sample subset.
3.2 The pyroptosis-related genes were
used to construct an effective predictive
model for OA

The GSE89408 dataset was analyzed using LASSO-Cox

regression to identify important pyroptosis-related genes

associated with OA progression and to develop an accurate OA

predictive model. This approach enables precise predictive

modeling and the identification of key variables (34). Using the

LASSO regression algorithm, Using the optimal l value, we

incorporated six genes into the predictive model (Figures 3A, B).

Six genes (IL1B, DHX8, PYCARD, IL6, CYCS, and CHMP2B) were

selected for modeling: risk score = (0.20575382IL1B) +

(−0.0935579DHX8) + (0.42108804PYCARD) + (0.1515762IL6) +

(0.25919173CYCS) + (0.014998CHMP2B). In Figure 3C, the link

between OA risk scores and the expression levels of the six genes is

illustrated, highlighting their roles in the predictive model. The

single-molecule ROC curves for IL1B, DHX8, PYCARD, IL6,

CYCS, and CHMP2B yielded AUC values of 0.765, 0.658, 0.726,

0.767, 0.738, and 0.736, respectively. These findings suggest that

IL1B, PYCARD, IL6, CYCS, and CHMP2B (AUC > 0.7) exhibit

strong individual diagnostic value (Figure 3D). The OA group

demonstrated a significantly higher risk score compared to the

control group, as determined by the risk score formula (P < 0.001)

(Figure 3E). Additionally, Figure 3F presents the hazard ratios for

the six genes in the GSE89408 dataset. Five genes, including IL1B,

DHX8, IL6, CYCS, and CHMP2B, were not significantly associated

with OA risk, as their 95% confidence intervals crossed 1 (p > 0.05).

In contrast, PYCARD was significantly associated with an increased

risk (HR 1.95, 95% CI 1.10–3.5, p = 0.023). The global p-value of

0.0012 and a concordance index of 0.87 suggest a robust model,

positioning PYCARD as a potential prognostic marker for OA risk.
3.3 scRNA-seq identified the specific
localization of key pyroptosis-
related genes

Using publicly available scRNA-seq data (GSE152805) from OA

synovial samples, we studied the distribution of six genes related to

pyroptosis. After performing data quality assessments and correcting

for batch effects (Supplementary Figures S1A, B, 2A, B), a resolution

of 1.2 was chosen based on the results of Clustree analysis

(Supplementary Figures S1C, D). synovial cells were clustered into

six distinct groups based on established cell markers (Figures 4A, B).

PYCARD is predominantly expressed in macrophages in 3 synovial

tissues (Supplementary Figure S2C). Heatmaps and feature plots were

employed to visualize the expression levels of the six pyroptosis-

related genes (Figure 4C). Our focus was primarily on two key
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clusters—fibroblasts and macrophages—as these are the principal

effector cells involved in OA synovitis (35). Notably, CYCS and

CHMP2B were predominantly expressed in fibroblasts, whereas

CHMP2B, CYCS, IL1B, and PYCARD were highly expressed in

macrophages, with PYCARD exhibiting the highest expression

among all genes in macrophages (Figures 4D, E). Our previous

analysis identified PYCARD as the most influential predictor of

OA. Additionally, single-cell analysis revealed that PYCARD is

most highly expressed in macrophages. These findings suggest that

PYCARD plays a crucial role in regulating pyroptosis in macrophages

within the OA synovium.
3.4 High PYCARD expression in
macrophages is closely associated
with pyroptosis

We analyzed the single-cell dataset (GSE152805) to categorize

cells into two groups based on PYCARD expression levels: a high-

PYCARD group and a low-PYCARD group. A total of 128 DEGs

were identified by comparing high- and low-PYCARD-expressing

cells across distinct clusters, with notable genes such as C1QA,

LYVE1, and SEPP1 specifically upregulated in macrophage

populations (Figures 5A, B). Figure 5C illustrates that KEGG

enrichment analysis identified significant enrichment of

upregulated DEGs (high-PYCARD group) within immune-

re lated processes , including “antigen processing and

presentation,” “myeloid leukocyte activation,” and “phagosome,”

all of which are closely associated with pyroptosis (36, 37). GO

enrichment analysis of the upregulated DEGs (high-PYCARD

group) identified that 7 out of the top 10 biological process,

cellular component, and molecular function terms were

associated with the major histocompatibility complex, which is

closely linked to pyroptosis (38, 39). Additionally, Figure 5D

shows that pathways of the downregulated DEGs (low-PYCARD

group), such as “response to copper ion” and “TGF-beta signaling

pathway,” suggest a connection between cellular stress responses

and the regulation of pyroptosis. These findings highlight the

crucial role of PYCARD in regulating pyroptosis and immune

pathways at the single-cell level.
3.5 Construction of a PPI network using
DEGs and prediction of drug–
gene interactions

