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Nuclear receptor 4A1 is critical
for neutrophil-dependent
pulmonary immunity to
Klebsiella pneumoniae infection
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Introduction: Bacterial pneumonia is a burdensome, costly disease and increasingly

challenging to treat due to antibiotic resistance. Complex host-pathogen interactions

regulate protective immunity. Neutrophils play a central role in pulmonary bacterial

immunity, and mechanistic understanding of neutrophil functions in bacterial

pneumonia has potential clinical and fundamental application. Nuclear receptor

4a1 (Nr4a1), a member of the nuclear orphan receptor family, has been described to

regulate inflammation and immune development in a cell type-specific manner, but

its role in pulmonary host defense is not well understood.

Methods: Wild-type (WT) and Nr4a1-/- mice, as well as bone marrow chimeric and

Gr-1+ antibody depleted mice, were infected with Klebsiella pneumoniae and

assessed for bacterial burden in the lung and spleen, gene transcription, protein

levels, histology and cellular abundance by flow cytometry in the lung. WT and

Nr4a1-/- neutrophils were exposed to live Klebsiella pneumoniae to quantify

bacterial killing, as well as bulk RNA sequencing to assess transcriptomic differences.

Results: Nr4a1-deficient mice are highly susceptible to Klebsiella pneumoniae

pneumonia, which was mediated by Nr4a1 expression in immune cells. Gr-1+

antibody depletion ameliorated the Nr4a1-dependent phenotype. Ex vivo, Nr4a1-

deficient neutrophils had impaired bactericidal capacity, and transcriptomic

analysis identified an Nr4a1-dependent host defense program in neutrophils.

Discussion: Neutrophil Nr4a1 expression is critical for defense against

K. pneumoniae infection by regulating the neutrophil transcriptome. These

findings suggest targeting Nr4a1 signaling pathways in neutrophils may be

useful for bacterial pneumonia treatment.
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Introduction

Pneumonia is the leading cause of death among children

worldwide, responsible for 15% of overall child mortality, surpassed

only by prematurity (1). In the US, pneumonia is the most common

infectious cause of hospitalization and death, with annual costs

in excess of $17 billion (2–5). While antibiotics are the standard

treatment for bacterial pneumonia, antibiotic resistance (AR) (6–9) is

increasingly common, and AR pathogen treatment is associated with

increased financial costs, morbidity and mortality (10–12). Klebsiella

pneumoniae, a common cause of hospital-acquired pneumonia, is a

U.S. Centers for Disease Control and Prevention-defined “Urgent

Threat” to public health due to its virulence and increasing rate of

antibiotic resistance (12). Improved treatments for AR pneumonia

are urgently needed. The pathophysiology of pneumonia involves

complex host-pathogen interactions, and insight into the critical

mediators of host immunity holds the promise for developing

immune-targeting treatments as novel therapeutic strategies,

approaches that have transformed the fields of cancer biology

and autoimmunity.

Neutrophils and macrophages are key myeloid immune populations

in pulmonary antibacterial immunity, but the cell-specific molecular

mechanisms remain only partially understood (13, 14). Nuclear receptor

4a1 (Nr4a1 or Nur77) is a steroid thyroid receptor family member of the

orphan nuclear receptor subfamily 4a. Nr4a1, Nr4a2 (Nurr1), and Nr4a3

(NOR-1), have been shown to regulate homeostatic myeloid cell

development. Prior studies have shown that Nr4a1 modulates

macrophage and T cell-mediated inflammation as well as modulating

metabolic pathways in the context of autoimmunity and oncology to

constrain proinflammatory signaling and promote tolerance via

transcriptional and epigenetic regulation (15–26). Few studies have

examined the role of Nr4a1 in pulmonary host defense, specifically in

the context of common bacterial pathogens. Thus, we sought to

investigate whether Nr4a1 was critical for pulmonary immunity to

pneumonia using the murine model of Klebsiella pneumoniae (15, 17,

22, 26–28). This work identified that Nr4a1 deficiency reduced survival,

increased lung bacterial burden, and enhanced bacterial dissemination.

