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The intersection of influenza
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Provincial Research Center for Child Health, State Key Laboratory of Respiratory Disease, Guangzhou
Medical University, Guangzhou, China
The relationship between viral infection and autoimmune manifestations has

been emerging as a significant focus of study, underscoring the intricate interplay

between viral infections and the immune system. Influenza infection can result in

a spectrum of clinical outcomes, ranging from mild illness to severe disease,

including mortality. Annual influenza vaccination remains the most effective

strategy for preventing infection and its associated complications. The

complications arising from acute influenza infection are attributable not only

to the direct effects of the viral infection but also to the dysregulated immune

response it elicits. Notably, associations between influenza and various

autoimmune diseases, such as Guillain-Barré Syndrome (GBS), Type 1 Diabetes

(T1D), and antiphospholipid syndrome, have been reported. While viral infections

have long been recognized as potential triggers of autoimmunity, the underlying

mechanisms remain to be elucidated. Here, we described the pathophysiology

caused by influenza infection and the influenza-associated autoimmune

manifestations. Current advances on the understanding of the underlying

immune mechanisms that lead to the potential strategies were also summarized.
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1 Introduction

Influenza viruses (IV), classified under the Orthomyxoviridae family, encompass three

types—A, B, and C—that are pathogenic to humans (1). In the outbreak seasons subsequent

to the 2009 H1N1 pandemic, the incidence of influenza-related hospitalizations has varied

between 10 and 375 per 100,000 individuals per season, with the highest hospitalization rates

observed in infants under 6 months of age (2). Influenza exerts a substantial disease burden

on the pediatric population globally, characterized by elevated rates of hospitalization,

morbidity, and mortality (3). Influenza infection typically manifests with upper respiratory

tract symptoms, including fever, headache, cough, pharyngitis, and nasal congestion, as well

as systemic symptoms such as malaise, myalgia, and muscle fatigue. Severe cases of influenza

can lead to pneumonia and extrapulmonary complications, affecting the cardiovascular,

nervous, musculoskeletal, and renal systems, andmay result inmultiple organ damage, shock,

and sepsis (4). An increasing body of research has recently identified correlations between

influenza infection and autoimmune diseases, such as Guillain–Barré syndrome (GBS) (5)
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and Type 1 diabetes (T1D) mellitus (6). Given the high incidence of

influenza which can act as a trigger for autoreactivity and is

implicated in the initiation of autoimmune manifestations,

investigating the relationship between autoimmunity and influenza

infection is of significant interest. The immune response plays a

crucial role in both infectious and autoimmune diseases.

Understanding the molecular mechanisms associated with

influenza infection and autoimmunity could, if translated into

clinical applications, expedite the development of diagnostic and

therapeutic strategies. In this review, we will discuss the impact of the

immune response on tissue damage induced by influenza infection, as

well as the influenza-associated autoimmune diseases and various

underlying mechanisms driving these autoimmune responses.
2 Influenza infection-induced
pathogenesis

2.1 Symptoms and clinic presentations

Influenza is an acute respiratory viral disease caused by viruses

of the Orthomyxoviridae family, with three primary types affecting

humans: influenza A, B, and C. These viruses are the predominant

pathogens responsible for respiratory infections, leading to

epidemics and pandemics that impose significant financial

burdens, morbidity, and mortality globally (1). The upper

respiratory tract symptoms, fever, headache and cough, are

common manifestations of influenza infection in the majority of
Frontiers in Immunology 02
the population, with most cases resolving completely within 7-10

days. The spectrum of disorders resulting from influenza infection

varies across different age groups, from infants to the elderly.