We utilized Cytoscape software to construct a PPI network for

analyzing the interactions among the 128 DEGs across the two

clusters (Supplementary Table S2), resulting in 74 nodes and 177

edges (Figure 6A). Using cytoHubba, the top 10 hub genes that

had the highest scores were determined (Figure 6B). These hub

genes were TYROBP, FCER1G, AIF1, ITGB2, SPI1, CYBB,

LAPTM5, C1QA, CD14, and HLA-DPA1 (Supplementary Table

S3). These genes are potential druggable targets for OA treatment.

The DGIdb database identified 57 potential drugs or compounds
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FIGURE 3

Effective predictive model of key pyroptosis-related genes for OA—LASSO-Cox regression analysis. (A) LASSO (Least Absolute Shrinkage and
Selection Operator) coefficient plot showing the selection of 20 pyroptosis-related DEGs for the risk score model. The x-axis represents the log of
the shrinkage parameter (log Lambda), and the y-axis shows the coefficients of the genes. (B) Cross-validation for tuning the parameter (Log(l))
used in LASSO regression. The plot shows the mean squared error for each l, with the optimal l selected at the point where the error is minimized.
(C) Heatmap of OA risk scores and expression of pyroptosis gene regulators. OA risk scores of the samples are arranged in ascending order. The top
50% of samples with the highest risk scores are classified as high-risk samples (red bars), while the remaining samples are classified as low-risk
samples (blue bars). (D) Receiver operating characteristic (ROC) curves for selected genes (DHX8, IL6, CHMP2B, PYcard, IL1B, CYCS) in the risk score
model, with AUC (Area Under the Curve) values displayed for each gene, demonstrating their diagnostic potential. (E) Boxplot showing the
comparison of risk scores between normal and OA groups. A significant difference (***p < 0.001) is observed between the two groups. (F) Forest
plot displaying the hazard ratios for each pyroptosis-related gene. The hazard ratios (HR) are derived from Cox regression analysis, showing the
potential of these genes as prognostic markers for OA progression. Genes with statistically significant hazard ratios (p < 0.05) are indicated.
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FIGURE 4

Single-cell sequencing demonstrates localization of key pyroptosis-related genes. (A) Dot plot showing the expression levels of pyroptosis-related
genes across different cell clusters, including fibroblasts, macrophages, dendritic cells (DC), smooth muscle cells, endothelial cells, and mast cells.
The size of each dot represents the percentage of cells expressing each gene, and the color indicates the average expression level. (B) t-SNE plot
demonstrating the clustering of cells based on their gene expression profiles. Different cell types, including fibroblasts, macrophages, DC, smooth
muscle cells, endothelial cells, and mast cells, are represented in different colors. (C) Heatmap depicting the expression levels of selected
pyroptosis-related genes (IL1B, DHX8, PYcard, IL6, CYCS, CHMP2B) across various cell clusters. The color scale represents gene expression, with red
indicating high expression and blue indicating low expression. (D) Violin plots of the expression of six key pyroptosis-related genes across synovial
cell clusters. (E) Feature plots of key pyroptosis gene expression in each cell cluster. The color scale represents the expression levels of each gene,
with darker shades indicating higher expression.
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FIGURE 5

Differential genes and functional enrichment analysis of high vs. low PYCARD expression in macrophages. (A) Volcano plot showing differentially
expressed genes (DEGs) between high vs. low PYCARD expression. Red dots represent genes with an adjusted p-value < 0.01, and blue dots
represent those with an adjusted p-value > 0.01. The plot displays the average log2 fold change (x-axis) against the statistical significance (y-axis) of
each gene. Genes are categorized into different cell types, including fibroblasts, macrophages, smooth muscle cells, endothelial cells, dendritic cells
(DC), and mast cells. (B) Differential gene expression analysis of selected genes between high and low PYCARD-expressing macrophages, with genes
marked as upregulated (red) and downregulated (blue). The difference in expression is plotted against the average log2 fold change. (C) Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes of High-PYCARD-
related differential genes. The dot plot shows the top enriched terms across biological processes (BP), cellular components (CC), molecular
functions (MF), and KEGG pathways, with the size of the dot representing the count and color representing the statistical significance (adjusted p-
value). (D) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes of
Low-PYCARD-related differential genes.
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targeting these genes for OA treatment (Supplementary Table S4).