We further observed that neutrophil-specificNr4a1 is critical for defense

against K. pneumoniae by regulating a defense response transcriptional

program. These findings suggest that targeting neutrophil-specific Nr4a1

could offer a promising avenue for developing novel immunotherapies

against bacterial pneumonia.

Methods

Animals

All animal protocols were approved by the University of

Pittsburgh Institutional Animal Care and Use Committee (IACUC,

protocols #22061470 and #23104015), and all experiments were

conducted in accordance with the guidelines and regulations set

forth in the Animal Welfare Act (AWA) and PHS Policy on Humane

Care and Use of Laboratory Animals. WT C57BL/6J and Nr4a1-/-

(B6;129S2-Nr4a1tm1Jmi/J) mice were purchased from the Jackson

Laboratory. Age- and sex-matched male and female mice between
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8-12 weeks old at the beginning of experiments were used for this

study. Ages of BM donor mice ranged between 8-16 weeks old.
Klebsiella pneumoniae infection/bacterial
burden analysis

In vivo infection of K. pneumoniae 396 (Kp396), a hypervirulent

mucoid clinical isolate (29), via intratracheal injection and bacterial

burden quantification in left lung lobe and whole spleen were

performed as described previously (30) except that each animal

received Kp396 at 5,000 – 10,000 CFU.
Histology

Lungs were fixed in 4% paraformaldehyde and embedded in

paraffin and sectioned at 4 µm. Lung sections were stained with

hematoxylin and eosin (H&E). H&E-stained slides were scored for

bacterial burden in a blinded fashion with respect to neutrophil

infiltration in alveoli, neutrophil infiltration in interstitial, hyaline

membrane, alveolar wall thickening, and abscesses (Supplementary

Table S1) (31).
Quantitative PCR

Right upper lung lobes were processed for qPCR as described

previously (30). See Supplementary Table S2 for primer

assay information.
Flow cytometry

Right middle and lower lung lobes were processed and stained

for flow cytometry as described previously (30). See Supplementary

Table S3 for antibody information.
Enzyme-linked immunosorbent assay

Lung homogenates were subjected to anti-IL-1b (ThermoFisher

Scientific 88-7013-22) and anti-MPO (R&D DY3667) by ELISA as

described previously (30).
Bone marrow chimera generation

WT and Nr4a1-/- mice were conditioned with 1100 cGy total

body irradiation in a split dose of 550 cGy 3-4 hours apart from an

X-ray source (X-rad 320; Precision X-ray, North Branford, CT),

followed by intravenous infusion of 5x106 WT or Nr4a1-/- bone

marrow (BM) cells. Transplanted mice were housed in sterile

microisolator cages. BM cells were allowed to engraft for 8 weeks

prior to infection.
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Isolation of primary BM neutrophils and
macrophages/K. pneumoniae killing assay

Primary neutrophils were isolated from WT and Nr4a1-/- BM

using 40/70% Percoll gradient (Fisher) following red blood cell lysis

with increasing NaCl concentrations (0.2% followed by 1.6%). For

BM macrophage isolation, red blood cell lysed BM cells with ACK

lysis buffer (Gibco) was cultured for 7 days at 37 °C in 5.0% CO2 and

DMEM media supplemented with 10% fetal bovine albumin (FBS),

100 U/ml penicillin, 100 mg/ml streptomycin, 292 mg/ml L-

glutamine (all Gibco), and 20 ng/mL M-CSF (Life Technologies).

Isolated neutrophils and macrophages were incubated with Kp396

at an MOI of 10 in the killing assay media (IMDM media

supplemented with 10% FBS, 292 mg/ml L-glutamine, 1x MEM

non-essential amino acids, 10 mM HEPES, and 1 mM sodium

pyruvate (all Gibco)) for 1 hour in the 37 °C with 5.0% CO2 on an

orbital shaker at 250 rpm. Resulting supernatant was subjected to

bacterial burden analysis as described above. Remaining cells were

stored for gene expression analysis.
RNA sequencing

Primary neutrophils were isolated via negative magnetic

selection from WT and Nr4a1-/- BM using EasySep™ Mouse

Neutrophil Enrichment Kit (StemCell Technologies) following

manufacturer’s instructions. Cells were incubated with or without

Kp396 at a MOI of 0.4 in the killing assay media (IMDM media

supplemented with 10% FBS, 292 mg/ml L-glutamine, 1x MEM

non-essential amino acids, 10 mM HEPES, and 1 mM sodium

pyruvate (all Gibco)) for 30 minutes at 37 °C prior to RNA isolation

using RNeasy Micro Kit (Qiagen).