Individuals aged 65 years or older, children under 5 years,

pregnant women, those who are immunocompromised (7–12)

(e.g., individuals with HIV, leukemia, or those taking

immunosuppressants), and persons with chronic comorbidities

(e.g., asthma, heart disease, liver disease, kidney disease, obesity)

are at an elevated risk for severe illnesses such as tracheobronchitis

and pharyngitis (13). Additionally, a small subset of these high-risk

individuals may rapidly develop serious complications, including

pneumonia and acute respiratory distress syndrome (ARDS), and

even death with undefined reasons (14). In addition to respiratory

injuries, extrapulmonary injuries were observed, including

encephalitis (15), hepatic spotty necrosis accompanied by fatty

degeneration in some hepatocytes (16), and focal infiltration of

lymphocytes and phagocytes in the ileum or rectum (17). A portion

of hospitalized influenza patients had developed acute kidney injury

(18–20). Additionally, focal myocyte injury was found in the heart

(21) (Figure 1). Previous studies have reported that influenza

infection can result in autoimmune manifestations such as

elevated autoantibodies against lung surfactant proteins and brain

proteins, suggesting that the implications of influenza exposure may

extend beyond the immediate effects of the virus (22). Thus,

understanding these links is critical for optimizing patient

outcomes and managing complications arising from influenza

infections, particularly among vulnerable populations such as the

children and the elderly.
FIGURE 1

The manifestations of influenza. Influenza infection can affect multiple organs, including upper respiratory tract, lung, nervous system, cardiovascular
system, digestive system, kidney, musculoskeletal system, etc. The manifestation of upper respiratory tract and lung is the predominant symptom.
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2.2 The underlying mechanisms that
contribute to influenza infection-
associated severe pathogenesis

2.2.1 Immune hyperactivation
In addition to the factors mentioned above that cause severe

influenza-associated diseases, immune hyperactivation is

considered as a driving factor of severe influenza and influenza-

associated diseases. A prominent histopathological feature of

influenza infection show congestion, inflammation, and epithelia

necrosis of larger airways with lesser extension of the inflammatory

process to alveoli (23). Severe influenza infection manifests atypical

pneumonia with diffuse alveolar damage accompanied by

intrapulmonary hemorrhage and edema, varying degrees of

inflammatory infiltration including lymphocytes, phagocytes and

mononuclear inflammatory cells (24–26). Monique et al. compared

lung tissues from patients of diffuse alveolar damage due to

influenza and non-pulmonary causes and found more significant

infiltration of natural killer cells, granzyme A+ CD4+ and CD8+ T

lymphocytes, and CD83+ dendritic cells, in influenza patients (27).

Patients infected with influenza virus progressing to severe disease

had higher concentration of cytokines and chemokines comparing

to mild patients and healthy controls, such as interleukin (IL-6), IL-

15, IL-8, monocyte chemoattractant protein (MCP)-1 and tumor

necrosis factor (TNF)-a (28–31). In mouse model of influenza virus

infection, combination of antivirals and etanercept which impairs

TNF signaling evidently alleviate clinical symptoms and improve

lung pathology (32). Profiles of host chemokine and cytokine

responses to infections with different strains of influenza viruses

were described. Highly pathogenic H5N1 infection was prone to

induce CXCL-10/IP-10,TNF-a and CCL-5/RANTES compared

with avian influenza H9N2 and seasonal human influenza H1N1

(33). The production profiles of the inflammatory cytokines TNF

and IL-6 are comparable between influenza A and B viruses, while

IFN-g and IL-4 levels in influenza A patients were significantly

higher than those in influenza B patients (34). Chemokines and

cytokines exhibit prognostic potential as predictive indicators of

disease progression and clinical outcomes. In addition, complement

was activated manifested by the terminal C5b-9 complement

complex (TCC) formation (35) in severe H1N1 pandemic

influenza infections. C4d deposition, a marker of immune

complex-mediated complement activation, was found in lung

sections of deceased cases (36). It is suggested that hyperactive

immune response may play a fundamental role in the pathogenesis

of severe influenza and could be a predisposing factor in

autoimmune diseases.

Influenza viruses infect respiratory epithelial cells, triggering

innate immune response via pathogen-associated molecular pattern

recognition receptor (PAMP) recognized by host pattern

recognition receptor (PRRs) (37). Viral RNA replication activates

pathways such as NF-kB and IRF3, leading to the release of early

cytokines like IFN-a/b and TNF-a (38). These cytokines recruit

immune cells, including macrophages (39), neutrophils (40) and T

cells (41), which further amplify the inflammatory cascade.