The top 30 drugs/compounds are displayed in Figure 6C. The

visualization shows the genes on the left and the drugs on the

right, with the interaction group score represented by the area size

and the larger areas indicate higher scores. The drug

THERAPEUTIC IMMUNE GLOBULIN, which targets C1QA,
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has the highest interaction score of 52. For FCER1G, two drugs

—COMPOUND 66 [PMID: 21802293] and Benzylpenicilloyl

Polylysine—each scored 17. Additionally, CD14 is targeted by 9

drugs, ITGB2 by 13 drugs, CYBB by 4 drugs, and HLA-DPA1 by 1

drug. However, no potential drugs have been identified for

LAPTM5, AIF1, TYROBP, or SPI1.
FIGURE 6

Analysis of key differential genes related to PYCARD and drug prediction. (A) Protein-protein interaction (PPI) network analysis of core differential
genes associated with PYCARD. In this network, nodes represent proteins, and edges represent protein interactions. The color and size of the nodes
indicate the degree centrality values, with darker blue representing proteins with high degree centrality, yellow indicating moderate degree, and
brighter red reflecting lower degree. Larger nodes correspond to higher degree centrality. The thickness and color of the edges represent the
strength or type of relationship between connected nodes, with darker blue and thicker lines indicating stronger interactions. (B) Hub gene analysis.
The color intensity of the nodes indicates the level of interactions, with darker red nodes representing higher interaction levels. (C) Drug-gene
interaction prediction of central genes. Ten key genes were targeted in the DGIdb database. The width of the flow lines indicates the strength of the
interaction between the gene and the drug, with names of potential target drugs (e.g., Therapeutic Immune Globulin, Compound 66) listed among
the top 30 drugs.
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3.6 PYCARD was strongly correlated with
OA synovial macrophages

We examined combined datasets from GSE55457, GSE55235,

GSE55584, GSE82107, and GSE89408 to confirm the role of

PYCARD and its associated DEGs in cell clusters of both control

and OA synovium. The datasets were merged, and batch effect

correction was performed (Supplementary Figures S2A, B). The 113

synovial samples were categorized based on the expression levels of

PYCARD and its key DEGs, including TYROBP, FCER1G, AIF1,

ITGB2, SPI1, CYBB, LAPTM5, C1QA, CD14, and HLA-DPA1. The

samples were divided into two clusters according to the highest

consensus values: C1 with 49 samples and C2 with 64 samples.

(Figure 7A). Principal component analysis demonstrated distinct

separation between clusters, indicating unique gene expression

profiles (Figure 7B). The presence of OA synovium was observed

in 15 (30.6%) of the C1 samples and 43 (67.1%) of the C2 samples,

suggesting a stronger association of the C2 cluster with OA

characteristics compared to C1 (Figure 7C). We analyzed the

inter-cluster expression of PYCARD and its core DEGs and

found significantly higher expression levels in cluster 2

(Figures 7D, E). We further performed immune infiltration

analysis on 113 synovial transcriptomes using the xCell algorithm

(Figure 7F). We analyzed the variations in immune cell infiltration

between cluster 1 and cluster 2, as previously defined. Cluster 2

exhibited enhanced immune cell infiltration, particularly with

increased macrophages of both M1 and M2 subtypes, while

fibroblast levels remained consistent across both groups

(Figures 7G, H, Supplementary Figure S2D). These findings

highlight the potential role of PYCARD and its related DEGs in

immune responses within the OA synovium and in macrophage

phenotypic changes.
3.7 PYCARD was upregulated in the
OA synovium

To verify PYCARD expression levels and its localization in the

synovium, a destabilization of the medial meniscus model was

developed in 10 mice, and PYCARD expression was analyzed in

the synovium 8 weeks following surgery. PYCARD expression was

significantly elevated in the synovium of OA mice and showed

strong colocalization with the macrophage marker F4/80

(Figure 8A). Samples of synovial OA from clinical cases (n = 10)

and control synovial samples from patients having arthroscopy due

to trauma or joint issues (n = 10) were gathered. There were no

notable differences in age, sex, or BMI between the two groups

(Table 1). As anticipated, elevated PYCARD expression was

observed in OA samples, with significant colocalization with

CD68, a macrophage marker (Figure 8B). We further stimulated

THP-1 cells with LPS and IFN-g to model M1 macrophages and

performed qPCR validation of PYCARD-related core genes.

