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Chronic inflammation is an important component of many diseases, including

autoimmune diseases, intracellular infections, dysbiosis and degenerative

diseases. An important element of this state is the mainly positive feedback

between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide

(NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1a)
stabilisation and mitochondrial oxidative stress, which, under normal conditions,

enhance the response against pathogens. Autophagy and the nuclear factor

erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly

negatively coupled with the above-mentioned elements to maintain the defence

response at a level appropriate to the severity of the infection. The current review

is the first attempt to build a multidimensional model of cellular self-regulation of

chronic inflammation. It describes the feedbacks involved in the inflammatory

response and explains the possible pathways by which inflammation becomes

chronic. The multiplicity of positive feedbacks suggests that symptomatic

treatment of chronic inflammation should focus on inhibiting multiple positive

feedbacks to effectively suppress all dysregulated elements including

inflammation, oxidative stress, calcium stress, mito-stress and other

metabolic disturbances.
KEYWORDS
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1 Introduction

Chronic inflammation is a major medical problem that poses enormous diagnostic and

therapeutic challenges worldwide. Despite major advances in recent years, available

therapies are often unsatisfactory. Understanding the molecular changes that occur

under this condition is essential for the development of effective, comprehensive

therapeutic approaches. The immune system is a highly complex self-regulatory system
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characterised by numerous self-regulatory couplings that adapt the

strength and type of response to the nature of the pathogen. The

current work extends this analysis to include other elements of

cellular self-regulation that are in predominantly positive feedback

with inflammatory mediators and with each other, thereby helping

to drive the inflammatory response. These elements are oxidative

stress, represented by the activity of NADPH oxidases (NOXs),

inducible nitric oxide synthase (iNOS) and mitochondrial reactive

oxygen species (mito-ROS) (electron leakage from the cytochrome

chain), calcium stress (an increase in intracellular calcium

concentration and endoplasmic reticulum stress) and hypoxia-

inducible factor 1-alpha (HIF-1a), induced under both anaerobic

and aerobic conditions. As these elements are mainly in positive

feedback with each other, they are referred to in the current work as

the Positive Coupling System (PCS).

The intensity of the inflammation must be high enough to fight

the infection but not to the point of self-destruction. The regulatory

factors are mainly the transcription factors nuclear factor erythroid

2-related factor 2 (Nrf2)/FOXO, which promote antioxidation and

autophagy. The following sections will mainly discuss the negative

feedbacks between them and the PCS elements.

HIF-1a is a double-faced factor because it is involved in driving

up the inflammatory spiral and also has a protective effect on the

mitochondria by protecting them from free radical damage. Nitric

oxide (NO) produced by iNOS can also activate and inhibit the

inflammatory spiral, depending on the metabolic context.

Increasing knowledge about the mutual feedbacks between the

mentioned elements of self-regulation allows us to build generalised

models of their common interactions. The construction of

generalised models is becoming a new challenge at the current

level of knowledge and, in the opinion of the authors, will represent

a new direction in the development of molecular biology.

The details of the common relationships between the analysed

elements are presented in the following sections of the paper. The

first part of the paper discusses the basic signalling pathways

involved in the transmission of information between analysed

elements. The second part discusses the mainly positive feedbacks

between inflammation, reactive oxygen species (ROS), NO, Cai
2+

and HIF-1a. The third part discusses the controlling role of

autophagy and Nrf2/FOXO and their inhibitory effects on the

mentioned positively coupled elements.
1.1 Chronic inflammation

Chronic inflammation is usually generated in one of four cases: 1)

the chronic presence of an intracellular pathogen in the cell (1–6), 2)

an autoimmune response induced by immune cells against their own

tissues in the absence of the pathogen, 3) pathological gut microbiota

inducing the chronic inflammation (7) and 4) another metabolic

condition or disease in which the initiating factor is another

disturbance coupled with inflammation, e.g. oxidative stress,

impaired autophagy and calcium stress, which may occur in the

course of certain diseases such as atherosclerosis, neurodegenerative

diseases and intoxication (8).
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In chronic inflammation, an equilibrium develops between a

destructive factor (e.g. an intracellular pathogen) and repair factors

that are unable to restore the cell or tissue to a healthy state. To

understand the problem of chronic inflammation, it is necessary to

know the detailed molecular regulatory mechanisms that control

this process, both at the local level, i.e. short self-regulatory loops

(e.g. stimulation of calcium efflux from the cell when its intracellular

concentration increases), and at the global level, i.e. interactions

between functionally distant elements such as HIF-1a, Cai2+, O2
−/

H2O2, NO, Nrf2 and autophagy. Such interactions are just the

subject of the current work.

When analysing the many feedbacks between the many

regulatory elements of the cell, it is often difficult to identify the

initiating factor, the so-called first domino, that sets off the cascade

of molecular perturbations. Identifying such a factor is very

important for restoring balance in the cell, but it may not be

enough if the system has drifted far from a healthy state. The

underlying cause is different in the four types of chronic

inflammation mentioned above. In chronic intracellular

infections, it is most often the pathogen itself (1–6). In

degenerative diseases such as Alzheimer’s or Parkinson’s, there

are abnormal proteins (b-amyloid and tau) that disrupt many

metabolic pathways (9). In autoimmune diseases without specific

foreign initiating proteins, the question of the initiating factor is

more complex. It may be abnormal autoantibodies that react with

surface proteins and induce a variety of abnormal intracellular

responses (10). In the case of intestinal microbiota dysbiosis, the

cause of chronic inflammation is the intestinal pathogens that

induce low-level inflammation in the intestinal mucosa, which

then spreads to the whole organism (11).

An analysis of the literature shows that in intracellular

pathogens and degenerative diseases, the common denominator

of molecular pathology is blocked autophagy, which prevents the

removal of abnormal proteins and sets in motion the inflammatory-

oxidative spiral. Autophagy will therefore be an important point of

analysis in the current work. Another important issue of great

complexity is the process of resolution of inflammation, which

requires specific and individual review, especially in the context of

the feedbacks presented, because the entry into a chronic state may

also depend on the inability of the regulatory system to activate the

resolution process despite the fact that the initiating pathogen has

been removed.
2 Kinase pathways and inflammation

Current work focuses on feedback analysis between cytokines,

ROS, NO, Cai
2+, HIF-1a, Nrf2 and autophagy. Signalling pathways

such as mitogen-activated protein kinases (MAPKs) [p38, c-Jun N-

terminal kinase (JNK) and extracellular signal-regulated kinases 1

and 2 (ERK1/2)], PI3K/Akt, Janus kinase/signal transducer and

activator of transcription (JAK/STAT), AMP-activated protein

kinase (AMPK) and cAMP/protein kinase A (PKA) are strongly

involved in the communication between these elements. These

signalling pathways play numerous roles in cellular self-regulation
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and are already relatively well-understood mechanisms of

intracellular communication. These pathways are involved in the

transduction of many signals, including those between the elements

analysed. Let us summarise the information on these pathways with

a focus on inflammation. The second key point is the role of the

subsequent pathways in the regulation of autophagy because it

seems to be a common feature of very different types of chronic

inflammation. If it is impaired, the accumulation of cellular debris

and pathogens maintains inflammation, and there is no way to

bypass this mechanism of inflammatory induction. A summary of

these relationships is shown in Figure 1.
2.1 P38 MAPK

The p38 MAPK signalling pathway is one of the key regulators

of cellular responses to a variety of stimuli, including environmental
Frontiers in Immunology 03
stresses and inflammatory signals. It is mainly activated by stress

factors [oxidative stress, hypoxia, ultraviolet (UV) or ionising

radiation, and osmotic disturbances] (12), inflammatory factors

[e.g. TNF-a (13, 14), IL-1b (15, 16) and transforming growth factor

beta (TGF-b) (17, 18)], pathogens [bacterial lipopolysaccharides

(LPS) from bacteria (19) and activating Toll-like receptors (TLRs)]

and surface receptor interactions (integrin and Vascular Endothelial

Growth Factor receptors in the endothelium) (20). Inhibitors of the

p38 MAPK pathway include natural regulatory mechanisms such as

MAPK phosphatases (MKPs) and proteins that block kinase

interactions with their substrates (12). The activation of the p38

MAPK pathway leads to several biological effects, the most

important of which are the activation of genes encoding cytokines

such as IL-6, IL-8 or TNF-a (21–23), and the induction of

cyclooxygenase-2 (COX-2) expression (24, 25), which increases

prostaglandin production. The p38 MAPK pathway also plays a

key role in apoptosis by activating proapoptotic proteins in
FIGURE 1

The role of the main signalling pathways involved in the inflammatory response: p38, JNK, ERK1/2, PI3K/Akt, AMPK and JAK/STAT. The figure shows
the main factors that activate these pathways and their main inflammatory effects. Special attention is given to their influence on autophagy as one
of the key processes involved in chronic inflammation. Solid arrows, activation; red dashed lines with •, inhibition. JNK, c-Jun N-terminal kinase;
ERK1/2, extracellular signal-regulated kinases 1 and 2; AMPK, AMP-activated protein kinase; JAK, Janus kinase; STAT, signal transducer and activator
of transcription.
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response to cellular stress (26, 27). In addition, p38 MAPK regulates

the cell cycle by arresting it in the G1 or G2/M phase in response to

DNA damage (28). In the tumour microenvironment, this pathway

promotes angiogenesis through VEGF stimulation and promotes

tumour cell invasion and survival (29). It is thus a central regulator

of the cellular response to environmental and inflammatory stimuli.

Its precise regulation is crucial for maintaining cellular homeostasis,

and dysregulation of this pathway can lead to inflammatory, cancer

and neurodegenerative diseases. p38 MAPK is also involved in

activating the autophagy process (30).
2.2 ERK1/2

The ERK1/2 signalling pathway plays a key role in the

regulation of a variety of biological processes including cell

proliferation, differentiation, survival and migration. The

activation of the ERK1/2 pathway is associated with responses to

mitogenic signals such as growth factors, as well as hormonal

stimuli and changes in the extracellular environment. It also plays

an important role in the regulation of inflammatory processes,

controlling the expression of genes associated with the immune

response and the production of cytokines and chemokines (31). Its

activation occurs in response to inflammatory stimuli such as pro-

inflammatory cytokines (e.g. IL-17A and IL-1b) (16, 32), bacterial
LPS (33), growth factors (e.g. VEGF and EGF) (34) and interactions

with TLRs and chemokine receptors (31). Receptor tyrosine kinases

(RTKs) or G protein-coupled receptors (GPCRs) play a key role in

these processes by transducing the signal through the activation of

the kinase cascade, leading to the phosphorylation and activation of

ERK1/2 by MEK1/2 kinase (31).

The activation of the ERK1/2 pathway promotes the synthesis

of pro-inflammatory cytokines, such as IL-6, IL-8, TNF-a and IL-

1b, and chemokines, such as CXCL1 and CXCL8, which are

responsible for the recruitment of neutrophils and monocytes to

the site of inflammation (31, 35–37). The ERK1/2 pathway also

promotes phagocytosis (38) and plays a role in stimulating

angiogenesis by regulating VEGF expression, which improves

blood supply to the inflamed area (39, 40). Excessive or

uncontrolled activation of the ERK1/2 pathway leads to chronic

inflammatory conditions such as rheumatoid arthritis (41),

psoriasis (41) and Crohn’s disease (42), where it can cause

abnormal activation of T and B lymphocytes, leading

to autoimmunity.

The ERK1/2 signalling pathway is a promising therapeutic

target. MEK1/2 inhibitors, such as trametinib, have been used to

treat diseases associated with the over-activation of this pathway,

including certain cancers (43). In the context of inflammation,

ERK1/2 inhibitors reduce the production of pro-inflammatory

cytokines and chemokines (31, 44, 45).

This signalling pathway affects autophagy in different ways,

depending on the context and the details of the interaction. Under

conditions of cellular stress and nutrient deprivation, ERK1/2

promotes autophagy by activating the Beclin-1 protein, but this

effect is thought to be at least partly downstream of PI3K/Akt
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inhibition (46, 47). In contrast, under favourable conditions of

cellular growth and proliferation, ERK1/2 can inhibit autophagy by

activating mTOR through the TSC2/Rheb/mTORC1 pathway,

which is particularly prevalent in cancer (48) and is thought to be

also important in neurodegeneration (49).
2.3 JNK

The JNK signalling pathway plays an important role in the

regulation of inflammatory responses, acting as a mediator of stress

signalling, cytokine production and immune cell activity. This

pathway is activated by a variety of stimuli, including pro-

inflammatory cytokines such as TNF-a and IL-1b (50), ROS (51),

LPS and environmental stressors such as UV radiation and osmotic

stress (52). Activation occurs via upstream kinases such as MAP

kinase kinase 4/7 (MKK4/7), which phosphorylates and activates

JNK. JNK, in turn, translocates to the nucleus to regulate the activity

of transcription factors such as c-Jun, ATF-2 and AP-1, thereby

driving the expression of inflammatory genes.

In the context of inflammation, the JNK pathway is one of the

key regulators of cytokine production. By activating the

transcription factor AP-1, JNK enhances the expression of pro-

inflammatory mediators such as IL-6, IL-8, and TNF-a and

chemokines that attract immune cells to the site of inflammation

(53–55). JNK also influences processes such as apoptosis and

proliferation (56). In macrophages and neutrophils, JNK

promotes the production of ROS, which contributes to the

destruction of pathogens but can also lead to tissue damage if

uncontrolled (57). JNK also plays a role in the resolution of

inflammation by promoting apoptosis in damaged or

dysfunctional cells, thereby limiting excessive inflammation and

maintaining tissue homeostasis (58), and by promoting autophagy,

which reduces debris-mediated inflammation (58, 59).