However, in some individuals, these responses become
Frontiers in Immunology 03
uncontrolled due to genetic predispositions, comorbidities, or

viral virulence factors, resulting in a cytokine storm (14). The

cytokine storm is marked by elevated levels of IL-6, IFN-g, IL-1b,
and TNF-a, which promote endothelial damages and vascular

leakage (42, 43). IL-6, in particular, activates the JAK-STAT3

pathway, driving further cytokine production and immune cell

infiltration. Paradoxically, studies have shown that early

upregulation of SOCS3 (a negative regulator of IL-6/STAT3

signaling) occurs independently of IL-6 during influenza

infection. SOCS3 deficiency in murine models exacerbates

cytokine storm, suggesting its role in modulating excessive

inflammation (44). Additionally, IFN-g enhance recruitment of

monocytes, contributing to alveolar epithelial injury and

pulmonary edema (45). Elevated circulating cytokines such as IL-

6, TNF-a, and IL-1b disrupt vascular endothelial integrity across

multiple organs (46–48). IL-6 activates the JAK-STAT3 pathway in

endothelial cells, upregulating adhesion molecules (e.g., ICAM-1,

VCAM-1) and promoting leukocyte adhesion (49). TNF-a induces

apoptosis via caspase-8 activation and increases vascular

permeability by degrading tight junction proteins (e.g., claudins,

occludins) (50). This allows inflammatory cells and cytotoxic

mediators to infiltrate tissues, causing microvascular leakage and

ischemia. In the heart, this process contributes to myocarditis and

arrhythmias (51), while in the kidneys, it exacerbates acute kidney

injury through tubular epithelial cell death (52). Influenza virus

infection also results in the formation of immune complexes (ICs)

through the binding of viral antigens to host antibodies (53, 54).

Although ICs aid in viral neutralization, their excessive deposition

in extrapulmonary tissues may contribute to systemic inflammation

and multi-organ damage.

2.2.2 Interferons inborn error and preexisting
autoantibodies

Interferons (IFNs) contribute to cell-intrinsic antiviral

immunity through inducing hundreds of interferon-stimulated

genes (ISGs) and enhance antiviral immune responses to facilitate

viral clearance. In some patients, influenza virus could not induced

sufficient type I and type III IFN responses, leading to uncontrolled

influenza replication (55, 56). However, other studies demonstrated

that type I interferons (Type I IFNs) also contribute to influenza

virus-induced alveolar epithelial damages and lung injury via

inducing expression of the pro-apoptotic factor tumor necrosis

factor-related apoptosis-inducing ligand (TRAIL) (57). During

Influenza A virus (IAV) infection, the IFN-g is mainly derived

from CD8+ T cells and regulates the recruitment of CCR2+

monocytes which mediate the lung tissue damage (58). Excessive

IFN signaling induced the pathogenesis of lung during influenza

virus infection (59). Some studies also suggested that IFN signaling

disturbs with lung repairment after influenza infection in mice (45,

60). While type I IFNs perform a protective role in early stages of

infection, further work is required to determine the roles of type I

IFNs in different stages of influenza virus-mediated pathogenesis.

A series of cases about impaired type I IFNs immunity resulted

from inborn error have been reported. It has been reported that

patients with autosomal recessive (AR) interferon regulatory factor
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7 (IRF7) deficiency suffer from life-threatening influenza

pneumonia (55, 56). IRF7 is a transcription factor that is required

for the production of IFNs in response to viruses (61). Plasmacytoid

dendritic cells (pDCs) are the major cells of type I and III IFNs

production with high levels of constitutive IRF7 expression (62).

pDCs from these patients barely produced type I and III IFNs in

response to IAV 24 hours post infection except IFN-b.
Furthermore, dermal fibroblasts and induced pluripotent stem cell