Compared to the NC group, macrophages stimulated with LPS

and IFN-g exhibited increased expression of iNOS, CD80, and

TNFa, confirming the successful induction of M1 polarization.
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Furthermore, M1-polarized macrophages exhibited an increase in

PYCARD, TYROBP, FCER1G, AIF1, ITGB2, SPI1, CYBB,

LAPTM5, C1QA, CD14, HLA-DPA1, and AIF1 (Figure 8C,

Supplementary Figure S1E). We found that PYCARD knockdown

attenuated the expression of macrophage inflammasome and

pyroptosis indicators, including NLRP3, NLRC4, and GSDMD-N

(Figure 8D). Moreover, we verified that Butein alleviated the LPS

+ATP-induced macrophage pyroptosis process by reducing NLRP3

and GSDMD-N expression and inhibiting the expression of the

PYCARD-related hub gene ITGB2 predicted by the DGIdb

database (Figure 8E). Additionally, we found that Butein

alleviated LPS and IFN-g-stimulated expression of iNOS, CD80,

and inhibited ITGB2 expression (Figure 8F). Furthermore, we

examined gene expression levels in OA patient samples using the

GSE89408 dataset. With the exception of SPI1, most dataset results

aligned with our experimental findings (Figure 8G).
4 Discussion

Pyroptosis is an inflammatory cell death marked by unique

morphological changes (39). Alterations in pyroptosis-related

molecules and inflammatory factors have been observed in both

OA animal models and the joints of OA patients (12). The

involvement of pyroptosis-related genes in OA, particularly in

synovitis, is not yet fully elucidated.

Initially, we examined the expression of genes associated with

pyroptosis in OA. In the GSE89408 dataset, 20 out of 57 pyroptosis-

related genes, including CASP4, CASP1, NLRC4, CASP8, IL1B,

IL18, CASP5, CASP3, DHX8, TNF, PYCARD, NOD2, IL6, CASP6,

IRF2, IL1A, CYCS, CHMP2B, CHMP3, and CHMP2A, were found

to be upregulated in OA tissues compared to normal ones. A

significant positive correlation between the expression levels of

CASP3 and CASP4 was found in the analysis of 20 pyroptosis-

related DEGs across the entire dataset and OA samples from

GSE89408. Caspases are evolutionarily conserved cysteine-

dependent endoproteases that specifically cleave substrates at

aspartic acid residues (40). Caspases are categorized into

apoptotic and inflammatory types based on their structural and

functional characteristics. Apoptotic caspases are categorized into

initiator caspases, such as caspase-8, -9, and -10, which trigger

apoptosis, and executioner caspases, including caspase-3, -6, and -7,

responsible for executing the apoptotic process. Inflammatory

caspases, including caspase-1, -4, -5, and -11, are involved in

pyroptosis and the secretion of inflammatory cytokines. These

caspases possess a caspase activation and recruitment domain at

their N-terminus, connected to a protease domain via a CARD

linker (41). The protease domain comprises large and small

catalytic subunits, which are divided by interdomain linkers.

Caspase-1, the primary effector protease in the canonical

pathway, aggregates on the inflammasome platform by interacting

with adaptor proteins like ASC or NLRC4. Human caspases-4 and

-5, as well as their murine counterpart caspase-11, necessitate

dimerization for protease activation. Caspase-4, -5, and -11

CARDs directly interact with LPS or endogenous oxidized
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FIGURE 7

OA grouping and immune infiltration based on key differential genes related to PYCARD. (A) Heatmap of two synovial sample clusters identified
using the ConsensusClusterPlus function, based on PYCARD and its related key differential genes. Cluster C1 contains 60 synovial samples, and
cluster C2 contains 53 synovial samples. (B) Principal Component Analysis (PCA) plot displaying the separation of OA samples into two clusters,
Cluster 1 (red) and Cluster 2 (blue). (C) Proportions of control and OA samples in clusters C1 and C2. (D, E) Expression heatmap and bar chart of
PYCARD and its key related differential genes in clusters C1 and C2. (F) Stacked bar plot showing the cell composition of each sample. The cell types
are color-coded, with the relative abundance of each cell type represented in the stacked bars. (G) Immune cell infiltration scores in the two
pyroptosis-related clusters of major lineages such as Macrophages an B cells. (H) Stacked bar plot showing the major lineages cell composition of
each sample. Statistical significance is indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).
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FIGURE 8