Chronic activation of JNK has been implicated in autoimmune

diseases such as rheumatoid arthritis (60), where it contributes to

the sustained production of pro-inflammatory cytokines and tissue

damage. In metabolic diseases such as obesity and type 2 diabetes,

JNK activation in adipose tissue and the liver is associated with

insulin resistance and systemic inflammation (61). In addition, in

cancer, JNK can promote tumour progression by supporting an

inflammatory microenvironment that promotes angiogenesis,

invasion and metastasis (62, 63). Targeting the JNK pathway has

emerged as a potential therapeutic strategy for inflammatory and

autoimmune diseases (52).
2.4 PI3K/Akt

The PI3K/Akt signalling pathway plays a role in balancing pro-

and anti-inflammatory processes. It is activated in response to a

variety of extracellular stimuli, including cytokines, growth factors

and pathogen-associated molecular patterns (PAMPs). In the

context of inflammation, the PI3K/Akt pathway promotes the

survival and activation of macrophages, neutrophils and
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lymphocytes (64, 65). By activating transcription factors such as

NF-kB and cAMP response element-binding protein (CREB), Akt

facilitates the production of pro-inflammatory cytokines such as IL-

6, IL-1b and TNF-a, which amplifies the inflammatory response

(66–70). In addition, Akt promotes the production of chemokines

that attract immune cells to the site of inflammation (71).

At the same time, the PI3K/Akt pathway is important for

preventing excessive or chronic inflammation by supporting the

production of anti-inflammatory IL-10 and other regulatory

cytokines (72–74). Akt also negatively regulates inflammation

through its inhibitory interactions with downstream molecules

such as GSK-3b (glycogen synthase kinase-3b, activator of NF-

kB) (75, 76). Akt plays a role in the resolution phase of

inflammation by promoting the survival and phagocytic activity

of macrophages during the clearance of apoptotic cells and debris, a

process known as efferocytosis.The hyperactivation of this pathway

can contribute to chronic inflammation under conditions such as

rheumatoid arthritis, inflammatory bowel disease and asthma,

where it drives sustained immune cell activation and cytokine

production (77, 78). Conversely, insufficient PI3K/Akt signalling

can impair anti-inflammatory mechanisms and promote

uncontrolled inflammation, as seen in certain autoimmune

diseases (79). In addition to inflammatory diseases, excessive

PI3K/Akt signalling has been implicated in cancer, where it

supports an inflammatory tumour microenvironment that

promotes angiogenesis, immune evasion and metastasis (80). In

metabolic disorders such as obesity and type 2 diabetes, chronic

inhibition of the PI3K/Akt pathway in adipose tissue and other

organs is associated with insulin resistance and low-grade systemic

inflammation (81, 82). In the context of autophagy, PI3K/Akt

inhibits it mainly through the TSC2/Rheb/mTORC1 pathway

(48, 83). However, inhibition of FOXO by Akt in some cell types

leads to inhibition of autophagy, inhibition of antioxidant enzyme

production and inhibition of apoptosis, which promotes chronic

inflammation (84, 85). In conclusion, the influence of this pathway

on inflammation is complex, non-linear, and concentration- and

metabolic context-dependent and requires further in-

depth analysis.
2.5 JAK/STAT

The JAK/STAT signalling pathway plays an important role in

inflammation, mediating the effects of cytokines and growth factors

that regulate immune responses, cell survival, proliferation and

differentiation (86, 87). This pathway is activated by the binding of

cytokines, such as interferons (IFNs), interleukins (ILs) and tumour

necrosis factor (TNF), to their respective receptors on the cell

surface. Upon ligand binding, receptor-associated JAKs are

activated by autophosphorylation, creating docking sites for

STAT proteins. STAT proteins are then phosphorylated,

dimerised and translocated to the nucleus, where they regulate

the expression of genes involved in inflammatory and immune

responses. The JAK/STAT signalling pathway is central to the

regulation of both acute and chronic inflammation. Different
Frontiers in Immunology 05
STAT proteins are activated by different cytokines. STAT1 is

activated by the interferons IFN-a and IFN-g. It drives the Th1

response important for intracellular pathogen defence and regulates

the expression of genes involved in antiviral immunity and

macrophage activation (88). STAT3 is activated by IL-6 and

promotes the transcription of genes (including through

interactions with NF-kB) that sustain the inflammatory process,

including acute-phase proteins and chemokines such as CXCL1 and

CCL2, which recruit immune cells to sites of inflammation (89, 90).

This pathway also promotes cancer progression by activating pro-

cancer inflammation. However, STAT3 also drives the production

of IL-10 to enter the resolution phase of inflammation. STAT4 is

activated by IL-12 and IFN-a and drives the differentiation of Th1

cells, which produce IFN-g and enhance the pro-inflammatory

response (91). STAT5 supports the expansion of regulatory T

cells (Tregs) in response to IL-2, contributing to the resolution of

inflammation and maintenance of immune tolerance (92). STAT6

is activated by IL-4 and IL-13 and promotes the differentiation of

Th2 cells, which are involved in anti-parasite immunity and allergic

inflammation (93). The effects of individual JAK/STAT pathways

on autophagy vary, depending on the type of pathway and also the

metabolic context. A predominantly activating effect is observed for

the STAT4 and STAT6 pathways, whereas a predominantly

inhibitory effect is observed for the STAT1 and STAT5 pathways.

The STAT3 pathway is the most dependent on the

metabolic context.

Dysregulation of the JAK/STAT pathway is implicated in many

inflammatory and autoimmune diseases. Sustained activation of

STAT3 has been implicated in diseases such as rheumatoid arthritis,

inflammatory bowel disease and psoriasis, where it drives the

sustained production of inflammatory cytokines and tissue

damage (94, 95). Inflammatory signals mediated by STAT3 and

STAT5 can promote tumourigenesis by supporting angiogenesis,

immune evasion and tumour cell survival (96).
2.6 AMPK

AMPK is one of the most important pro-regenerative and anti-

inflammatory pathways in metabolic self-regulation. It is activated

by liver kinase B1 (LKB1) in response to metabolic stress, hypoxia

or exercise when cellular ATP levels decrease. AMP or ADP levels

increase its activity. A high NAD+/NADH ratio also induces this

kinase via SIRT1, which deacetylates LKB1 and facilitates its

phosphorylation (97). Conversely, AMPK increases the NAD+/

NADH ratio by several mechanisms, thus closing the positive

loop that drives cell regeneration (98, 99). It is noteworthy that

calcium/calmodulin-dependent protein kinase kinase b (CaMKKb)
can activate AMPK through LKB1 in response to increased cellular

Ca2+ levels, and this effect is independent of the AMP-to-ATP ratio

(100, 101). The next activator of AMPK is the TAK1 protein (TGF-

b-activated kinase 1), which activates AMPK in response to

inflammation and stress signals (102). The main role of AMPK is

to activate the catabolic and inhibit the anabolic processes. AMPK

exerts potent anti-inflammatory effects primarily by inhibiting pro-
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inflammatory pathways. It suppresses NF-kB signalling, a key

regulator of inflammatory cytokines, by phosphorylating and

inhibiting IkB kinase (IKK) (103). In addition, AMPK inhibits

the activation of the NLRP3 inflammasome, a multi-protein

complex responsible for the production of IL-1b (104). It also

improves mitochondrial function and reduces levels of ROS (105).

Together, these actions collectively reduce inflammation at the

molecular level.

Another role of AMPK in inflammation is its ability to promote

the anti-inflammatory M2 macrophage phenotype over the pro-

inflammatory M1 phenotype (97, 101). M2 macrophages produce

cytokines such as IL-10 and TGF-b, which facilitate tissue repair

and resolution of inflammation. AMPK by promoting autophagy

via mTOR inhibition helps maintain cellular homeostasis and

resolve inflammatory signals (106, 107).

Reduced AMPK activity is associated with chronic

inflammatory conditions such as obesity, type 2 diabetes,

atherosclerosis and non-alcoholic fatty liver disease (NAFLD)

where low AMPK activity exacerbates NF-kB signalling, cytokine

production and immune cell infiltration (108, 109). Dysregulated

AMPK signalling has also been implicated in autoimmune diseases

such as rheumatoid arthritis and systemic lupus erythematosus,

where it contributes to prolonged pro-inflammatory responses (110,

111). Chronic inflammation driven by low AMPK activity can also

create a tumour-promoting environment in cancer (112, 113), while

in neuroinflammatory diseases such as Alzheimer’s and

Parkinson’s, dysregulated AMPK signalling contributes to

neuronal damage and degeneration (114, 115).
2.7 cAMP/PKA

Similar to AMPK, the cAMP/PKA pathway has mainly anti-

inflammatory and antioxidant properties. The anti-inflammatory

mechanism is that the CREB–CREB-binding protein (CBP)

complex formed by CREB phosphorylation by PKA can lead to

the dissociation of the NF-kB–CBP complex, which blocks the

action of NF-kB (116). PKA also inhibits activation of the pro-

inflammatory ERK, AKT, STAT3 and NF-kB pathways through

phosphorylation and inhibition of the TNFR1 receptor (117), so

downregulation of PKA activity increases the strength of the

coupling between inflammation and oxidative stress. The other

inflammation-resolving pathway is via EPAC1/2 activation, which

also inhibits NF-kB and GSK-3b (117). During the inflammatory

phase, cAMP levels are reduced by an increase in the activity of

PDE4 (which catalyses the breakdown of cAMP to AMP), which

contributes to an increase in the severity of inflammation (118).

The cAMP/PKA pathway is a central messenger in the pro-

resolving signalling pathways and is induced by, or induces, the

production of other pro-resolving mediators as inflammation

resolves (117, 118). For this reason, it is also an activator of the

maturation of phagosomes, the main mechanism for removing

extracellular debris after infection (119). The anti-inflammatory

effect of cAMP is also mediated by the reduction of oxidative stress

through an increase in the activity of sirtuin 3, which activates the

production of antioxidant enzymes (120).
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Adequate levels of cAMP are also essential for proper

mitochondrial function. PKA phosphorylates complex I, leading

to an increase in its activity and a decrease in electron leakage from

this complex (121). However, the phosphorylation of complex IV

by PKA leads to effective control of ATP production by properly

functioning inhibition of ATP production under conditions of high

ATP levels, whereas the dephosphorylation of complex IV leads to

uncontrolled inhibition of this complex and a subsequent increase

in electron leakage (122). Next, the phosphorylation of complex V

by PKA stabilises the oligomers of this complex, improving ATP

synthesis, whereas the lack of phosphorylation leads to the

instability of the enzyme structure, lower ATP levels and

inhibition of complex V by AIF1, shifting metabolism towards

aerobic glycolysis (123, 124).

The effect of cAMP/PKA on autophagy is complex and depends

on the metabolic context (125). On the one hand, autophagy is

inhibited by the phosphorylation of Atg1/ULK1, a key initiator of

autophagy (126), which limits the formation of autophagosomes; on

the other hand, autophagy can be activated indirectly by activating

EPAC and AMPK, further inhibiting mTOR, and by inhibiting NF-

kB (117), which is an inhibitor of autophagy.
2.8 Pathway balance in chronic
inflammations

The balance between the activity of the discussed pathways is

one of the important elements regulating inflammation and

preventing it from becoming chronic. The dominant current view

of the development of chronic inflammation focuses on

determining the role of individual pro- and anti-inflammatory

pathway activities, which is, of course, an important aspect of the

analysis. However, the present article focuses on the couplings

between cytokines, ROS, NO, Cai2+, Nrf2 and autophagy. From

the point of view of autophagy, some of the pathways discussed are

stimulatory, some are inhibitory, and the action of others depends

on the metabolic context. Thus, an imbalance in the ratio of these

pathways towards excessive inhibition of autophagy may be one of

the important causes of the transition of the system to chronic

inflammation. According to the authors, future research on chronic

inflammation should focus not only on determining the qualitative

change in the activity of individual pathways but also on

quantitatively comparing their activity and the overall effect on

the elements analysed with a particular focus on autophagy.
3 Positive feedbacks regulating the
inflammation

In the following subsections, the common relationships

between the elements discussed, which drive inflammation mainly

through the use of positive feedbacks, will be discussed step by step.

From the point of view of control theory, positive feedback allows

the equilibrium of the controlled system to move far from the initial

state. However, it is a dangerous phenomenon for the controlled
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system because, if uncontrolled, it leads to the destruction of the

system (the values of the positively coupled elements increase to

infinity or the destruction of the system). For this reason, control

mechanisms must be in place to prevent an uncontrolled and

inappropriate increase in the controlled elements. In cellular

metabolism, these are mainly the Nrf2/FOXO transcription

factors and autophagy. Even small perturbations of such control

mechanisms can lead to the formation of a new equilibrium state in

which the concentrations and/or activities of the regulated elements

are too high, which should be taken into account when analysing

the relationships and planning future experiments and

therapeutic strategies.
3.1 The positive coupling between the
inflammation and ROS

The positive feedback between inflammatory cytokines and

NOX-mediated ROS appears to be the main axis of the

intracellular and extracellular response to various pathogens. The

relationship is bidirectional, and many reciprocal relationships

between ROS and various cytokines and interleukins have been

described in different tissues and research conditions. On the one

hand, NOXs are activated by several cytokines, and on the other

hand, ROS generated by NOXs activate multiple immunological

activators such as IL-6 and TNF-a (127).