RNA was assessed for quality using an Agilent TapeStation

4150/Fragment Analyzer 5300 and RNA concentration was

quantified on a Qubit FLEX fluorometer. Libraries were generated

with the Illumina Stranded mRNA Library Prep kit (Illumina:

20040534) according to the manufacturer’s instructions. Briefly,

50 ng of input RNA was used for each sample. Following adapter

ligation, 15 cycles of indexing PCR were completed, Illumina RNA

UD Indexes. Library quantification and assessment was done using

a Qubit FLEX fluorometer and an Agilent TapeStation 4150/

Fragment Analyzer 5300. Libraries were normalized and pooled

to 2 nM by calculating the concentration based off the fragment size

(base pairs) and the concentration (ng/ml) of the libraries.
Sequencing was performed on an Illumina NextSeq 2000, using

a P2 flow cell. The pooled library was loaded at 750 pM and

sequencing was carried out with read lengths of 58 bp, with a target

of 30 million reads per sample. Sequencing data was demultiplexed

by the on-board Illumina DRAGEN FASTQ Generation

software (v3.10.12).

Raw reads underwent pre-alignment quality control (QC) and

trimming. Reads were then aligned using STAR (2.7.8a) via Partek

Flow Bioinformatics software. Transcript normalization and gene

expression analysis were performed using DESeq2 with FDR step-
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up used for multiple test correction. Hierarchical clustering was

performed in both supervised and unsupervised manners by

genotype/treatment. Gene set enrichment analysis using gene

ontogeny terms were generated by significant hits (FDR<0.001).

RNA-seq data has been deposited at the Gene Expression

Omnibus (GEO) database (accession code: IN PROGRESS).
Results

Nr4a1-deficient mice are highly susceptible
to K. pneumoniae pneumonia

To evaluate the role of Nr4a1 in pulmonary infection, wild-type

(WT) and Nr4a1-/- mice were infected with a clinical isolate of

Klebsiella pneumoniae (Kp396) (29). We found that Nr4a1

transcription increased in WT mice following K. pneumoniae

infection while Nr4a1-/- mice had no detectable Nr4a1 gene

transcription (Supplementary Figure S1A). Nr4a1-/- mice

exhibited a significantly increased bacterial burden in the lungs

compared to WT mice (Figure 1A). Additionally, there was a

significantly higher bacterial burden in the spleens of Nr4a1-/-

mice (Figure 1B), indicating greater bacterial dissemination. This

increased bacterial burden and dissemination was associated with a

reduced survival rate in Nr4a1-/- mice (14% vs. 0%) at 72 hours

post-infection (Figure 1C). Consistent with these findings,

histological analysis identified greater infection-driven lung

pathology in Nr4a1-/- mice (Figures 1D, E). These findings

demonstrate the critical importance of Nr4a1 in controlling K.

pneumoniae pneumonia.
Nr4a1 expression in neutrophils is
protective against K. pneumoniae infection

As shown in Supplementary Figure S1B, transcripts of cytokines

and chemokines essential for neutrophil activation and recruitment

were reduced in the lungs of Nr4a1-/- mice. Further, prior to

differences in lung or spleen bacterial burden, Nr4a1-/- mice had

reduced neutrophil recruitment to the lungs, while the recruitment

of alveolar and inflammatory macrophages was not different

between WT and Nr4a1-/- mice following K. pneumoniae

infection (Supplementary Figure S1C). Additionally, the

expression of proteins associated with neutrophil effector

functions (IL-1ß and MPO) were impaired in the lungs of

Nr4a1-/- mice following K. pneumoniae infection (Supplementary

Figure S1D). Together, these data demonstrate that Nr4a1-/- mice

exhibit multiple aspects of impaired neutrophil-associated immune

responses following K. pneumoniae infection.