PYCARD was upregulated in the OA synovium. (A) Immunofluorescence staining showing the expression of PYCARD (red), F4/80 (green), and DAPI
(blue) in synovial tissue from normal control (NC) and osteoarthritis (OA) samples. The proportion of PYCARD -positive synovial cells (left) and
PYCARD -F4/80 positive cells (right) are quantified. n = 10 per group. Scale bar: 50 mm. (B) Immunofluorescence staining showing the expression of
PYCARD (red), CD68 (green), and DAPI (blue) in synovial tissue from NC and OA samples at the 8-week endpoint post-destabilization of the medial
meniscus (DMM). The proportion of PYCARD -positive synovial cells (left) and PYCARD -CD68 positive cells (right) are quantified. n = 10 per group.
Scale bar: 50 mm. (C) mRNA expression levels of M1 polarization markers and PYCARD-related key gene clusters in NC and LPS+IFNg-stimulated
cells. (D) Western blot analysis of PYCARD, NLRC4, NLRP3, and GSDMD-N in macrophages treated with siNC, LPS+ATP, and siPYCARD. (E) Western
blot analysis of ITGB2, GSDMD-N, and NLRP3 in macrophages treated with LPS+ATP, Butein(5mM),and Butein(10mM). (F) Western blot analysis of
ITGB2, CD80, and iNOS in macrophages treated with LPS and IFN-g, Butein(5mM),and Butein(10mM). (G) Boxplot showing the expression levels of
PYCARD-related key gene clusters in the GSE89408 dataset. Data are presented as mean ± SD. An unpaired Student’s t-test was used to compare
two groups of data. *P < 0.05, **P < 0.01, *** p < 0.001, ns, not significant.
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phospholipids to form noncanonical inflammasomes, which are

lipid-protein assemblies, unlike caspase-1 (42, 43). Inflammatory

caspases, despite their limited ability to cleave pro-IL-1b or pro-IL-

18, trigger pyroptosis by cleaving Gasdermin-D proteins (44). The

IL-1 family is strongly associated with destructive inflammation and

pyroptosis, with significant focus on IL-1b’s central role in

mediating inflammatory diseases. Pro-IL-1b remains in the

cytoplasm in an inactive state until cleaved into its active form by

NLRP3 and caspase-1 activation (45). IRF-2 is crucial for activating

GSDMD transcription, which is necessary for triggering pyroptotic

cell death. Our study identified an upregulation of caspase family

members (CASP4, CASP1, CASP8, CASP5, CASP3, and CASP6),

inflammatory cytokines (TNF, IL6, IL1B, and IL1A), and associated

factors in the synovium of OA patients. These findings indicate the

occurrence of pyroptosis in the synovium during OA.

Considering the significant role of pyroptosis in OA

development, we developed a predictive model using 20

differentially expressed genes related to pyroptosis. The final

model incorporated six genes (IL1B, DHX8, PYCARD, IL6,

CYCS, and CHMP2B). ROC curve analysis revealed strong

diagnostic value for these genes, with IL-1B, PYCARD, IL-6,

CYCS, and CHMP2B showing an AUC > 0.7. Hazard ratios

demonstrated a significant link between PYCARD and elevated

OA risk. PYCARD, or apoptosis-associated speck-like protein with

a caspase recruitment domain (ASC), was first discovered in human

promyelocytic leukemia cells undergoing apoptosis after treatment

with etoposide and all-trans retinoic acid (46). PYCARDs are

involved in p53-Bax-dependent apoptosis through the mediation

of caspase-2, caspase-3, and caspase-9 (47). Zhang et al. verified that

inhibition of macrophage PYCARD oligomerization blocked

NLRP3 inflammasome activation and alleviated OA (48). Another

study found that Degrasyn selectively impedes the form of ASC

oligomer and speckle to effectively suppress the NLRP3

inflammasome, alleviate the GSDMD-mediated pyroptosis of

macrophages and the release of IL-1b, caspase-1, and LDH in OA

(49). Moreover, Chen et al. revealed that AMPK activation in

chondrocytes alleviates OA chondrocyte pyroptosis by inhibiting

NLRP3 inflammasomes ASC, Caspase-1, IL-1b, NLRP3, and

cleaved Caspase-1 (50). These findings highlight the essential

function of PYCARD in OA-related pyroptosis.