(iPSC)-derived pulmonary epithelial cells displayed increased

influenza virus replication because of reduced production of type

I IFNs. Inherited IRF9 deficiency manifests as severe pulmonary

influenza, which depends on impaired IRF9 and ISGF3-dependent

type I and type III IFN induction. The dermal fibroblasts from those

patients can not sufficiently restrict influenza A virus replication

(63). Giorgia Bucciol and colleagues reported that two children with

AR signal transducer and activator of transcription (STAT) 2

deficiency suffered from influenza A infection developing to

ARDS at 9 months of age, one of two patients died of

overwhelming infection at 5 years old (64). The patients displayed

hyperinflammation attributing to uncontrolled viral infection in the

absence of STAT2-dependent type I and III IFN immunity. The

cells from those patients and transfected with mutant STAT2 alleles

conformed the phenomenon of impaired virus control (64). Three

children with AR STAT1 deficiency suffered from severe influenza

at 1 month and 6 months after birth was reported by Tom Le Voyer

and colleagues. STAT1 is a transcription factor critical for

mediation of types I, II, and III IFN responses in cells, the

deficiency of the gene impairs these responses (65). Hye Kyung

Lim and colleagues reported three children with inherited TLR3

deficiency developed ARDS. The pulmonary epithelial cells (PECs)

and fibroblasts from these patients are susceptible to IAV

attributing to lower levels of IFN-b and -l, whereas TLR3-

mutated leukocytes can produce normal level of IFNs (66). In

summary, these cases demonstrate a pivotal role of intrinsic and

innate type I and III IFN immunity in host defense against influenza

and the associated genetic deficiency in impaired IFNs responses

leading to severe influenza.

Interferon-neutralizing antibodies were discovered in a patient

treated with human leukocyte interferon since 1981 (67). In viral

diseases, neutralizing autoantibodies against type I IFN were firstly

identified in a woman with disseminated shingles (68). It has long

been thought that these autoantibodies have no pathological

consequences until the COVID-19 pandemic. Patients with

autoimmune polyendocrine syndrome type 1 (APS-1), which

arises due to mutations in the autoimmune regulator gene

(AIRE), exhibit antibodies against type I IFNs (IFN-a and IFN-

w) (69). The majority of patients with APS-1 infected with SARS-

CoV-2 developed severe COVID-19 pneumonia, further confirmed

that preexisting autoantibodies against type I IFN are related with

life-threatening COVID-19 pneumonia (70). Moreover,

autoantibodies against type I IFNs also contributed to live

attenuated yellow fever virus vaccine associated life-threatening

disease (71). In a cohort of 279 patients aged 6 to 73 years

diagnosed with critical influenza pneumonia, neutralizing

autoantibodies against type I IFNs were identified in 4.7% of the
Frontiers in Immunology 04
patients. This prevalence indicates a notable enrichment in severe

influenza pneumonia compared to the general population.

Individuals under the age of 70 who possess autoantibodies

exhibit a heightened risk of developing severe influenza

pneumonia compared to those who are negat ive for

autoantibodies (72). The autoantibodies in patients with critical

influenza pneumonia primarily targeted IFN-a2 and IFN-w, but
not IFN-b (72). Altogether, current data indicate a role of type I

IFNs immune disruption in viral infection-induced tissue

pathogenesis (Figure 2).
3 Autoimmune complications
associated with influenza infection

Clinical and laboratory evidence indicate critical participation of

immune reaction in severe cases of influenza. A study compared the

concentration of inflammatory cytokines in severe and mild patients

with IAV infection. IL-6, IL-10, IL-15, IP-10, IL-2R, HGF, ST2 and

MIG were detected at higher levels in the plasma of severe patients

(29). Daniel et al. had examined cases including severe, moderate

influenza and healthy controls with bronchoalveolar lavage (BAL)