To experimentally validate whether hematopoietic versus non-

hematopoietic Nr4a1 expression was required for protection against

K. pneumoniae pulmonary infection, we generated bone marrow

(BM) chimeric mice, where the BM of WT or Nr4a1-/- mice was

transplanted into lethally irradiated WT or Nr4a1-/- recipients
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(Figure 2A, Supplementary Figures S3A, B). Regardless of the

recipient genotype, mice transplanted Nr4a1-/- BM failed to

control lung bacterial burden and dissemination (Figure 2A),

indicating that Nr4a1 expression in BM-derived cells is crucial for

protection against K. pneumoniae pulmonary infection.

To further investigate the immune cell specific Nr4a1

expression requirement, we directly examined the impact of Gr-

1+ cell-depletion on bacterial burdens in WT and Nr4a1-/- mice.

RB6-8C5 monoclonal antibody treatment depleted cells (primarily

neutrophils) and led to significantly increased bacterial burden in

lung and increased bacterial dissemination post-infection in both

WT and Nr4a1-/- mice, reinforcing the central role of neutrophils in

K. pneumoniae clearance (Figure 2B). Notably, there was no

difference in lung or spleen bacterial burden between WT and

Nr4a1-/- mice after Gr-1+ depletion, suggesting that Nr4a1-

dependent susceptibility is mediated by Gr-1+ cells.

To isolate the Nr4a1-mediated effect within the key myeloid cell

populations, we employed an ex vivo primary cell bacterial killing

assay. Here, we confirmed that purified BM neutrophils (Figure 2C),

but not BMmacrophages (Figure 2D), are directly responsible for the

killing of K. pneumoniae ex vivo in a Nr4a1-dependent manner

(Figures 2C, D, Supplementary Figure S3C). Correspondingly, WT

neutrophils upregulatedNr4a1 gene expression upon incubation with

K. pneumoniae ex vivo (Figure 2E), consistent with observations in

vivo (Supplementary Figure S1A).
Frontiers in Immunology 04
Nr4a1 controls neutrophil defense
response genes

To investigate how neutrophil-specific Nr4a1 expression

contributes to defense against K. pneumoniae, bulk RNA-

sequencing was performed on purified WT and Nr4a1-/-

neutrophils, both with and without incubation with K.

pneumoniae ex vivo, which revealed transcriptomic differences

between WT and Nr4a1-/- PMNs, regardless of K. pneumoniae

stimulation (Figure 3A, Supplementary Figure S5). 209 differentially

expressed genes (DEGs) were identified in both unstimulated and

Kp-stimulated conditions (DEGs) including Nr4a1 as expected, as

well as innate antibacterial effector genes Tlr2, Myd88, Sod2, Ctss,

and Fpr2 (Figure 3B; Supplementary Table S5). 182 DEGs were

identified only under stimulated conditions, including phagocyte

activation genes Nod2, Elmo2, Rel and Ccl3 while 153 DEGs were

identified under baseline conditions.

Pathway analysis of WT and Nr4a1-/- PMNs DEGs at baseline

were enriched for terms associated with several neutrophil

functions, including “Defense response,” “Immune effector

process” and “Interspecies interaction between organisms”

(Figure 3C). After K. pneumoniae infection, WT and Nr4a1-/-

differentially expressed neutrophil transcripts yielded further

enrichment for the terms “Defense response”, “Interspecies

interaction between organisms”, “Regulation of Immune System
FIGURE 1

Nr4a1-deficient mice are highly susceptible to K. pneumoniae pneumonia. (A, B) WT and Nr4a1-/- mice were infected with K. pneumoniae
intratracheally (IT). Colony forming unit (CFU) from lung (A) or spleen (B) homogenates were analyzed 5, 24, or 48 hours post infection. (C) Survival
of WT and Nr4a1-/- mice following K. pneumoniae infection (n=7-8/group). (D, E) H&E staining of lungs 24 hours post infection ± K. pneumoniae.
(D) Representative images of lung pathology. Scale bars indicate 50 mm. (E) Quantification of histology score. n= 11-15 (A, B), 7-8 (D) 5 (E), mean ±
SEM., comparison by unpaired t-test (A-B, E) or Mentel-Cox test (C) where *p < 0.05, **p < 0.01 and ****p < 0.0001.
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Process”, “Defense Response to other organism”, as well as “Cell