To determine the localization of the six pyroptosis-related

genes, we performed joint analysis of the scRNA-seq data. Our

results revealed that CYCS and CHMP2B were predominantly

expressed in fibroblasts, whereas CHMP2B, CYCS, IL1B, and

PYCARD were highly expressed in macrophages. Notably, among

all the genes, PYCARD presented the highest expression in

macrophages. Pyroptosis is typically observed in myeloid lineage

professional phagocytes, including macrophages, dendritic cells,

and neutrophils. This phenomenon has also been noted in

various cell types such as keratinocytes, epithelial cells,

endothelial cells, and neurons (51). When faced with intense

stimuli, macrophages can either directly undergo pyroptosis or

become proinflammatory phenotypes that secrete cytokines,

leading to pyroptosis in adjacent cells. In macrophages, the

NLRP3 inflammasome functions as a stress sensor, identifying
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cellular and tissue stress and converting it into an inflammatory

response. Although these responses aid in defense and stress

adaptation, they may become maladaptive under chronic stress,

causing pathological inflammatory changes in bones and joints

(52). In the context of OA, research has suggested that macrophages

in the synovium deposit crystals. The NLRP3 inflammasome is

activated by these crystals and ATP released from dead cells, leading

to the production of inflammatory cytokines IL-1b and IL-18 (53).

The findings indicate that PYCARD is involved in macrophage

pyroptosis during synovial inflammation in OA.

Cells were categorized into high- and low-PYCARD expression

groups based on their PYCARD expression levels, followed by

differential analysis. We identified 128 DEGs and performed GO

and KEGG analyses on the upregulated and downregulated genes.

Numerous GO terms and KEGG pathways associated with MHC

class II and antigen processing and presentation suggest the

involvement of immune response pathways in regulating

pyroptosis and PYCARD expression.

We developed a PPI network for the 128 DEGs and utilized

cytoHubba to identify 10 key genes: TYROBP, FCER1G, AIF1,

ITGB2, SPI1, CYBB, LAPTM5, C1QA, CD14, and HLA-DPA1. We

predicted drug-gene interactions to identify potential therapeutic

candidates targeting these key genes. The membrane-encoded

adaptor protein TYROBP plays a vital role in the transduction of

immune signals (54). The regulation of the immune system,

especially in the monocyte-macrophage system, heavily relies on

TYROBP, which influences the proliferation, survival,

differentiation, and polarization of immune cells. Through the

activation of TYROBP-related signaling pathways, Triggering

Receptor Expressed on Myeloid cells-1 facilitates the production

of proinflammatory cytokines and chemokines in hypoxic mature

dendritic cells (46). Furthermore, according to previous reports,

TYROBP may mediate pathological changes in OA through

proinflammatory mechanisms (55). Following mechanical injury

in mice, FCER1G, a vital part of the high-affinity IgE receptor, may

activate mast cells via IgE, causing synovitis and cartilage damage in

osteoarthritis (56). Another study revealed that IgE contributes to

atherosclerotic foam cell formation by modulating the polarization

state of macrophages (57). ITGB2, a subunit of integrin, is a surface

receptor expressed specifically on leukocytes that forms a

heterodimer (58). ITGB2 expression is linked to diverse blood cell

types and may play a crucial role in regulating immune cell

infiltration and inflammation (59). Previous studies have also

suggested that ITGB2 is associated with the M1 polarization of

macrophages (60). Recent studies have identified ITGB2 as a

contributor to OA progression, noting its increased expression in

OA tissues (61). SPI1, part of the E26 transformation-specific

transcription factor family, plays a vital role in the differentiation

and function of various myeloid cells (62). A prior study indicated

that SPI1 could serve as a therapeutic target in rheumatoid arthritis

by directly inhibiting Feline Mcdonough sarcoma-like tyrosine

kinase 3 (63). Recent studies indicate that SPI1-induced

ADAMTS5 expression is crucial in OA, and overexpressing

Dnmt1 to suppress ADAMTS5 significantly alleviates cartilage

damage in OA mice (64). CYBB is the final element of a
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respiratory chain that facilitates the transfer of electrons from