3.1.1 Role of NADPH oxidases
There are three main sources of ROS in the cell. The first one is

the electron leakage from the cytochrome chain in the

mitochondria (mito-ROS and mito-stress) (128), the second is the

activity of NOXs (129), and the third is endoplasmic reticulum

stress, where H2O2 is produced during protein folding as sulphur

bonds are formed between cysteines. Other enzymes that produce

ROS are xanthine oxidase, cytochrome P450, lipoxygenase and

cyclooxygenase [103]. Externally, ROS are mainly produced by

sources such as ionising radiation, UV light, xenobiotics and

environmental pollutants [56].

The NADPH oxidase family is a group of seven enzymes

(NOX1–5 and DUOX1–2) that produce O2
− and H2O2 to kill

microorganisms and also perform various signalling functions.

Different types are found in different tissues and parts of the cell

and are regulated differently to perform different functions

(129, 130). The immune response to pathogens consists largely of

the production of H2O2 and O2
− by NOXs. The production of these

molecules must increase to high levels during infection but must not

exceed the limit of cell self-destruction. In healthy people, their activity

should be limited to prevent the production of free radicals. In acute

and chronic diseases, they are active to varying degrees (131–142).

3.1.2 NOX → inflammation
ROS produced by NOXs are involved in the activation of

inflammation by activating pro-inflammatory transcription

factors, such as the nuclear factor of activated T cells (NFAT),
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NF-kB and AP-1. Figure 2 shows the major cytokines being

involved in the inflammatory response upon the activation of

these transcription factors. NF-kB is the major ROS-dependent

transcription factor, which is responsible for cytokine and

chemokine gene expression (143). It is subject to numerous

regulations by several factors involved in the regulation of

inflammation, such as NO, HIF-1a, Nrf2 and kinase pathways:

p38, JNK, ERK1/2, AMPK and PI3K/Akt. It is also involved in

multiple regulatory couplings. NFAT is the transcription factor that

is mainly activated by increased intracellular calcium and the

calcineurin pathway (144), but ROS are also mentioned as an

activator of NFAT (145). AP-1 is the transcription factor that can

be activated by various cell stress conditions, including ROS (146).

One of the ways that pathogens activate inflammation is

through Nod-like receptors (NLRs), a family of intracellular

sensors of microbial or danger-associated molecular patterns.

Nod-like receptor X-1 (NLRX-1) is capable of activating NF-kB
and inflammation, and ROS mediate this activation (147, 148).

Overexpression of NLRX-1 can induce ROS production to levels

similar to those induced by TNF-a, a well-characterised activator of

ROS. In another study, ROS mediated the IL-6 secretion upon

advanced glycation end products (AGE) or LPS induction, which

was dependent on ROS-induced NF-kB activation (149). A similar

mechanism of IL-6 production was presented in abdominal aortic

aneurysm inflammation that was stimulated by angiotensin II-

activated NOX-derived ROS production (150). In another study,

cadmium-induced IL-6 production in trophoblast cells through

ROS-dependent activation of ERK1/2 (151).

There is also ample evidence that ROS regulate the expression of

many pro-inflammatory genes. For example, NOX-dependent ROS

have been shown to induce the expression of transforming growth

factor beta 1 (TGF-b1), angiotensin II, MCP-1 and plasminogen

activator inhibitor-1 (152).

3.1.3 Inflammation → NOX
Priming of NOXs occurs in response to a variety of cytokines

such as TNF-a (153–155), IL-1b (156), IL-6 (157), IL-4 (158), IFN-g
(159), IL-8 (160), IL-12 (161), IL-15 (162), IL-17 (163), IL-23 (164)

and TGF-b (165–169). There are several pathways that are used by

cytokines to activate NOXs. The first one is Rac, which is the

component protein of the NOX complex that is critical for the

activation of NOX1 and NOX2. It is involved in many signals that

increase NOX activation (129, 170). It is thought to act downstream

of ROS production induced by cytokines such as TNF-a or

interleukin-1b (171). TNF-a is also able to stimulate the

membrane translocation of 47(phox) to activate NOX (143). Other

cytokines involved in Rac-induced NOX activation are GM-CSF,

TGF-b, PDGF and VEGF (172–176). AngII also activates NOX by

Rac1 (170), which closes the positive loop between AngII and NOX.

Other signalling pathways used by cytokines to activate NOX

are p38 MAPK, PI3K/Akt and protein kinase C (PKC). The PI3K

pathway is used by IL-4 to activate NOX1 and NOX5L (177). IL-4

induced an intracellular calcium flux via the insulin receptor

substrate (IRS)–PI3K–phospholipase Cg (PLC-g) pathway, which
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in turn induced PKC-dependent activation of NOX5. ROS in turn

promoted IL-4 receptor activation through the oxidative

inactivation of protein tyrosine phosphatase 1B (PTP1B), which

physically associates with and deactivates the IL-4 receptor (158),

closing a small positive loop between IL-4 and NOX5.

Many cytokines can activate the p38 pathway and thereby

activate NOX (178). The most important are as follows: TNF-a
(13), IL-1b (179, 180), IL-6 (181, 182), TGF-b (183), IL-34, IL-17

and GM-CSF. NOX can be activated by the p38 MAPK pathway,

but p38 can also be activated by NOX-derived ROS, e.g. as a result

of TNF-a (184), which closes the small positive loop between p38

and NOX. p38 MAPK can also activate inflammation by activating

the pro-inflammatory NF-kB (185), which creates another positive

feedback loop between p38 and inflammation. The whole forms a

system of mainly positive feedback loops between cytokines, p38

and NOX. The details of the common couplings between NOX-

derived ROS and the inflammatory cytokines are shown in Figure 2.
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ERK1/2 is another mediator between ROS and inflammation. It

activates transcription factors such as NF-kB (186), Elk-1 (186),

AP-1 (31), Egr-1 (187), STAT3 (188) and HIF-1a (189), which

induce the transcription of cytokines and/or NOXs, thereby further

amplifying the inflammation–NOX coupling (190). In addition,

ERK1/2 inhibits FOXO, which contributes to the reduction of the

antioxidant response (191).
3.2 Nitric oxide and its couplings

3.2.1 Role of iNOS
NO produced by iNOS has several functions in the cell,

particularly in the context of the immune and inflammatory

response. Its activity is important in the destruction of pathogens.

NO and its derivatives damage key structures of pathogens, such as

cell membranes, proteins, nucleic acids and enzymes, leading to
FIGURE 2

The main positive coupling between the inflammation and NOX-derived ROS that drive and amplify the inflammatory response. The main factors
involved in this coupling are the transcription factors (NF-kB, AP-1 and NFAT), signalling pathways (p38, PI3K/Akt and ERK1/2) and the protein kinase
C (PKC). Solid arrows, activation; red dashed line with •, inhibition; ⊕, the positive coupling between elements. NOX, NADPH oxidase; ROS, reactive
oxygen species; NFAT, nuclear factor of activated T cells.
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their death (192). At the high concentrations reached during iNOS

activity, NO can cause nitrosative stress and damage to cells and

tissues, including cytotoxic effects on host cells. Reactive nitrogen

species (e.g. peroxynitrite and ONOO−), formed when NO reacts

with O2
−, have potent oxidative effects and can damage lipids,

proteins and DNA, contributing to chronic inflammation and tissue

damage (192). It also acts on the mitochondria, contributing to

increased free radical production and mitochondrial stress, which

reduces energy production, lowers mitochondrial potential and

promotes apoptosis (193). Although NO produced by iNOS does

not play a major role in the regulation of vascular tone (this is

mainly the responsibility of endothelial Nitric Oxide Synthase

(eNOS)), its excess can indirectly affect blood vessels (194). High

levels of NO can cause vasodilation, which contributes to increased

blood flow at sites of inflammation, thereby increasing the access of

immune cells to the infected or damaged area (194).

Unlike oxygen radicals, which are removed by anti-free radical

enzymes, e.g. SOD, catalase and glutathione peroxidase, there are no

specialised pathways to remove NO from the cell. The main

pathway for its removal from the cell is diffusion, as NO readily

crosses lipid membranes. In the bloodstream (195), NO reacts

rapidly with the haemoglobin, which binds NO, converting it to

nitrate (NO3
−) (196). However, the peroxynitrite is neutralised by

catalase (197), peroxiredoxin-3 (Prx-3) (198) or glutathione (199).
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3.2.2 Couplings between NO and inflammation
NO is coupled mainly negatively with inflammation; however,

some positive couplings have also been described (see Figure 3).

Pro-inflammatory cytokines activate NO production, while NO

inhibits the inflammatory process by several mechanisms. This

action appears to be related to the strong oxidative effects of NO and

ONOO−, which force the precise regulation of NO induction in the

presence of intracellular pathogens.

Pro-inflammatory cytokines (such as IL-1, IL-6, IFN-g and

TNF-a) and pro-inflammatory transcription factor NF-kB play a

key role in the induction of iNOS. The main mediating pathway is

NF-kB, which leads to the transcription of the iNOS gene and an

increase in NO production (200). The NF-kB pathway is crucial

because it acts as the major transcription factor that activates iNOS

expression in response to cytokine stimulation. Other pathways that

also contribute to some extent to the activation of iNOS

transcription are the AP-1 (activator protein-1) (201), NFAT

(202), signal transducer and activator of transcription 1 (STAT-)

(203), HIF-1a (204) and interferon regulatory factor 1 (IRF-1)

(205). In the case of the cAMP/PKA/CREB pathway, CREB

increases the expression of iNOS (206), but the increase in cAMP

reduces the increased expression of iNOS and other inflammatory

markers such as TNFa, IL-1b, IL-6, NF-kB, MMP-2 and MMP-9 in

H9c2 cardiac cells, probably through different intermediate
FIGURE 3

The metabolic couplings between the nitric oxide produced by iNOS and the elements of Positive Coupling System (inflammation/ROS/NO/HIF-1a/
Cai

2+) and with regulatory elements: Nrf2 and autophagy. NO is the double-faced element, as in some cases it amplifies, and in some cases, it
controls the inflammatory spiral. Solid arrows, activation; red dashed lines with •, inhibition. iNOS, inducible nitric oxide synthase; ROS, reactive
oxygen species; NO, nitric oxide; HIF-1a, hypoxia-inducible factor 1-alpha.
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mechanisms (207). The above transcription factors cooperate in the

induction of iNOS, and their cooperation allows the fine-tuning of

iNOS expression levels to specific physiological conditions, such as

inflammation, oxidative stress or hypoxia.

Conversely, NO is known to have mainly anti-inflammatory

properties. NO acts mainly through cyclic GMP (cGMP) (208) and

also directly through protein modifications (S-nitrosylation) (209),

affecting the function of enzymes and regulatory proteins. cGMP

activates protein kinase G (PKG), which leads to vascular smooth

muscle relaxation, resulting in lower blood pressure (210). cGMP

also inhibits platelet aggregation, which has an anticoagulant effect

(211). cGMP also activates signalling pathways, such as PKG, which

may have anti-inflammatory effects. PKG can inhibit leukocyte

adhesion and activation, reduce the production of pro-

inflammatory cytokines and decrease the reactivity of immune

cells (212, 213). This effect is partly related to the inhibition of

NF-kB by cGMP (214). NO can also inhibit NF-kB through S-

nitrosylation of its p65 subunit, which blocks its ability to bind to

DNA (215). NO can also nitrosylate and inhibit IKK-b (NF-kB
activator) (215, 216). Conversely, nitrosylation of I-kB leads to NF-

kB activation (217).

Another mechanism of NO’s anti-inflammatory action is the

induction of apoptosis in activated macrophages and other immune

cells under certain conditions, leading to a reduction in the

inflammatory response. This mechanism prevents chronic

inflammation by removing over-activated cells (218, 219).

Another mechanism by which NO inhibits the inflammatory

response is through its vasodilatory effect on vascular smooth

muscle, which reduces leukocyte adhesion to the endothelium.

Reduced leukocyte adhesion reduces the influx of inflammatory

cells to the site of inflammation, thereby limiting the development

of the inflammatory response (220, 221). Conversely, NO can

activate inflammation by activating MAPK kinases (ERK, JNK

and p38) through the induction of oxidative stress (e.g. through

the production of reactive nitrogen species such as peroxynitrite)

(222). The activation of MAPK kinases promotes the inflammatory

response by affecting the expression of pro-inflammatory cytokines.

3.2.3 NO + O2
− → ONOO−

The coupling between iNOS and NOX is mainly functional

(223). NO and O2
− produced by these two enzymes generate the

dangerous radical ONOO−, which greatly enhances the destructive

effect of both radicals. In the experiment with primary co-cultures

of rat cerebellar granule neurons and glia, the increase of NO or O2
−

alone produced a benign toxic effect, but the co-activation of both

enzymes produced a strong effect of neuronal death (223). The pro-

surviving effect of NMDA (N-Methyl-D-Aspartate Receptor)

inhibitor observed in this study suggests an important role of Cai
2

+ in this process.