samples. They reported a significantly elevated level of IL-6, IL-8,

MCP-1, MIG, IP-10, IL-12, MIP-1ß and IL-1, which enhance pro-

inflammatory T help 1 (Th1) immune responses (73). Moreover, total

immune cells were increased in severe cases compared to moderate

influenza and controls (73). They also found the elevation of CD14+

monocytes and plasmablasts, which indicated that autoantibodies

might contribute to the lung injury. Although the number of total T

cells and CD4/CD8+ subpopulations showed no differences from

controls, the activated CD8+ and CD4+ T cells were elevated

markedly in severe cases (73). Early secretion of Th17 (IL-8, IL-9,

IL-17, IL-6) and Th1 cytokines (TNF-a, IL-15, IL-12p70) were

detected in severe influenza patients, which were involved in cell-

mediated immunity, may be associated with pathogenesis and

autoimmune diseases induced by influenza (74). Hemophagocytic

lymphohistiocytosis (HLH) is a syndrome characterized by severe

systemic hyperinflammation presented by fevers, pancytopenia and

hepatosplenomegaly (75). Hemophagocytic lymphohistiocytosis

(HLH) is reported in critically ill patients with influenza virus

infection (76–78). This further demonstrated that activation and

proliferation of lymphocytes accompanied by excessive production of

cytokines induced by influenza may lead to self-tissue damages.

Taking into account the above findings regarding immune

dysregulation in patients with severe influenza, the autoimmune

process in the course of influenza viruses infection deserves an

increasing attention.

Viral infections have been proposed as potential triggers of

autoimmunity, and an increasing body of evidence indicates a

significant association between specific viral infections and the

development of various autoimmune diseases, such as type 1

diabetes mellitus with coxsackievirus (79), cytomegalovirus

(CMV) (80), enteroviruses (81), as well as systemic lupus

erythematosus (SLE) with hepatitis C virus (HCV) (82), CMV

(83), dengue virus (84), and parvovirus B19 (85). Although with
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the popularity of influenza vaccination, while nearly 10% of the

world’s population with all ages is still affected by influenza annually

(86). Influenza-associated immune diseases may affect a huge crowd

worldwide and cause a tremendous socio-economic burden. Here

we review some autoimmune diseases that reported are related to

influenza infection (Figure 3).
3.1 Schizophrenia

Schizophrenia is a functional psychotic disorder characterized

by a spectrum of symptoms, including hallucinations, delusions,

disorganized thought processes and behavior, as well as diminished

cognitive and emotional capacities (87). Many studies reported the

link between influenza and psychosis since 1900s. Many reports

suggested that the increased risk of psychosis in offspring was

associated with maternal influenza infection (88). Comparing

schizophrenic patients with healthy controls, 15% of the patients

had influenza antibodies in the central nervous system (89).

Guglielmo et al. reported axon guidance molecules have a vast
Frontiers in Immunology 05
pentapeptide overlap with Influenza hemagglutinin (HA), immune

cross-reactivity of axon guidance molecules and virus proteins is

one potential mechanism by which influenza could contribute to

autoimmunity (90).
3.2 Reye’s syndrome

Reye’s syndrome is distinguished by hepatic pathology and

non-inflammatory encephalopathy (91). The incidence of Reye’s

syndrome following influenza B was between 0.03-0.06% in

population of influenza B infection. 86% cases were reported

associated with the outbreak of influenza B in America (92). The

recent study reported a cohort including 29,676 influenza-

associated hospitalizations, which assessed the incidence of Reye’s

syndrome about 0.01% in US (93). The decreased incidence might

attribute to reduced use of aspirin (94). Experiments on mouse

model have shown that the excessive proliferation of lymphocytes is

dose-dependent on aspirin, and it is believed that Reye’s syndrome

may be caused by aspirin inducing aberrant immune responses to
FIGURE 2

Genetics and autoantibodies associates with type I IFNs immunity disruption. (A). Interferons (IFNs) contribute to cell-intrinsic antiviral immunity. (B).
The deficiency of IRF9, IRF7, STAT1, or STAT2 disturbs IFNs responses. (C). The deficiency of TLR3 impairs the expression of IFNs. (D). Autoantibodies
target IFNs disturb the type I IFN response and induce uncontrol virus replication.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1558386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1558386
viral infection (95). In the meanwhile, case of Reye’s syndrome

caused by influenza A without the administration of aspirin has also

been reported, suggesting other mechanisms leading to this disease

and immune responses may contribute to the development of the

disease (96).
3.3 Guillain–Barré syndrome

Guillain–Barré syndrome (GBS), an immune-mediated

disorder impacting the peripheral nervous system and affecting

approximately 100,000 individuals annually worldwide, represents

the most prevalent and severe form of acute paralytic neuropathy

(97). The clinical manifestations of GBS are heterogeneous, and

several different clinical variants exist, but patients with GBS

typically present with weakness and sensory symptoms in the

legs, progressing to the arm and head muscles (98).Valérie et al.