Activation” and “Innate Immune Response” (Figure 3D). Thus,

RNA sequencing analysis identified that prior to infection Nr4a1-/-

neutrophils have altered antibacterial transcriptomic profiles, and

that K. pneumoniae infection activates a transcriptional program

that fails to enrich in the context of Nr4a1 deficiency (Figure 3B,

Supplementary Table S4). Examining the 20 most differentially

expressed transcripts in the context of K. pneumoniae stimulation

(Figure 3E) identified genes with no reported role in neutrophil

antibacterial function, to the best of our knowledge, though 19 of

these DEGs have been shown to be expressed in neutrophils.

Cumulatively, these RNA sequencing data align with the in vitro

and in vivo observations that Nr4a1 deficiency impairs neutrophil

lung recruitment and bactericidal activity against K. pneumoniae.
Discussion

Nr4a1 exhibits diverse cellular expression and pleotropic

functions in mammalian biology, with its role in regulating

immune cell transcription and cellular function being well

described (15–20). Most of these studies focused on its role in

macrophages and T cells (21–26). Despite documented expression

in human and murine neutrophils, the function of Nr4a1 in

neutrophils remain underappreciated (32, 33). Ballasteros et al.
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identified that neutrophil gene expression and function are

influenced by the tissue environment, showing that Nr4a1

expression was induced in lung-specific neutrophils, which was

acquired after arrival in the lung (34). This finding in particular

suggests a significant role for Nr4a1 in neutrophil-mediated

lung immunity.

Our work uncovered a novel neutrophil-specific requirement for

Nr4a1 in pulmonary immunity against Klebsiella pneumoniae. Nr4a1

deficiency led to delayed neutrophil recruitment to the lung,

downregulated genes involved in neutrophil activation and

recruitment, and reduced expression of proteins critical for effector

functions in vivo. RNA-seq analysis of purified neutrophils identified

Nr4a1-dependent, antibacterial transcriptional signatures, and

Nr4a1-deficient neutrophils exhibited impaired bacterial killing

in vitro.

This neutrophil-specific role of Nr4a1 in promoting anti-bacterial

activity is notably distinct from its effects on other immune cell

populations. In macrophages, Nr4a1 deficiency increased TNFa
production (22), along with other proinflammatory cytokines (23),

exacerbating inflammation driven atherosclerosis (24). Similarly,

Nr4a1 expression in T cells has been shown to suppress

inflammation associated with autoimmunity (25) and cancer (26).

This unique cell-specific function of Nr4a1 in neutrophils suggests

that targeting neutrophil-specific Nr4a1 could be a promising

approach developing immunotherapies against bacterial pneumonia.
FIGURE 2

Nr4a1 expression in neutrophils is protective against K. pneumoniae infection. (A) Bone marrow (BM) chimera mice were generated using WT and
Nr4a1-/- mice as either donor, recipient or both, as denoted. K. pneumoniae-infected burden was quantified by CFU in lung (left) or spleen (right) of
recipient mice 48 hours post-infection. (B) WT and Nr4a1-/- mice were treated with 100 mg RB6-8C5 antibody (or isotype control) to deplete Gr-1+

cells. 24 hours post treatment, WT and Nr4a1-/- mice were infected with K. pneumoniae and bacterial burden in lung (left) or spleen (right) quantified
48 hours post infection. Purified BM primary neutrophils (C) or macrophages (D) from WT or Nr4a1-/- mice were incubated with K. pneumoniae at
an MOI of 5 for 1 hour ex vivo at 37 °C, with supernatants were collected for K. pneumoniae quantification by CFU. (E) Expression of Nr4a1 gene in
purified WT neutrophils ± K. pneumoniae incubation for 1 hour at 37 °C via qPCR. n = 11-15 (A), 6-10 (B), 8-9 (C), 4-5 (D, E), mean ± SEM.,
comparison by Mann-Whitney tests (A/B) or unpaired t-test (C-E) where *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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A deeper understanding of how Nr4a1 influences neutrophil