3.2.4 NO → ROS
NO can enhance the production of oxygen free radicals in

several ways. In the mitochondria, NO inhibits complex IV

(cytochrome c oxidase) in the respiratory chain by competing

with oxygen for the active site of this enzyme. Inhibition of
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complex IV leads to electron accumulation in the mitochondria,

which increases electron leakage and O2
− generation by complexes I

and III (224). Next, NO and its derivatives can nitrosylate key

antioxidant enzymes such as superoxide dismutase (SOD),

glutathione peroxidase (GPx) and catalase, reducing their

activities and leading to the accumulation of ROS in cells (225). It

can also nitrosylate certain proteins in the endoplasmic reticulum,

leading to the accumulation of misfolded proteins, endoplasmic

reticulum (ER) stress and subsequent NOX activation (226).

3.2.5 ROS → iNOS
Conversely, ROS also activate iNOS in several ways. The main

mechanism is through the activation of key transcription factors

such as NF-kB, AP-1 and STAT1, which are essential for iNOS gene
transcription (203, 227). ROS activate IKK, which phosphorylates

IkB inhibitor, leading to NF-kB activation. ROS also activate MAPK

kinases (ERK, JNK and p38), which phosphorylate and activate Jun

and Fos proteins, which form the AP-1 complex. AP-1 binds to the

iNOS promoter and promotes its expression. ROS can also enhance

STAT1 activation by cytokines (e.g. IFN-g), promoting its binding

to the iNOS promoter (228). Pathways leading to the activation of

the above-mentioned transcription factors are mainly MAPKs: p38,

JNK and ERK1/2, which phosphorylate, among others, NF-kB and

AP-1, promoting the transcription of pro-inflammatory cytokines,

but also iNOS. Another indirect ROS mechanism is the activation of

iNOS by an increase in Cai
2+.

3.2.6 NO → Cai
2+

NO can modulate Cai
2+ levels by a variety of indirect

mechanisms, and the final result depends on the physiological

context. NO can nitrosylate RyR1 calcium channels, which

increases its channel activity at lower O2 tension and increases

Cai
2+ levels (229). This mechanism may contribute to the ER stress.

To compensate for this, NO activates the sarco/endoplasmic

reticulum Ca2+-ATPase (SERCA) calcium pump, which increases

Ca2+ uptake into the ER (230).

NO also nitrosylates NMDA channels, inhibiting Ca2+ influx

into the cell in physiological concentrations but increasing it in high

concentrations (229, 231). NMDA receptor activation and Cai
2+

increase can also occur via the NO/cGMP/PKG pathway (232).

Another way in which NO increases Cai
2+ is through the activation

of transient receptor potential (TRP) channels by nitrosylation,

which can increase Ca2+ influx into the cell (233). Conversely, NO

can directly or indirectly inhibit voltage-gated calcium channels

(VGCCs), thereby reducing Ca2+ influx into the cell through PKG

and PKA signalling (234). It is generally accepted that excess NO

and associated changes in Ca2+ concentration can lead to

exc i to tox ic i ty in neurons , which is assoc ia ted wi th

neurodegenerative diseases (e.g. Alzheimer’s and Parkinson’s)

(235), and that dysregulation of NO-Ca2+ signalling is implicated

in inflammation and tissue damage (236).

3.2.7 Cai
2+ → iNOS

Cai
2+ is a known activator of neuronal Nitric Oxide Synthase

(nNOS) and eNOS but does not directly activate iNOS. However,
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Cai
2+ induces iNOS indirectly mainly through NFAT and NF-kB.

High Cai
2+ activates the calmodulin/calcineurin/NFAT signalling

pathway, which contributes to the transcription of iNOS (237). NF-

kB is also the transcription factor, which is postulated to mediate

the iNOS activation by Cai
2+ (238). Ca2+ ions can activate NF-kB

via the calmodulin/calcineurin/CaMK (239, 240), soluble guanylyl

cyclase (sGC)/cGMP (241) and PLC/diacylglycerol (DAG)/PKC

pathways (242). Another pathway is the activation of ROS

production in the mitochondria by mitochondrial Ca2+, which

further leads to NF-kB activation.
3.2.8 NO → autophagy
Nitric oxide plays a critical role in the regulation of autophagy,

exerting both activating and inhibitory effects depending on its

concentration, cellular context and signalling pathways involved. At

physiological levels, NO generally promotes autophagy, helping to

remove damaged organelles and maintain cellular homeostasis.

However, under pathological conditions such as chronic

inflammation or oxidative stress, excessive NO acts as an

inhibitor, exacerbating cellular damage.

NO activates autophagy primarily through the AMPK–mTOR

pathway (243). In response to metabolic stress, NO can induce

energy stress by increasing the AMP-to-ATP ratio, which activates

AMPK. Activated AMPK inhibits mTOR, a key suppressor of

autophagy, thereby initiating the autophagosomal process via the

activation of the ULK1 complex. In addition, NO can increase the

production of ROS, which activate pathways such as JNK, further

enhancing autophagy in response to oxidative stress.

Conversely, NO can inhibit autophagy under certain

conditions, particularly when present in excess. One important

mechanism is the S-nitrosylation of key autophagosomal proteins

such as ATG4, which impairs their function and blocks the

elongation of the autophagosomal membrane (244). Another

pathway is the nitrosylation and deactivation of JNK1, which is

an important autophagy activator (see Figure 1) (245). NO also

nitrosylates (inhibits) IKKb, which reduces AMPK phosphorylation

(activation). This leads to the activation of mTORC1 and inhibition

of autophagy. S-Nitrosylation of IKKb is thought to be a negative

feedback mechanism during inflammation to prevent excessive

activation of NF-kB, thereby protecting tissues from chronic

inflammation or damage (215, 216). NO can also activate sGC,

leading to increased levels of cGMP and potential mTOR activation,

thereby suppressing autophagy (246, 247).

Another pathway of NO activity is via TSC1/2 (tuberous

sclerosis complex), a known inhibitor of mTOR and activator of

autophagy. IKKb, Akt and ERK1/2 inhibit this complex, and AMPK

activates it, contributing to the regulation of autophagy (245).

Finally, in the case of chronic inflammation, the chronic NF-kB
activation is a factor that inhibits AMPK and activates mTOR,

thereby contributing to autophagy inhibition, which seems to be

an important element of the overall autophagy inhibition in

chronic information observed under several conditions. The

dual role of NO in autophagy highlights its dependence on

the metabolic context. Excess of NO and over-nitrosylation

seems to be an important element driving the entry of
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inflammation into a chronic state when the summary effect on

autophagy is the inhibitory one.

3.2.9 NO and ONOO− → Nrf2
Nrf2 is the central antioxidant transcription factor, which is

responsible for inhibiting excessive oxidative stress and

inflammation. Its coupling with iNOS/NO is NO concentration

dependent. Nrf2 is regulated by Kelch-like ECH-associated protein

1 (Keap1). It contains many reactive cysteine residues (e.g. Cys151,

Cys273 and Cys288) that are susceptible to S-nitrosylation, leading

to a reduction in its ability to bind Nrf2 (248). This leads to Nrf2

release and translocation to the nucleus. In addition, 8-nitro-

cGMP-dependent S-guanylation of Keap1 leads to Nrf2

activation, with the concomitant expression of the targeted

antioxidant enzymes that play a role in signalling under oxidative

stress conditions (249, 250).

At low concentrations, NO activates Nrf2 by nitrosylating

Keap1 (248). The other pathway of Nrf2 activation is the

activation of PKC-a by NO in kidney cells (251) or PKC-e (252),

which phosphorylate Nrf2 and have the same effect (253). Among

the PKC isoforms, PKC-d plays a predominant role in

phosphorylating Nrf2, particularly at serine 40, promoting its

dissociation from Keap1 (254). ONOO− at physiological

concentrations also has the ability to activate Nrf2 (255–257). The

intermediate pathway for this effect may be PI3K/Akt (258).

ONOO−, as a dangerous radical, is also known for its destructive

effects on the activities of various enzymes. In contrast to the

activation of Nrf2 by NO and ONOO−, inhibitory effects of

ONOO− on Nrf2-induced enzymes have been demonstrated, e.g.

HO-1 (259), catalase (260), Mn-SOD (261), peroxiredoxin II E

(262), glutathione peroxidase (263) and thioredoxin reductase

(263). It can therefore be concluded that exceeding a certain level

of ONOO− concentration in the cell leads to a breakdown of the

antioxidant barrier, which is probably a part of the molecular

pathology in various diseases.

3.2.10 NO → mitochondria
NO is a reversible inhibitor of mitochondrial complex IV. This

inhibition, although readily reversible, can have profound

consequences for the cell (264). Inhibition of the cytochrome

chain at the level of complex IV can lead to the production of

superoxide due to the electron leakage from complexes I and III,

which in turn leads to the production of ONOO−. ONOO− is the

irreversible inhibitor of complex IV, which enhances the regulatory

effect of NO (197). ONOO− can also irreversibly damage many of

the mitochondrial enzymes including aconitase, NADH/co-Q

reductase , quinol /cytochrome c reductase , succ inate

dehydrogenase and the ATP synthetase (265, 266). The resulting

collapse of the mitochondrial membrane potential can open the

mitochondrial permeability transition pores (mPTPs), release the

cytochrome c into the cytoplasm and trigger apoptotic cell death.

3.2.11 NO—summary
The effect of nitric oxide is both activating and inhibitory in all

the relationships discussed. It exhibits outstanding non-linear
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properties, contributing predominantly to the maintenance of

homeostasis at low physiological concentrations and leading to

metabolic collapse at high concentrations. This implies the need for

a detailed in-depth analysis of the role of NO depending on the

metabolic context and, above all, NO concentration.
3.3 Calcium stress

Cai
2+ is associated with inflammation and oxidative stress

through a number of couplings and is also involved in enhancing

the immune response. Figure 4 shows the detailed relationships

between intracellular and endoplasmic calcium, ROS and HIF-1a.
The main influence of Cai

2+ is through its positive loop with the

NOX-mediated ROS.

Calcium is an important intracellular messenger molecule that

is significantly involved in antimicrobial defence. Normal resting

Cai
2+ levels in the cytoplasm of most cells are typically very low,

ranging from approximately 50 to 100 nM (267). Calcium ions are

the second messengers that cause the activation of multiple

downstream proteins. The pumping of calcium ions out of the

cell requires a large amount of energy, as the divalent ions must be

pumped out against a high electrical (approximately −70 to −90

mV) and high concentration gradient (on the order of 1,000-fold)

(268). The pumping out of one Cai
2+ ion requires one molecule of

ATP so that the reduction of energy production in the

mitochondria, e.g. by HIF-1a-mediated PDH inhibition, can lead

to a further increase of Cai
2+ in the cytoplasm and mitochondria

(269, 270). However, Cai
2+ ions contribute to the opening of

mPTPs, leading to a decrease in the mitochondrial membrane

potential Ym (271), which worsens the conditions for energy

production and facilitates apoptosis.
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3.3.1 ER stress and Ca2+

The increase in cytoplasmic Cai
2+ is the main form of calcium

stress, but the second important type of calcium stress is associated

with the ER. The two are interrelated, as increases in Cai
2+ are often

associated with decreases or increases in CaER
2+. The ER is a major

store of Ca2+ and typically maintains a much higher concentration

than the cytosol. The CaER
2+ levels are typically in the range of 300

to 800 µM (272, 273), which is essential for proper protein folding

and serves as a reservoir that can release Ca2+ when needed for

signalling purposes. Many of the chaperones and enzymes involved

in protein folding in the ER, such as calnexin and calreticulin,

require adequate CaER
2+ for their structural stability and functional

activity (274). During ER stress, calcium homeostasis is often

disrupted (275–277). The ER can release Ca2+ into the cytosol,

leading to an increase in cytosolic Ca2+ concentration. This release

can activate various signalling pathways, including those that lead

to cellular responses such as apoptosis or autophagy if the stress is

severe or prolonged. Conversely, prolonged ER stress can lead to

depleted ER calcium levels, which can affect protein folding and

other ER functions, leading to the accumulation of misfolded

proteins (277–280).

Oxidative protein folding refers to the process by which proteins

acquire their proper structure through the formation of disulfide

bonds between cysteine residues in the proteins. This reaction is

mediated by a number of protein disulfide isomerases and

oxidoreductases such as ER oxidoreductin 1 (Ero1) and protein

disulfide isomerase (PDI) (281, 282). Changes in CaER
2+ levels can

affect the activity of Ero1 and PDI, which in turn alters the

production of H2O2, a by-product of disulfide bond formation. At

low Ca2+ concentrations in the ER, Ero1 activity is reduced, which

reduces H2O2 production. This results in reduced oxidative stress in

the ER but may also affect protein folding. At high concentrations of
FIGURE 4

The metabolic links between cytosolic Ca2+, endoplasmic Ca2+, ROS and HIF-1a create the positive couplings that enhance the anti-pathogen
response. The details of the couplings with iNOS/NO are in Figure 3, with autophagy, and Nrf2 in Figure 6. Solid arrows, activation; red dashed lines
with •, inhibition; ⊕, positive coupling between elements; red line crossing out, inhibition of the channel. ROS, reactive oxygen species; HIF-1a,
hypoxia-inducible factor 1-alpha; iNOS, inducible nitric oxide synthase; NO, nitric oxide; Nrf2, nuclear factor erythroid 2-related factor 2.
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Ca2+ in the ER, Ero1 activity increases, which increases H2O2

production (283). The ER contains specific glutathione peroxidases,

such as GPx7 and GPx8, which are critical for reducing peroxide

levels (284, 285). These enzymes use glutathione (GSH) as a substrate

to convert H2O2 to water, directly neutralising it. Peroxiredoxins,

such as Prx-4, are another group of ER-localised antioxidants that

help reduce peroxides (286, 287).