cytoplasmic NADPH across the plasma membrane to

extracellular molecular oxygen. It encodes the b-chain of

flavocytochrome b245 (gp91phox or NOX2), a crucial component

of the NADPH oxidase complex in phagocytes such as granulocytes,

monocytes, and macrophages (65). Recent research indicates that

nimesulide could potentially treat OA by reducing chondrocyte

necroptosis via CYBB gene expression downregulation (66). C1q is

a key element of the classical complement activation pathway,

linking innate immunity with acquired immunity through IgG or

IgM (67). Studies have shown that C1q is associated with the

number of polarized M1 macrophages (68). Additionally, recent

research suggests that C1QA can be utilized for diagnosing OA and

aiding in clinical decision-making (69). The HLA-DPA1 gene, part

of the major histocompatibility complex class II, potentially

regulates OA by presenting antigens via MHC II molecules. Type

II collagen-specific T regulatory cells in the OA synovium are

activated when Col II is presented on MHC II by antigen-

presenting cells, including macrophages and dendritic cells (70).

Studies indicate that HLA-DPA1, linked to the OA immune

microenvironment, demonstrates strong diagnostic capabilities

and is a potential biomarker (56). Although there are no specific

reports on LAPTM5 and AIF1 in the context of OA, the literature

suggests that both are highly associated with inflammation (71). By

analyzing drug-gene interactions for 10 key genes via the DGIdb

database, we identified 57 potential drugs or compounds for OA

treatment. A review of the pharmacological effects of these

compounds revea led that they pr imar i ly cons i s t o f

immunomodulators, including Therapeutic Immune Globulin,

Erlizumab, and Visilizumab, as well as flavonoid anti-

inflammatory agents such as Chrysin, Apigenin, and Luteolin. In

the field of immunomodulation, Yacov’s team demonstrated the

efficacy of VB-201 in alleviating glomerular damage,

glomerulosclerosis, and fibrosis in rats through the inhibition of

monocyte migration (72). Ahmad et al. found that Chrysin reduced

the production of macrophage inflammatory mediators IL-6 and

TNF-a by targeting DPP-8/9 (73). Additionally, Chen’s team

demonstrated that Chrysin-loaded macrophage-targeting nano-

and nanocellular carcinoma (MCAC) carriers inhibited M1

polarization and alleviated OA (74). Lauritzen’s team reported

that Apigenin inhibited the production of NLRP3 inflammasomes

and the inflammatory cytokine IL-1b during macrophage

pyroptosis through the inhibition of CD38 (75). Several studies

have suggested that Luteolin promotes M2 macrophage

polarization and reduces the release of pro-inflammatory factors

by inhibiting macrophage PI3K-AKT/NF-kB/MAPK and JAK2/

STAT3 signaling pathways (76–79). Notably, Makino et al. directly

verified that Luteolin, Chrysin, and Apigenin inhibited THP-1 cell

differentiation by suppressing the expression of CYBB, a key target

screened by the DGIdb database (76). And Kojima et al.

demonstrated that Butein reduces intercellular adhesion

molecule-1 (ICAM-1) expression by inhibiting NF-kB and AP-1

activation, with ITGB2 acting as the binding ligand for ICAM-1

(80). Similarly, a study indicated that Butein blocks NLRP3

inflammasome activation in mouse macrophages by inhibiting
Frontiers in Immunology 17
ASC oligomerization, reactive oxygen species production, and

upregulation of the antioxidant pathway nuclear factor erythroid

2-related factor 2 (Nrf2) (81). In addition, we verified that Butein

alleviated the LPS+ATP-induced macrophage pyroptosis process

NLRP3 and GSDMD-N expression and inhibited the expression of

PYCARD-related hub gene ITGB2 predicted by DGIdb database. In

addition, we also found that Butein alleviated LPS and IFN-g
stimulated expression of macrophage M1 polarization indicators

(iNOS, CD86) and likewise inhibited ITGB2 expression. This

suggests that Butein may regulate macrophage inflammatory

polarization and pyroptosis by modulating ITGB2, however the

exact mechanism of regulation requires further investigation. These

findings highlight the potential of these compounds as therapeutic

agents for the treatment of OA.

We performed clustering of the 113 synovial samples based on

PYCARD and its 10 associated key DEGs. The samples were divided

into two separate clusters, C1 (N = 49) and C2 (N = 64), based on the

highest consensus values. The C2 cluster demonstrated a stronger

association with OA characteristics in comparison to the C1 cluster.