recruitment, activation, and effector functions compared to other

immune cells is critical for optimizing Nr4a1-directed pneumonia

treatment strategies. Several innate immune signaling pathways are

activated during bacterial infection, including Toll-like receptors

(e.g.CD14/TLR4) and Nod-like receptors (35–37). Previous studies

have shown that Nr4a1 limits MAPK-mediated NF-kB p65

phosphorylation and downstream inflammation in alveolar

macrophages (21, 22). The present data identified 544 Nr4a1-

dependent DEGs, some of which are well-established neutrophil-

associated mediators of bacterial immunity, such as the innate

pathogen recognition receptors Toll-like 2 (Tlr2) and formyl

peptide receptor 2 (Fpr2), and Myd88, Sod2, and Rel which

regulate intracellular signaling and effector function. However, the

most highly differentially expressed transcripts have no established

role in neutrophil-mediated bacterial immunity, though some have

been described to mediate neutrophil-dependent disease in non-

infectious pathologies, such as enoyl-CoA delta isomerase 2 (Eci2)

in colorectal cancer and solute carrier family 2 member 9 (Slc2a9) in

hyperuricemic neutrophil inhibition (38, 39). Whether these

pathways are modulated by Nr4a1 in neutrophil-dependent

immunity to pulmonary infection remains unknown, and further

examination could provide valuable insights.

In addition to investigating the differential roles of Nr4a1 in

distinct immune cell populations, it is crucial to determine whether

the Nr4a1-mediated immune response is pathogen-specific in

pneumonia. In our study, Nr4a1 deficiency did not affect

macrophage recruitment or change bone marrow-derived
Frontiers in Immunology 06
macrophage bactericidal capacity against K. pneumoniae.

However, in a murine E. coli lung infection model, Cui et al.

reported that Nr4a1 deficiency increased alveolar macrophage

phagocytosis and enhanced bacterial clearance (40), alongside an

increase in macrophage abundance in BAL fluid, despite a

reduction in neutrophils. This discordance suggests that Nr4a1

not only functions in a cell-specific manner, but that pathogen-

specific immune responses this may govern the lung phenotype.

Investigating Nr4a1-regulated immune responses to different

pneumonic pathogens, such as S. pneumoniae, influenza, and

Aspergillus, will help delineate the critical mechanisms underlying

these phenotypes of host-pathogen interaction during

pulmonary infection.

Finally, it is crucial to validate findings from mouse models of

neutrophil biology in human neutrophils, given the known

differences in granule formation and transcriptional and

proteomic profiles. Additionally, the tissue-specific role of

neutrophil-specific Nr4a1 expression remains unexplored and

could be investigated in other sites commonly infected by K.

pneumoniae, including the liver, abdomen, and urinary tract.

In summary, we have demonstrated that neutrophil-specific

Nr4a1 is essential for protective immunity against K. pneumoniae

pneumonia. Further, our study identifies the neutrophil

transcriptome regulated by Nr4a1. Continued research into the

cell- and pathogen-specific regulation by Nr4a1, along with a

deeper understanding of its downstream molecular pathways, may

inform the development of new immunotherapies for

bacterial infections.
FIGURE 3

Nr4a1 regulates neutrophil defense response transcriptome. (A-D) RNA sequencing of WT and Nr4a1-/- primary neutrophils (PMNs). PMNs were
isolated from bone marrow of indicated mice and incubated ± K. pneumoniae ex vivo for 30 minutes prior to RNA seq. (A) Heatmap comparing the
transcriptome of K. pneumoniae stimulated and unstimulated WT and Nr4a1-/- PMNs. (B) Venn diagram of differentially expressed transcripts
between Kp-stimulated (yellow) and unstimulated (blue) WT and Nr4a1-/- PMNs. GEO analysis of unstimulated (C) or stimulated (D) WT and Nr4a1-/-

PMNs. (E) Heatmap of 20 most differentially expressed genes (fold change) comparing WT and Nr4a1-/- Kp-stimulated neutrophils.
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