Inefficient removal of H2O2 in the ER leads to oxidative stress,

which can damage the calcium pumps (such as SERCA). This

impairs its ability to pump Ca2+ into the ER, resulting in reduced ER

calcium levels. A decrease in ER calcium due to oxidative stress

impairs the activity of the calcium-dependent enzymes, leading to

the accumulation of misfolded proteins in the ER, which initiates an

unfolded protein response (UPR). However, prolonged oxidative

stress and impaired calcium levels can compromise the effectiveness

of these responses, leading to chronic ER stress and a vicious cycle

of low CaER
2+ and high H2O2.

Chronic ER stress has been implicated in a variety of diseases,

reflecting its fundamental role in cell function and survival. It has

been implicated in neurodegenerative diseases [Alzheimer’s (276),

Parkinson’s and Huntington’s (279)], diabetes (both type 1 and 2),

cardiovascular disease (atherosclerosis and heart failure) (274),

cancer, obesity, inflammatory bowel disease and liver disease

(275). In summary, there is a similarity between the ER and

mitochondria in that both organelles produce ROS as a by-

product and have the mechanisms to reduce the functionally

relevant oxidative stress.

3.3.2 Cai
2+ ↔ NOX

One of the major pathways for Cai
2+ elevation is oxidative stress

and the regulation of Cai
2+ signalling by NOX enzymes (288). Three

pathways for ROS-induced Cai
2+ elevation have been described.

The first is the Ca2+ influx via the opening of voltage-gated L-type

Ca2+ channels (Cav1) (289, 290). The second pathway is Ca2+

release from intracellular stores (291, 292), for example, via the

ryanodine receptor (RyR) family, which have reactive cysteine

residues that are highly sensitive to oxidation by ROS (293). ROS

also act on another type of Ca2+ release channel, namely, the

inositol 1,4,5-trisphosphate receptor (IP3R) family (294, 295).

Finally, ROS can modulate the activity of Ca-ATPase pumps

(SERCA) that remove Cai
2+ from the cytoplasm (292, 296, 297)

in a bimodal manner. The mechanism of ROS-dependent Cai
2+

pump activation involves the mechanisms of ROS-dependent S-

glutathiolation of protein cysteines mediated by the interaction of

glutathione and peroxynitrite (296). This activation of the Ca2+

pump by S-glutathiolation occurs at low ROS concentrations.

Increased oxidative stress leads to the irreversible oxidation of

thiols and thus to enzyme inhibition (292). In this way, the

negative regulatory coupling becomes the positive one

contributing to the increase in oxidative stress and inflammation.

The restoration of the negative regulatory coupling may be an

important part of the treatment of many pathological conditions.

The increase in intracellular calcium concentration is induced

by NOX-derived ROS, but the opposite regulation also takes place.

An increase in cellular calcium levels is associated with many
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metabolic effects. One of these is the activation of NADPH

oxidases (129, 298, 299). The details of the stimulatory effect of

calcium ions on the activity of individual NOX enzymes have been

described in reviews (129, 300, 301). In brief, the activating effect of

calcium ions on NOX can be direct and indirect. The direct effect is

described in relation to NOX5. The expression of NOX5 is

restricted to a few tissues, although it is found in human vascular

smooth muscle cells (VSMCs), endothelial cells and whole vessels—

important tissues in the development of COVID-19 pathology.

Calcium induces the binding of the N-terminal domain of NOX5

to its dehydrogenase domain, thereby relieving autoinhibition. In

microvascular endothelial cells, NOX5 expression is also increased

by endothelin-1 and AngII and mediates the activation of ERK1/2

(302). Another association of NOX5 with endothelial cells was

shown by Guzik et al. (303). They showed that NOX5 expression is

higher in human coronary arteries with coronary artery disease

than in those without the disease. This increased NOX5 expression

was accompanied by a sevenfold increase in activity.

In the case of NOX2, the role of Cai
2+ is indirect. In non-

excitable cells, Ca2+ influx is essentially mediated by store-operated

calcium entry (SOCE), a complex mechanism in which the

depletion of intracellular Ca2+ stores from the ER leads to Ca2+

entry through Ca2+ store-operated calcium channels (SOCs) at the

plasma membrane. Extracellular Ca2+ entry is known to be involved

in NOX2 activation. Schenten et al. (304) showed that sphingosine

kinase (SphK)-regulated NOX2 activation depends on the depletion

of intracellular Ca2+ stores. Their results define a pathway leading to

NOX2 activation, in which store depletion-dependent SphK

activation induces p38 MAPK-mediated S100A8/A9 translocation.

S100A8/A9, also known as calprotectin, functions as a damage-

associated molecular pattern (DAMP) that activates various

signalling pathways, including those involving NOX2 as a defence

mechanism against pathogens (304). However, its role in

inflammation and oxidative stress is more complex, as some anti-

inflammatory properties have also been described (305).

The important pathway for Cai
2+ elevation is the activation of

phospholipase C (PLC), which leads to Cai
2+ elevation and further

stimulation of PKC. PKC can be activated by increases in

intracellular calcium, but it can also contribute to increases in

Cai
2+ levels. Haick et al. (306) showed that PKC activation leads to

the suppression of Kv7 (family of voltage-gated potassium

channels) currents, membrane depolarisation and Ca2+ influx

through L-type voltage-sensitive calcium channels (VSCCs) (306).

Thus, a positive loop between the PKC activity and Cai
2+

concentration can be observed, which is switched on by PLC

activation. Several mechanisms can activate PLC. GPCRs can

activate PLC-b , and RTKs can activate PLC-g . High

concentrations of calcium ions can activate the PLC-d isoform.

PLC can also be indirectly activated by ROS and ONOO−.

3.3.3 Inflammation → Cai
2+

The binding of cytokines to receptors activates signalling

pathways, such as the MAPK, PLC pathways or NF-kB, which
can influence the increase in intracellular calcium ion concentration

through various pathways. The activation of PLC leads to the
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breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into

inositol-1,4,5-triphosphate (IP3) and DAG. IP3 binds to IP3

receptors in the ER, causing the release of Ca2+ ions from the ER

into the cytoplasm (307). In turn, DAG activates transient receptor

potential canonical (TRPC) channels, leading to an influx of Ca2+

ions from the extracellular space (308). Cytokines can also activate

SOCE channels for Ca2+ to facilitate the influx of ions from the

outside after the depletion of calcium stores in the ER (309).

3.3.4 Cai
2+ → inflammation

Calcium ions induce inflammation mainly by increasing the

production of free radicals, which activate the inflammatory

cascades described above. However, there are several pathways

that activate inflammation without the mediation of ROS.

Increased Cai
2+ concentration is a signal that activates the NLRP3

inflammasome, which catalyses the conversion of pro-IL-1b to

active IL-1b (310). The activation of the inflammasome further

increases cytokine release and enhances Cai
2+ mobilisation, creating

a positive feedback loop between inflammation and Cai
2+. Cai

2+ also

enhances the transcription of pro-inflammatory genes through the

activation of factors such as NF-kB (311), which then increases the

activity of iNOS, leading to NO production.

3.3.5 Ca2+ → autophagy
Cai

2+ is an important regulator of autophagy. Under normal

conditions, Cai
2+ activates the autophagy in healthy cells mainly by

activating calcium/calmodulin-dependent kinase kinases

(CaMKKs), in particular CaMKKb (312–315). This kinase

activates AMPK (316), which in turn inhibits mTOR, a key

negative regulator of autophagy. In addition, calcineurin activated

by high intracellular Ca2+ levels can dephosphorylate transcription

factor EB (TFEB), a master regulator of lysosomal biogenesis and

autophagy genes (317–319). Dephosphorylated TFEB translocates

to the nucleus and enhances the transcription of autophagy-related

genes, thereby promoting autophagy.

ER stress is one of the important conditions that increase Cai
2+

concentration by its release from Ca2+ stores and initiates the

above-mentioned pathways (320). However, autophagy can be

activated by the inter-organelle transfer of Ca2+ from the ER to

the mitochondria via the mitochondria-associated membrane

(MAM) (321). Key proteins located at the MAM include the

IP3Rs on the ER side and the voltage-dependent anion channels

(VDACs) on the mitochondrial outer membrane, which are

connected by the chaperone protein glucose-regulated protein 75

(GRP75) (322). Ca2+ is released from the ER via IP3Rs into the

MAM space and is then rapidly taken up by the mitochondria via

VDACs and the mitochondrial Ca2+ uniporter (MCU). This Ca2+

transfer is essential for the activation of mitochondrial enzymes

involved in energy production, such as those in the Krebs cycle. The

transfer of Ca2+ from the ER to the mitochondria can affect

mitochondrial dynamics and promote mitochondrial fission,

which is often associated with the initiation of autophagy (323).

However, autophagy can modify Cai
2+ levels in a bimodal

manner. Autophagy can increase Cai
2+ levels by depleting

intracellular Ca2+ stores such as the ER or by affecting the
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membranes of lysosomes where Ca2+ channels are located (324).

The depletion of these stores may lead to a transient increase in

cytosolic Ca2+, which may produce feedback to promote further

autophagic activity. Conversely, although autophagy can be

stimulated by Ca2+, the process itself tends to balance Ca2+ levels

within the cell. Excessive autophagy can lead to the excessive

depletion of Ca2+ stores, lowering intracellular Ca2+ levels to a

point where autophagic activity is reduced, thus preventing cellular

damage from excessive autophagy (325).

In conclusion, intracellular calcium is mainly positively

associated with inflammation and oxidative stress, but some

described negative couplings at physiological concentrations act

as regulators of excessive Cai
2+ increase.
3.4 Activation of HIF-1a pathway

The next important player in the inflammatory response is HIF-

1a. Figure 5 shows the detailed relationships between this factor

and inflammation, ROS, NO, Cai
2+ and mitochondria. Under

normal conditions, HIF-1a levels increase during the hypoxia

state. In this case, it has a protective function against the

overproduction of free radicals in the mitochondria during

hypoxia or hypoxia/reperfusion by reducing pyruvate entry into

the mitochondria and NADH “pressure” on the cytochrome chain,

thereby reducing mito-stress (128). Its protective effect has been

demonstrated, for example, in myocardial infarction, where it

activates the anaerobic glycolysis enzyme 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 2 (PFK-2/FBPase-2) and

supports anaerobic ATP production (326). In another study, HIF-

1a-deficient mice showed greater intestinal barrier disruption and a

more severe course of colitis (327).

HIF-1a is degraded by HIF prolyl hydroxylase domains

(PHDs), and inhibition of PHDs results in the stabilisation of

HIF-1a. However, Factor Inhibiting HIF (FIH) is an oxygen-

dependent enzyme that causes the hydroxylation of HIF-1a,
which in turn inhibits the interaction of the HIF-1a subunit with

CBP/p300 (HIF-1a co-activator) (328–330). This interaction is

required for the transcription of HIF-dependent genes. Therefore,

FIH provides a mechanism for reducing the transcriptional activity

of the HIFs in normoxia.

HIF-1a can be stabilised by the inhibitory effect of succinate

(SC) on the HIF prolyl hydroxylases (331–335). Increased levels of

Krebs cycle molecules in the cytoplasm such as oxaloacetate,

fumarate, malate and succinate may be the effect of pyruvate

dehydrogenase (PDH) inhibition. Thus, a possible positive

feedback loop may be observed in which HIF-1a inhibits PDH,

inhibited PDH increases the concentration of succinate, and

increased succinate stabilises HIF-1a.

3.4.1 NOX/ROS → HIF-1a
ROS generated by NOXs are important activators and

stabilisers of HIF-1a. They inactivate PHDs, leading to an

increase in the stability of the HIF-1a protein. ROS also activate

PKA and mTOR, which phosphorylate HIF-1a, increasing its
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stability and leading to its accumulation in the cell (336, 337). ROS

also upregulate the expression of thioredoxin 1 (Trx1), which

increases the transcriptional activity of HIF-1a (338). However,

ROS-mediated HIF-1a induction also occurs at the transcriptional

level, and it is dependent on NF-kB—a major transcription factor

for inflammatory cytokines (336). Finally, ROS generated by

exogenous H2O2 or by a NOX4 transcriptionally induce HIF-1a
via the NF-kB binding site in the HIF-1a promoter (339).