Furthermore, an analysis of intercluster expression of PYCARD and its

core DEGs revealed significantly elevated expression levels in the C2

cluster. The C2 cluster demonstrated increased immune cell infiltration,

particularly with a higher proportion of macrophages (M1 and M2

subtypes), while fibroblast numbers remained comparable between the

two clusters. These findings suggest that synovial macrophage

pyroptosis in OA should be a focal point of further research, given its

potential role in disease pathogenesis and as a therapeutic target.

We assessed PYCARD expression under OA conditions to

validate our findings. Initially, we induced medial meniscus

destabilization in a cohort of 10 mice for experimental analysis.

PYCARD exhibited high expression levels in the synovium of OA

mice and demonstrated significant colocalization with the

macrophage marker F4/80. Furthermore, OA synovial

macrophages in human synovial samples exhibited a marked

increase in PYCARD expression, which showed strong

colocalization with the macrophage marker CD68. Previous

studies have confirmed that M1 inflammatory polarization of

synovial tissue macrophages plays a key role in accelerating the

pathological progression of OA (53, 82, 83). Targeting M1

inflammatory macrophages may, therefore, serve as a therapeutic

strategy to alleviate OA (8, 84). The LPS and IFN-g protocol,

commonly used to induce macrophage M1 polarization, is

recognized as a model for generating a typical pro-inflammatory

phenotype (85–87). Although this cellular model does not fully

replicate the complex environment of OA, it partially mimics the

pathology of OA-related synovial inflammation. We observed that

LPS and IFN-g induced M1 macrophages exhibited high expression

levels of PYCARD, TYROBP, FCER1G, AIF1, ITGB2, SPI1, CYBB,

LAPTM5, C1QA, CD14, and HLA-DPA1. Previous studies suggest

that PYCARD is significantly associated with macrophage

polarization towards the M1 phenotype (88). Our subsequent

validation further confirmed that M1-polarized macrophages

exhibit high expression levels of PYCARD and its associated core

genes. These findings suggest that PYCARD and its core-related

genes may serve as key regulatory factors for M1 macrophages,
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warranting further investigation. These findings suggest that

PYCARD may function as both a biomarker and a therapeutic

target for OA synovium.

Previous studies have employed bioinformatics to explore the

expression patterns of genes associated with pyroptosis in OA, with

particular emphasis on cartilage pyroptosis (89). They concluded that

PYCARD could serve as a diagnostic marker. However, current

research on PYCARD in macrophages remains limited, with only a

few studies addressing its role in macrophages within OA synovial

inflammation (49, 90). We verified that knockdown of PYCARD in

macrophages alleviated LPS- and ATP-induced expression of

GSDMD-N, NLRC4, and NLRP3, which partially validated that

PYCARD regulates macrophage pyroptosis through the canonical

pyroptosis pathway. Our study offers unique advantages and novelty

compared to previous research. We assembled a comprehensive

collection of public RNA-seq datasets from synovial samples,

including 55 from healthy individuals and 57 from those with OA,

to bolster the reliability of our bioinformatics analysis. We developed

an OA prediction model using LASSO regression and hazard ratios

(HRs), based on the expression of pyroptosis-related genes.

Furthermore, our study involved a combined and pioneering analysis

of bulk RNA-seq and scRNA-seq data, enabling the discovery of

pyroptosis-related gene expression patterns in each synovial cell

cluster in OA for the first time. Additionally, we identified PYCARD

as specifically expressed in OA synovial macrophages. Moreover, based

on genes related to PYCARD, we screened potential therapeutic drugs

from the DGIdb database, providing support for OA treatment.

Experiments were performed to verify the clinical relationship

between PYCARD levels and OA, and to investigate its expression

and related genes in synovial macrophage polarization.

Nevertheless, several limitations are present in our study. First,

the deconvolution of normal synovial samples could be biased due

to missing scRNA-seq data for normal synovium. Secondly, online

tools were used to predict drugs for PYCARD, and experimental

validation is needed for the interactions between these drugs and

PYCARD or its associated genes. Third, our study currently lacks

PYCARD knockout transgenic mice, which we plan to incorporate

in future research to strengthen our conclusions.

5 Conclusions

We conducted a comprehensive bioinformatics study to

pinpoint crucial genes associated with pyroptosis in individuals

with OA. Our results also identified 57 potential therapeutic agents

or compounds for OA, which were connected to significant genes

related to PYCARD. Additional research is required to confirm the

efficacy of these agents in OA treatment.
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