3.4.2 HIF-1a → NOX
The reverse relationship, i.e. the activation of NOX by HIF-1a

under certain conditions, has also been reported, albeit in small

numbers. André-Lévigne et al. (340) reported that HIF-1a activates

the transcription of NOX4 in the context of wound repair

activation. In another article, Diebold et al. reported that the

transcription of NOX2 is activated by HIF-1a in the context of

the urotensin-II-activated angiogenesis (341, 342).
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3.4.3 HIF-1a ↔ NF-kB-positive coupling
HIF-1a activates the inflammation mainly through NF-kB (343),

which is crucial for inducing the production of pro-inflammatory

cytokines, e.g. TNF-a and IL-6. Conversely, NF-kB has been shown

to contribute to increased Hif1a mRNA transcription under hypoxic

conditions (344, 345). BelAiba et al. (344) showed that the expression

of the NF-kB p50 and p65 subunits increased HIF-1a mRNA levels,

while blocking NF-kB with the NF-kB inhibitor attenuated the

induction of HIF-1a mRNA by hypoxia. Reporter gene assays

revealed the presence of an NF-kB site in the HIF-1a promoter,

and mutation of this site abolished HIF-1a induction by hypoxia. Gel

shift analysis and chromatin immunoprecipitation confirmed the

binding of the p50 and p65 subunits of NF-kB to the HIF-1a
promoter under hypoxia. In another study, Frede showed that LPS

increased HIF-1a mRNA expression through the activation of an

NF-kB site in the promoter of the HIF-1a gene, and hypoxia post-

translationally stabilised HIF-1a protein (345).
FIGURE 5

The metabolic links between HIF-1a and mitochondria. HIF-1a is activated by inflammation, ROS and Cai
2+. Its activation promotes the pathways

that prevent mitochondrial ROS production: HIF-1a activates the anaerobic glycolysis and reduces the number of mitochondria. The positive loop
between HIF-1a and succinate enhances the protective effect on mitochondria. Solid arrows, activation; red dashed lines with •, inhibition; ⊕,
positive coupling between elements; red line crossing out, inhibition of the channel or pathway. HIF-1a, hypoxia-inducible factor 1-alpha; ROS,
reactive oxygen species.
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3.4.4 Cytokines → HIF-1a
The previous subsection discussed the coupling between HIF-

1a and the pro-inflammatory NF-kB. The direct effect of cytokines
on HIF-1a has also been observed. Malkov et al. (346) discussed the

influence of two cytokines, TNF-a and IL-1b, on HIF-1a. Both can

activate HIF-1a via both the NF-kB and PI3K/Akt pathways

(347–349). The activation of these pathways results in increased

HIF-1a protein synthesis and stabilisation under normoxic

conditions. TNF-a stimulation leads to the activation of NF-kB,
which can bind to the HIF-1a promoter and enhance HIF-1a
transcription. The PI3K/Akt pathway stabilises HIF-1a through the

post-translational modification and inhibits its degradation. This

pathway is used by both TNF-a and IL-1b. In addition, IL-1b uses

the ERK1/2 pathway to increase HIF-1a activity (350–352). In

another paper, Zhang et al. (353) showed that the synthesis of HIF-

1a was upregulated by IL-1b in hepatocellular carcinoma cells via

cyclooxygenase-2. Their findings revealed a HIF-1a/IL-1b
signalling loop between cancer cells and tumour-associated

macrophages in a hypoxic microenvironment, leading to

epithelial–mesenchymal transition and cancer cell metastasis.

The above observations close a positive loop coupling between

HIF-1a and inflammation that contributes to the amplification of

inflammation, especially in the case of hypoxia, which is an

important element of the local environment in viral or bacterial

infections (354).

3.4.5 Cai
2+ ↔ HIF-1a

HIF-1a is the master regulator of hypoxic transcriptional

responses and controls the transcription of several calcium

modulators, which can lead to the remodelling of the calcium

signalling. Translational regulation of HIF-1a is estimated to

account for up to 50% of the increased HIF-1a protein levels

under hypoxia, and this process is promoted by calcium

signalling (355, 356). The interplay between Cai
2+ and HIF-1a

and their positive feedback in cancer cells has been reviewed by

Azimi (357). The Cai
2+ modulatory proteins being involved in the

direct positive feedback with HIF-1a are the transient receptor

potential C1 calcium channel (TRPC1) and stroma interaction

molecule-1 (STIM1; CaER
2+ sensor). HIF-1a activates their

transcription. Conversely, TRPC1 regulates the translation of

HIF-1a (358), and STIM1 promotes HIF-1a transcription and

accumulation (359). In addition to TRPC1 and STIM1, other

proteins that have been described to increase the activity of HIF-

1a include TRPC5, TRPC6, TRPM8 and TRPM2. TRPC5 regulates

the HIF-1a expression and its nuclear translocation in breast cancer

cells (360), TRPC6 controls the hydroxylation and stability of HIF-

1a in glioma (361), TRPM8 promotes HIF-1a levels by suppressing

RAK1-mediated HIF-1a ubiquitination in prostate cancer (362),

and TRPM2 increases HIF-1a levels by increasing transcription and

decreasing degradation in neuroblastoma (363). However, Vestra

et al. showed that HIF-1a expression in LPS-stimulated THP-1

macrophages could be blocked by the CaMKII (calcium/

calmodulin-dependent protein kinase II) inhibitor KN93,

suggesting a role for this complex in HIF-1a activation (364).

Summing up, the interplay between HIF-1a and Cai
2+ is
Frontiers in Immunology 16
described mainly in cancer conditions. Further research is

required to explain if similar relations take place in the case of

chronic inflammation.

3.4.6 HIF-1a vs. mitochondria
The mitochondria are the ATP factories and the elements of the

cell that are extremely sensitive to oxygen deprivation, so various

metabolic disorders in the mitochondria trigger the activation of

HIF-1a to activate protective mechanisms against the effects of

these disorders. The main detrimental element associated with

energy production is the production of free radicals due to

electron leakage from the cytochrome chain, known as mito-

stress. In contrast to the positive coupling of HIF-1a with

cytokines, NOX and Cai
2+, the coupling with mito-stress is

mainly negative. The mechanisms linking mitochondrial

metabolism to HIF-1a are compensatory, preventing

mitochondrial damage or facilitating mitochondrial survival

under stress conditions. The mechanisms observed are aimed at

reducing the flow of electrons through the cytochrome chain in

order to reduce their leakage under conditions of oxygen

deprivation. The positive feedback between HIF-1a and

succinate/fumarate acts as the amplifier of this inhibitory

relationship. Succinate and fumarate contribute to the

stabilisation of HIF-1a through their inhibitory effect on PHD,

while the activation of HIF-1a leads to an increase in their

concentration in the mitochondria by blocking PDH, activating

glycolysis (GLL), gluconeogenesis (GNG) and the glucose

transporter GLUT-1, all of which contribute to an increase in

succinate in the cell.

3.4.7 HIF-1a → mitochondria
There are several ways in which HIF-1a affects mitochondrial

activity. The general effect is to inhibit their work. HIF-1a inhibits

the pyruvate dehydrogenase complex, thereby reducing the entry of

pyruvate into the mitochondria and reducing NADH production.

At the same time, it positively regulates lactate dehydrogenase A

(LDHA) expression and promotes the conversion of pyruvate to

lactate (365) and further removal of lactate from the cell by

upregulating the monocarboxylate transporter 4 (MCT4) (366).

HIF-1a also reduces the number of mitochondria by inhibiting the

PPAR co-activator-1 (PGC-1) family members PGC-1a and PGC-

1b (peroxisome proliferator-activated receptor gamma co-activator

1-alpha/beta), which are the essential transcription factors for

mitochondrial biogenesis (367). Lu et al. (368) showed that in an

in vitro mouse genioglossus myoblast model, HIF-1a inhibited

AMPK (a low-energy sensor that activates ATP production)

under hypoxic conditions, which inhibited mitochondrial

biogenesis, decreased the PGC-1a levels and increased apoptosis.

In addition, the population of the mitochondria is reduced by

the activation of mitophagy. The known HIF-1a target gene is Bcl-

2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3), which is

involved in autophagy and is able to reduce the mitochondrial

population (369). This mechanism requires the HIF-1-dependent

expression of BNIP3 and the constitutive expression of Beclin-1 and

Atg5. The effect of this reduction is also to decrease mito-ROS
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production (370). HIF-1a activation also causes mitochondrial

fission in human models of pulmonary arterial hypertension,

which is supported by the phosphorylation of dynamin-related

protein 1 (DRP1), and this process may also be associated with the

ability to reduce the mitochondrial population (371).

3.4.8 Mitochondria → HIF-1a
The main factor activating HIF-1a from the mitochondria is

mito-ROS. Brandes et al. presented the detailed locations in

cytochromes where the electron leakage takes place (128, 269).

The system of cytochromes and electron leakage can be modelled by

a pipe with holes in which the NADH concentration represents the

input pressure, the O2 concentration represents the suction force,

and the holes in the pipe represent the sites of electron leakage from

cytochromes. They showed that the leakage does not depend on the

flow rate but on the “pressure” of electrons inside the cytochromes.

Both increased input pressure (NADH concentration) and

increased output pressure (low O2 concentration) increase

electron leakage approximately according to the laws of fluid flow

through the tube (128, 269). Thus, blocking both complex I and

complex II in different ways resulted in a decrease in OXPHOS

activity, a decrease in electron leakage from complex III, an increase

in oxygen concentration and a decrease in ROS production, thereby

affecting the reduction of HIF-1a activity (372, 373). However,

Chandel et al. (374) confirmed that hypoxia increased

mitochondrial ROS generation at complex III, leading to the

accumulation of HIF-1a protein, demonstrating that

mitochondrial-derived ROS are both necessary and sufficient to

initiate HIF-1a stabilisation during hypoxia.

The other HIF-1a stabilising factors are, as mentioned above,

succinate and fumarate. Downregulation of succinate

dehydrogenase (SDH) and fumarate hydratase (FH) activities,

which are common hallmarks of cancers, results in the

accumulation of succinate, inhibition of PHD activity and

induction of HIF-1a (375).

To summarise the role of HIF-1a in generating a response to

intracellular pathogens, on the one hand, it has a protective effect on

the mitochondria, protecting them from the oxidative stress

accompanying the inflammatory response; on the other hand, it

participates in the response to pathogens by contributing to the

enhancement of the positive feedback between inflammation, ROS

and Cai
2+. Excessive excitation of HIF-1a during such a response

can lead to excessive mitochondrial deactivation, resulting in a

deficiency of the energy to remove pathogens and free radicals and

pump Cai
2+ out of the cytoplasm.

3.4.9 HIF-1a → NO
HIF-1a is one of the activators of iNOS gene transcription

leading to increased NO production (376, 377). At physiological

concentrations, this is likely to contribute to the enhanced

cytoprotective effect of HIF-1a. Another metabolic element

linking HIF-1a to NO is fumarate. It has been postulated in the

context of hypertension that when fumarate accumulates in the cell,

which may occur when HIF-1a is expressed, there is a reduced
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availability of L-arginine necessary for NOS action, which is formed

during the breakdown of argininosuccinate into fumarate and L-

arginine, leading to a reduction in NO production (378, 379).
3.5 Autophagy

An important element of the antiviral defence is the proper

functioning of the autophagy system, which is involved in the

clearance of pathogen proteins from the cell. The growing interest

in autophagy is related to the observation that many intracellular

pathogens chronically induce autophagy blockade, thereby

preventing their complete clearance from the cell (1–6). Three

subcategories of autophagy have been defined—chaperone-

mediated autophagy, microautophagy, and macroautophagy—

collectively referred to as autophagy (380). The autophagic

cascade occurs constitutively at a basal level in various cells and is

initiated under stress conditions, such as endoplasmic reticulum

stress (ERS), growth factor deprivation, nutrient deprivation,

mitochondrial damage and inflammation. Autophagy is also

coupled to oxidative stress and inflammation, and the couplings

are context-dependent, positive to drive or negative to control the

level of antimicrobial metabolic excitation. Figure 6 shows a

summary of the couplings between autophagy and the PCS.

3.5.1 Autophagy ↔ inflammation
Inflammatory cytokines are also involved in the autophagy

processes. One of the main functions of autophagy is to eliminate

intracellular pathogens, so autophagy must work in concert with the

immune system. The interaction between autophagy and

inflammation is very complex, and both positive and negative

couplings can be observed. Almost all cytokines are coupled to

autophagy in different ways. The most important pathways linking

inflammation and autophagy are shown in Figure 6. The most

important cytokines in this process are IFN-g, TNF-a, IL-1, IL-2,
IL-4, IL-6, IL-10 and IL-17 (381–385). In the majority of cases,

autophagy activation dominates over inhibition. The main pathways

involved in the activation are MAPK—ERK1/2 (386, 387), JNK (388)

and p38 (22, 389–392)—which in different ways promote the

transcription of key autophagy genes and the production of

autophagy proteins including the Atg family, Beclin1, microtubule-

associated protein 1 light chain 3 (LC3), DRAM1, TSC1/2 and

GBP1/IRGM.

The other signalling pathways involved in autophagy inhibition

are JAK1/2-STAT1 (385), PI3K/Akt and NF-kB (390–392). mTOR

is the key negative regulator of autophagy, and its inhibition is an

important target of several autophagy pathways. The major

inhibitors of mTOR are AMPK (106, 107), TSC1/2 (245) and

JNK (58, 59). The PI3K/AKT and ERK1/2 signalling pathways

activate mTOR (48). The inhibitory effect on autophagy is also

observed in the case of the transcription factor NF-kB, and two

pathways of this activity are described. It activates mTOR and Bcl-

2/BCL-xL proteins, both of which are inhibitors of autophagy

(393–396).
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3.5.2 p38 ↔ NF-kB coupling
The p38 MAPK and NF-kB are the elements of inflammatory

regulation associated with autophagy that interact with each other

in a positive loop coupling (397–399). Understanding this coupling

appears to be important for understanding the development of the

chronic state in some autoimmune diseases (400–404), as well as the

severe course of COVID-19.

The p38 MAPK kinase can be activated by stress signals such as

cytokines, UV irradiation, heat shock and osmotic shock (22, 389).

Once activated, p38 can phosphorylate a number of substrates

including transcription factors such as NF-kB (405), which then

modulate gene expression in response to stress. NF-kB is typically

activated by pro-inflammatory cytokines (such as TNF-a and IL-1),

bacterial or viral infections, and other stressors. Its activation leads

to the translocation of NF-kB from the cytoplasm to the nucleus,

where it influences the expression of genes involved in immune

response, cell survival and proliferation. p38 can enhance NF-kB
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activation by phosphorylating NF-kB itself or its inhibitory protein

IkB (inhibitor of kappa B). The phosphorylation of IkB typically

leads to its degradation, freeing NF-kB to enter the nucleus and

activate transcription. Conversely, components regulated or

produced by NF-kB, such as TNF-a, IL-1b, IL-6, IFN-g, GM-CSF

and IL-17, can activate the p38 MAPK pathway (390–392), creating

a feedback loop that amplifies the response to stress.

In the context of autophagy, NF-kB generally acts as an

inhibitor (393, 394). When activated, NF-kB can suppress the

expression of several autophagy-related genes, thereby inhibiting

the autophagic process (394–396). It also activates mTORc1, Bcl-2

and Bcl-xL, which are known autophagy inhibitors. The inhibitory

effect of NF-kB on autophagy is thought to be a mechanism that

favours cell survival and inflammation. However, p38 has been

shown to promote autophagy (406, 407). This involves the

phosphorylation of several downstream targets that can initiate

the autophagic process.
FIGURE 6

Regulatory role of autophagy and Nrf2 on the Positive Coupling System (PCS; inflammation/ROS/NO/HIF-1a/Cai2+). The figure shows the metabolic
pathways by which Nrf2 and autophagy control and inhibit the self-excitation of PCS. In two cases, however, the relationship is positive. NF-kB and
Nrf2 (marked with x) inhibit each other, and such a double inhibitory coupling serves as a switch between the inflammatory and antioxidant states—
activation of one inhibits the other and vice versa. In the case of HIF-1a and Nrf2, the coupling is not quite positive. Nrf2 activates HIF-1a to support
the mitochondrial protection provided by HIF-1a. In addition, inhibition of one element also inhibits the other and vice versa, which seems to
support the termination of the antiviral response. In the case of the relationship between inflammation and autophagy, both positive and negative
couplings are observed. The positive ones seem to enhance the antiviral response in the early phase of infection. The couplings with iNOS/NO are
shown in Figure 3. Solid arrows, activation; red dashed lines with •, inhibition; ⊕, positive coupling; ⊝, negative coupling; ⊗, double-negative
coupling. Nrf2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species; NO, nitric oxide; HIF-1a, hypoxia-inducible factor 1-alpha;
iNOS, inducible nitric oxide synthase.
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As p38 and NF-kB are positively coupled, both are increased in

the inflammatory state, and the overall effect depends on the cellular

context. This bidirectional activity of p38/NF-kB coupling on

autophagy may be one of the metabolic pathways leading to

chronic persistence when autophagy inhibition prevails over

stimulation, as autophagy inhibition and NF-kB overactivity are

the hallmarks of the chronic infectious or autoimmune state

(404, 408, 409). It should be noted that to inhibit autophagy, it is

sufficient to inhibit one element of the entire complex pathway of its

activation. In contrast, to increase autophagy activity, none of the

regulatory elements must be blocked. Only under these conditions

can the stimulation of the pathway have a stimulatory effect.

When analysing the impact of autophagy on the inflammatory

process, two main effects can be discussed. The first is the reduction

of cellular debris that typically activates PCS elements. This cleaning

of the cell is important for the return to a healthy state but does not

reflect the direct inhibition of the PCS elements. The second effect is

the direct activation or inhibition of inflammation by autophagy

molecules or by the autophagy process. Autophagy can facilitate the

production and release of pro-inflammatory cytokines (410–413).

For example, it supports the processing and maturation of IL-1b by

delivering cytokine precursors to inflammasomes (414). However,

autophagy can reduce inflammation by degrading pro-

inflammatory cytokines and the components of inflammasomes

that are responsible for their activation. This process helps to

control excessive inflammatory responses and maintain cellular

homeostasis (415). Multiple connections complicate the analysis;

the final effect is context-dependent and requires further research.

3.5.3 Autophagy ↔ oxidative stress
One of the major autophagy regulators is oxidative stress. The

relationship between the two is complex. The main link is negative

coupling, where ROS mainly activate autophagy but autophagy

reduces the tendency to generate ROS. The accumulation of

oxidative stress causes oxidation and damage to cellular

components, including proteins, DNA and lipids, which turn on the

autophagic process (416). Mitochondrial ROS, produced primarily in

the mitochondrial electron transport chain, play a critical role in

signalling pathways that activate autophagy (417). ROS production

increases under stress conditions, such as nutrient deprivation leading

to the activation of autophagic processes (418, 419). H2O2 is relatively

stable compared to other ROS and can diffuse between cellular

compartments, acting as a signalling molecule to modify proteins

involved in autophagosome formation. For example, H2O2 can oxidise

the cysteine residue on Atg4, promoting the lipidation of LC3, a

critical step in autophagosome maturation (418). ROS can also

activate the ataxia-telangiectasia mutated (ATM) kinase, which then

triggers downstream signalling to AMPK (420–422). The activation of

AMPK results in the promotion of autophagic processes to maintain

cellular homeostasis (423, 424). ROS levels are also associated with

reduced energy production, which in turn activates signalling

pathways such as the aforementioned AMPK and inhibits the

mammalian target of rapamycin (mTOR), a key negative regulator

of autophagy (425, 426).
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However, autophagy functions to reduce oxidative stress by

degrading damaged mitochondria and other cellular debris that

would otherwise contribute to increased ROS production (427–429).

This protective role is critical in preventing the accumulation of

oxidative damage, thereby maintaining cellular integrity and

function. Impairment of autophagy increases the oxidative stress

(430). Furthermore, antioxidant molecules moderately or completely

suppress autophagic execution (431).

In summary, the relationship between ROS and autophagy is

not linear but is characterised by a complex feedback mechanism in

which ROS induce autophagy, and autophagy can modulate ROS

levels. This feedback is essential for adaptation to environmental

and metabolic stresses.

3.5.4 Autophagy ↔ HIF-1a
Both autophagy and HIF-1a are essential for cellular survival

and homeostasis under hypoxic conditions and are linked by

multiple regulatory mechanisms. In general, there is a negative

coupling between them. HIF-1a activates autophagy (432, 433), and

autophagy reduces the HIF-1a activity by degrading this

molecule (434).

HIF-1a can induce the expression of several genes involved in

autophagy. For example, HIF-1a has been shown to upregulate

BNIP3 and BNIP3-like (BNIP3L), which are involved in mitophagy,

the selective autophagy of the mitochondria. By promoting the

removal of dysfunctional mitochondria, these proteins help to

maintain cellular energy production and reduce ROS levels under

hypoxia (435). HIF-1a can also directly enhance autophagy by

interacting with the autophagy-related protein Beclin-1 and

promoting the formation of autophagosomes. This helps the cell

conserve resources and maintain energy production during periods

of oxygen deprivation (436).

3.5.5 Autophagy couplings—summary
Looking at Figure 6, essentially all of the PCS elements have

autophagy-activating activity, and autophagy essentially inhibits all

PCS elements. This creates a generalised negative feedback that

allows the inflammation and other PCS elements to be silenced, as

the amount of pathogen in the cell decreases, and the cell can

gradually return to normal function.

There is some complexity in the interactions between

autophagy and inflammation, where, especially in the early stages

of infection, positive feedback can be observed to enhance

inflammation through autophagy. These relationships require

more detailed studies, as the overall effect of autophagy on

inflammation may be activating or inhibiting at different stages of

infection. However, it should be noted that the direct inhibitory

effect of autophagy is only observed against inflammation and not

against other PCS elements. Therefore, it seems that autophagy

cannot be identified as an element that directly controls and inhibits

the amplitudes of the PCS spiral.

A separate topic related to the coupling between autophagy and

PCS is the issue of chronic infection. Numerous publications have

indicated that pathogens with the ability to enter a chronic state
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within the cell have the ability to block autophagy (1–6, 437–440).

By removing damaged organelles and intracellular pathogens,

autophagy prevents the accumulation of microbial antigens that

can trigger inflammatory pathways. This cleaning process is critical

for preventing chronic inflammation and has been implicated in

diseases such as atherosclerosis and autoimmune disorders (441,

442). When autophagy is blocked, the cell is unable to completely

remove the pathogen, leading to continued low levels of activation

of the PCS system, but not enough to stimulate autophagy to

remove the pathogen completely (443). A dynamic equilibrium is

then created between the presence of a small amount of the

pathogen in the cell, and non-lethal activation of the PCS system

is then produced, which manifests in the patient with symptoms of

chronic fatigue associated with mitochondrial uncoupling and

possibly mild inflammatory symptoms such as pain, redness,

swelling or exudation, depending on the location of the pathogen

(444–449). However, more research is needed to determine how

much of the chronic inflammation of different organs is related to

the presence of chronic pathogens and/or impaired autophagy.
3.6 Regulatory role of NRf2

The positive couplings that drive the immune response against

the pathogens must be controlled by a number of negative

regulators to prevent the response from going beyond the level of

self-destruction. One of the key negative regulators that directly

control the PCS spiral is the transcription factor Nrf2.

3.6.1 Nrf2 ↔ oxidative stress
Nrf2 is the major nuclear transcription receptor that activates

the production of several proteins involved in detoxification and

oxidative stress reduction. Oxidative stress induces an antioxidant

response as a compensatory mechanism through the activation of

the Nrf2 signalling pathway. At low levels of ROS, Nrf2 is associated

with the Keap1, which targets Nrf2 for proteasomal degradation. At

high levels of ROS, Nrf2 dissociates from Keap1 and translocates to

the nucleus, where it binds to the antioxidant response elements

(AREs) of target gene promoters (450). The proteins produced

include catalase (CAT), SOD, peroxiredoxin (Prx), thioredoxin

(Trx), GPx, glutaredoxin (Grx), metallothioneins (MTs),

glutathione reductase (GSR), Trx reductase (TrxR) and

sulfiredoxin (Srx). Many of the antioxidant enzymes/proteins

regulated by Nrf2 are localised to specific compartments within

the cell to control redox signalling in the local environment. Nrf2

also regulates the expression of several oxidant signalling proteins,

thereby affecting programmed cellular functions. Some regulators,

such as p62 and DJ-1, activate Nrf2 and can be triggered by oxidants

via Nrf2, forming a positive feedback loop with Nrf2 to increase its

activity (451).

3.6.2 Nrf2 ↔ inflammation
Nrf2 is the main factor that reduces the level of ROS in the cell,

but it has also been described to reduce the effects of inflammation.

The relationship between Nrf2 and inflammation is complex. In
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particular, there is a double-negative coupling between Nrf2 and

NF-kB, which needs to be explained in detail (452). Nrf2 negatively

regulates the NF-kB pathway through several mechanisms. First,

Nrf2 inhibits oxidative stress-mediated NF-kB activation by

reducing the intracellular ROS levels (453). In addition, Nrf2

prevents proteasomal degradation of IkBa and inhibits nuclear

translocation of NF-kB (454, 455).

A direct effect of Nrf2 on inflammation has also been observed.

According to a study by Jiang et al. (456), Nrf2 mediates anti-

inflammatory signalling in macrophages, which plays a critical role

in preventing liver ischaemia/reperfusion injury by blocking the

transcription of pro-inflammatory cytokines. In another study, Nrf2

suppressed the inflammatory response of macrophages by blocking

the transcription of pro-inflammatory cytokines, which was

independent of ROS levels (457). This study identifies Nrf2 as a

negative upstream regulator of cytokine production and provides a

molecular basis for an Nrf2-mediated anti-inflammatory

approach (458).

The inverse relationship is also negative. NF-kB decreases free

CBP, which is a transcriptional co-activator of Nrf2. This inhibitory

effect of NF-kB occurs by competing with the CH1-KIX domain of

CBP while also promoting the phosphorylation of p65 at Ser276,

which in turn prevents CBP from binding to Nrf2 (458, 459). This

results in double-negative coupling between Nrf2 and NF-kB,
which is actually a type of positive coupling between them. On

the one hand, high Nrf2 activity reduces NF-kB activity, and

reduced NF-kB activity contributes to increased Nrf2 activity.

Conversely, high NF-kB activity reduces Nrf2 activity, and

reduced Nrf2 activity further contributes to increased NF-kB
activity. This mechanism helps to stabilise the cell in a state of

inflammation and fight against some pathology (high NF-kB/low
Nrf2) or in a state of health (low NF-kB/high Nrf2). It is important

to note that such a regulatory mechanism is an unstable point of

self-regulation, and even a small stimulus can tip the balance

towards hyperinflammation or recovery. Therefore, targeting the

activation of Nrf2 and the inhibition of NF-kB may be a promising

therapeutic target against various types of chronic inflammation.

3.6.3 Nrf2 ↔ calcium stress
Calcium plays an important role in several cellular signalling

pathways, but its relationship with Nrf2 is indirect rather than

direct. Calcium can activate various signalling pathways, such as

MAPK pathways, which can modulate Nrf2 activity (460, 461). In

particular, certain MAPKs such as ERK1/2 and p38 can

phosphorylate Nrf2, increasing its stability and nuclear

accumulation. The other pathway is PKC, a family of enzymes

that are activated by calcium and DAG. Activated PKC can

phosphorylate Nrf2 or its regulatory proteins, thereby affecting

Nrf2 activation and the subsequent antioxidant response (462, 463).

The Nrf2 plays a critical role in cellular defence mechanisms

against oxidative stress by regulating the expression of several

antioxidant and cytoprotective genes. Its influence extends to

maintaining intracellular calcium levels and modulating ER stress

responses. The main effect of Nrf2 on ER stress is to increase the

expression of glutathione peroxidase GPx8, a critical enzyme
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involved in protein folding and ER homeostasis (464). On the other

hand, ER stress activates Nrf2 through a PERK-dependent

mechanism (465), as PERK is known to directly phosphorylate

Nrf2 and induce its dissociation from Keap1 without the

involvement of ROS. Nrf2 is also able to reduce intracellular

calcium by suppressing the redox-sensitive TRPC channels,

thereby inhibiting calcium influx in renal podocytes (466).

Another study showed that Nrf2 plays a protective role in the

process of oxidative stress-induced Cai
2+ increase in skeletal muscle

and that Nrf2 inhibition increased RyR and PKA protein expression

in C2C12 cells, improved sarcoplasmic reticulum calcium release

function, decreased SERCA protein expression and reduced

sarcoplasmic reticulum calcium recovery, all of which contributed

to the increase in Cai
2+ (467). In conclusion, Nrf2 and Cai

2+ work in

the classical negative coupling, where Cai
2+ induces Nrf2 and Nrf2

reduces the calcium stress.

3.6.4 Nrf2 ↔ HIF-1a
The interplay between Nrf2 and HIF-1a is poorly studied.

Available publications have suggested a significant synergistic

relationship between these factors. The general link between Nrf2

and HIF-1a is through the action of ROS, which induces both these

transcription factors (468). Two signalling pathways have been

postulated to transduce ROS signals into Nrf2 and HIF-1a
activation. Jang et al. showed that the ROS-sensitive spleen

tyrosine kinase (Syk) is able to activate both transcription factors

in B cells (469). In another study, Wang showed that a similar effect

can be observed via the ROS-activated ERK1/2 pathway (470).

Lacher et al. (471) showed that the gene for HIF-1a transcription is

one of the non-canonical targets of Nrf2 and that Nrf2 activates

HIF-1a transcription. This study found that Nrf2 activity is

associated with high HIF-1a gene expression in several cellular

contexts. In addition, Wang et al. (470) observed that inhibition of

Nrf2 reduced HIF-1a activity, which is consistent with Lacher’s

findings. They also observed that inhibition of HIF-1a reduced

Nrf2 activity. A similar effect of Nrf2 inhibition by HIF-1a
inhibitors was observed by Jang (469), but it is not clear whether

these effects were direct or indirect, e.g. by reducing Cai
2+ levels.

This type of coupling qualifies it as a positive one. However, it is

necessary to distinguish between positive coupling, in which two

elements are mutually stimulated, and coupling, in which inhibition

of one element also causes inhibition of the other and vice versa. In

this case, there is no mutual excitation leading to the self-

destruction of the system. According to previous studies, the

excitatory effect is only observed in one direction (Nrf2 → HIF-

1a), so the self-activation loop is not closed. Thus, the reciprocal

coupling is more related to the mutual silencing of the two factors.

The whole relationship can be interpreted as a synergistic

protective effect of both factors under oxidative stress, where Nrf2

activates the production of antioxidant enzymes and HIF-1a
reduces the production of free radicals by the mitochondria. From

this point of view, HIF-1a appears to be an ambivalent element. On

the one hand, it is involved in the enhancement of the PCS spiral,

and on the other hand, it helps stabilise it. The sum of its effects

depends very much on the metabolic context.
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4 Summary

A growing number of studies describing the relationships

between individual signalling pathways and other pieces of the

molecular puzzle are making it possible to construct increasingly

complex graphs of interactions to understand the workings of the

cell as a whole. The paper presents a fairly universal mechanism of

interactions between seven key elements of self-regulation that form

the cell’s self-regulatory mechanism in response to various

intracellular pathogens and other stressors. A literature review of

all the mutual interactions between the seven elements of cellular

homeostasis has been analysed, from which a picture emerges of the

mutual excitation of the five elements mainly to enhance the

response against pathogens and the controlling effect of

autophagy, Nrf2 and partially HIF-1a and NO as elements to

prevent excessive escalation of this response. To the authors’

knowledge, this is the first such comprehensive analysis of the

regulatory interactions. Particular attention should be paid to the

Nrf2/HO-1 axis and autophagy. It should be noted that even a slight

weakening of the control of these positive feedbacks can result in the

new equilibrium state of the system being far beyond the adaptive

capacity of the cell. However, at least in the theory, even a small

improvement in the control of such mechanisms can significantly

shift the equilibrium of regulated elements towards the correct and

adequate level for fighting the pathogen. However, it must be

remembered that as long as the pathogen is present in the cells,

the balance can be shifted towards chronic inflammation, chronic

oxidative, nitrosative and calcium stress.

The other general conclusion can be drawn about the strategy

for treating chronic inflammation. The multiplicity of reciprocal

positive couplings suggests that a one-drug strategy may be doomed

to failure. Reducing only one of the five elements involved in the

reciprocal positive couplings would not reduce the others, as they

remain in the positive loops and continue to drive the system into

pathology and chronic inflammation. According to the authors’

opinion, at least three to four upregulated elements should be

downregulated simultaneously to achieve the final effect of

reducing all the coupled components. The optimal way is to use

drugs or herbs that regulate all the elements presented. In this case,

an additive or even hyper-additive effect would be expected from

the co-application of drugs acting on different dysregulated

elements of the overall regulation. Special attention should be

paid to herbs, as they usually have a well-defined low toxicity,

and there is increasing evidence that many of them influence the

elements of metabolism discussed above (472–489).

It is important to note that the relationships presented between

the coupled elements are relatively universal and can probably be

applied to many diseases in medicine, including acute and chronic

infections, and autoimmune and degenerative diseases. However,

individual diseases and the tissues involved are likely to differ in the

strength of the mutual feedback and the molecular details.

Chronic intracellular infections remain a significant medical

problem. Examples of such pathogens include Lyme disease,

Bartonella, chlamydia, Mycoplasma, tuberculosis and viruses such

as SARS-CoV-2, Epstein–Barr virus (EBV), herpes group,
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Coxsackie group, Ebola virus, Zika virus, enteroviruses and measles

virus (490–500). SARS-CoV-2 is reported to be chronic, and it is

postulated to be one of the causes of the long COVID syndrome

(501–510). EBV and cytomegalovirus are also capable of causing

chronic inflammation and coagulopathies, including disseminated

intravascular coagulation (DIC) (511–513). Current therapies

against these pathogens are long and often of limited efficacy.

New drugs are constantly being sought to cure cells of chronic

pathogens. Understanding the molecular relationships can greatly

accelerate the identification of therapeutic strategies. In particular,

many studies have indicated that intracellular pathogens block

autophagy as a common component of impaired intracellular

metabolism in their chronic state (1–6).

Autoimmune and degenerative diseases are different from

chronic infectious diseases. In the case of intracellular infections,

many pathogen proteins disrupt many physiological regulatory

couplings, which seem to require multiple drug therapies in order

to regulate the disrupted couplings and clear pathogens from the cell.

In the case of autoimmune or degenerative diseases, the number of

initial perturbed elements is likely to be limited, and the problem of

the optimal therapy is to find the metabolic element that is the first

domino to fall, further triggering all other dysregulations.
4.1 Limitations of the article

The article outlines the many feedbacks involved in the self-

regulation of the inflammatory process, but it has some limitations.

The main limitation is that the many molecular interactions

described were derived from a large number of experiments based

on different cell lines. Further research is needed to determine

whether the described interactions are universal or only occur in

selected cell types. In particular, cells of the immune system may be

subject to significantly different regulatory mechanisms in relation

to their function than host cells attacked by pathogens

or autoantibodies.

Another limitation is that only a subset of molecular elements

was analysed (seven core elements and seven kinase signalling

pathways). The analysed transcription factors activate the

production of a large number of different proteins, which may

also affect the analysed feedback in different ways. Thus, the

described feedback system should be treated more as a framework

for extending the model, incorporating more elements into it and

analysing their effects on elements of the current model. Knowledge

within the currently analysed elements is also constantly evolving.

In particular, the cytokine system is extremely complex in its

operation and knowledge of its effects on other elements of the

regulatory system evolves.

Another limitation is that, for some relationships, there are a

number of studies indicating opposite effects of one element on

another through different pathways, making it difficult or

impossible to determine the exact relationship. The opposing

pathways of interaction may depend on the concentration/activity

of the element, or they may be part of a more complex regulation

that allows the activity to be better adapted to the metabolic context.
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This requires more detailed studies that may significantly modify

the current model, in particular metabolic contexts.
4.2 Challenges for future research

The present article represents an important turning point in the

development of molecular biology because, to the best of the

authors ’ knowledge, it is the first attempt to build a

multidimensional model of cellular self-regulation according to

the rules of control theory. In such systems where many elements

are mutually coupled, a change in one element causes a change in all

the others, and a new equilibrium state is reached. There are

important conclusions to be drawn from this article, which are

different for molecular biologists and physicians. Molecular

biologists focus on the correctness of the relationships between

elements, while physicians focus on finding the causes of disease.

From the molecular biologist’s point of view, it is necessary to

develop the regulatory model to be analysed. The first conclusion is

the need to carefully validate whether the influence of one factor on

another is direct, forming an elementary edge in the graph of

interrelationships, or indirect, i.e. through other elements in the

graph of interrelationships.

The second tip for future experiments is the need to

simultaneously examine the influence of a specific factor on many

regulatory parameters of the model, preferably all of them. For

example, when studying the effect of a particular drug, it is

recommended to examine changes in cytokine levels; NOX and

iNOS activities; NF-kB, HIF-1a and Nrf2 activities; Cai
2+ levels,

autophagy activation, signalling pathways activity, etc. This will give

a more holistic picture of the effect on metabolism.

Next, in the future research perspective, it is necessary to

undertake a study to describe each edge of the graph of

interrelationships between elements by means of appropriate

differential equations. The exemplary ordinary differential

equation-based dynamic model describing the response of Nrf2,

Keap1, Srxn1 and GSH to oxidative stress was described by

Hiemstra et al. (514). This work provides a future perspective for

molecular biology. Once the equations for each interaction are

mathematically described, it will be possible to create a generalised

system of differential equations describing the behaviour of the

system, as well as to model the behaviour of the system under the

action of deregulatory stimuli (e.g. viral proteins) and/or drugs. This

will allow the mathematical optimisation of therapies for

various diseases.

In order to build mathematical models, it is necessary to study the

variability of concentrations and activities of individual system

components in the time domain to observe the magnitude and

dynamics of changes in activity under the influence of a specific

stimulus. In order to fit equations to time courses, it is necessary to

have at least several measurements of parameters at different times

after the stimulus. In view of the above, it is necessary in the future to

collaborate with computer scientists specialising in the analysis of the

self-regulation of multidimensional systems in order to build

mathematical models of metabolic self-regulation. This distant goal
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must be kept in mind when designing experiments so that the data

obtained can be of value in building such future mathematical models.

From the perspective of a scientist looking for a cure for a

particular disease, building a multidimensional molecular model of

the disease will facilitate the search for a cure. The challenge for

molecular biology in this case is to build a qualitative and then a

mathematical regulatory model of the diseases. The number of

diseases in which perturbations in cytokines, calcium stress,

mitochondrial stress, reticuloendoplasmic stress, autophagy, HIF-

1a or Nrf2 are observed is very large and includes autoimmune

diseases (515–517), neurodegenerative diseases (518–520),

cardiovascular disease (521–523), type 2 diabetes (524, 525),

hypertension (526), obesity (527), metabolic syndrome (528), non-

alcoholic steatohepatitis (529–531), chronic obstructive pulmonary

disease (532–534), depression (535–537) and schizophrenia (538–

540). Particular attention should be paid to sepsis, a metabolic state in

which inflammation and oxidative stress are particularly high and

directly life-threatening (541). Thus, the above model has a very wide

range of potential applications in medicine because, as presented, all

these elements are coupled. However, it is important to bear in mind

that the current model is likely to be only a part of the larger

individual disease models that will be developed in the future.

In a system with many feedback loops, it is often not easy to

identify the first domino that triggers a cascade of changes in the cell

leading to the development of the disease. The study of parameter

variability in the time domain will make it possible to determine the

sequence of changes and thus potentially identify the initiating factor.

However, the study of the effect of a given drug on all elements of self-

regulation will make it possible, at the level of cellular experiments, to

better determine whether a given drug has a chance of being effective

in treating/curing a specific disease. In the case of diseases with

chronic inflammation, it may be necessary to look for combinations

of drugs that effectively balance all the dysregulated elements of self-

regulation at the same time, as it is generally unlikely that a single

drug will balance all the metabolic disorders. This is generally possible

if it balances the first element of the metabolic cascade.

A comprehensive understanding of the intricate network of cellular

self-regulation not only deepens our knowledge of disease mechanisms
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but also paves the way for more targeted and effective therapeutic

strategies, marking a crucial step towards precision medicine.
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