reported a cohort of 405 patients, 234 cases of which caused by an

unidentified agent had a positive association with influenza-like

illnesses (99). Some reports yielded a similar conclusion that a

positive correlation of hospitalization rate was found between

influenza and GBS (100, 101). The recent study manifested that

53% patients of GBS were confirmed recent infection by serology, of

which influenza viruses accounting for 33% (102). Masaki et al.

investigated 63 patients of Guillain-Barré syndrome (GBS)-related

diseases (GBSRDs) after influenza virus infection, detecting anti-

GQ1b and anti-GT1a which are grouped to anti-glycolipid

antibodies accounting for 24% of cases (103). Debprasad et al.

reported that the levels of antibodies targeting GM1, GM2, GD1a,

GD1b, GT1b, and GQ1b were significantly elevated in patients with

GBS compared to healthy controls, and these elevated antibody
Frontiers in Immunology 06
levels were correlated with immunoreactivities against influenza

viruses (104). Influenza infection may be a trigger for GBS,

mediated by immune responses. The underlying mechanisms

between GBS and influenza will require further studies.
3.4 Influenza-associated encephalopathy

Influenza‐associated encephalopathy or encephalitis (IAE) is a

disorder characterized by consciousness disturbance with a few days

after influenza infection (105). Its clinical characteristics are rapid

progressive brain damage after viral infection, and pathologically by

cerebral edema without direct invasion of viruses and inflammatory

cells (106). The majority of IAE cases are reported among children

worldwide. Hideo et al. reported that during 2010-2015 in Japan, the

incidence of IAE among children and adults was 2.83 and 0.19 cases

per 100,0000 population, respectively, whereas the morality was higher

in adults (107). Pierre et al. reported a cohort of 41 children admitted

for influenza-associated encephalopathy between 2010 and 2019 in

France, of which 17% patients died in hospital, 49% had neurologic

sequelae and 27% had severe disabilities according tomodified Rankin

Score (108). Ayukawa et al. reported that in patients with IAE, there

was a significant increase in CTLA-4+ CD4+ T cells compared to

influenza patients without encephalopathy. This increase was

correlated with the down-regulation of antigen-activated immune

responses, suggesting that CTLA-4+ CD4+ T cells may play a role in

the pathogenesis of IAE (109). Shunji et al. reported that the cytokines

of IL-6, TNF-a, and IL-10 were higher in patients with 2009 pandemic

H1N1 influenza-associated encephalopathy than those without

neurological sequelae (110). All of the above indicated that immune

responses might participate in the progression of IAE.
FIGURE 3

Influenza-associated autoimmune diseases. Influenza infection is involved in autoimmune disease such as Schizophrenia, Reye’s syndrome, Guillain–
Barré syndrome (GBS), Influenza‐associated encephalopathy or encephalitis (IAE), Narcolepsy type 1 (NT1), Type 1 diabetes mellitus (T1D),
Antiphospholipid syndrome.
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3.5 Narcolepsy type 1

Narcolepsy type 1 (NT1) is a chronic sleep disorder

characterized by the degeneration of a specific subset of

hypothalamic neurons responsible for the production of

hypocretin (HCRT; also referred to as orexin, peptides) that

promote wakefulness (111). Narcolepsy is highly correlated with

H1N1 influenza independent of H1N1 vaccination (112). The

estimated incidence was at least 10 per 100,000 individuals per

year (113). NT1 is considered as autoimmunity associated with

human leukocyte antigen (HLA) DQB1*06:02/DQA1*01:02

heterodimer (DQ0602). Guo et al. proposed a mechanism of

molecular mimicry with influenza antigens modulated by genetic

components in the pathogenesis of NT1 (114). T cells specific to

tribbles homologue 2, an additional self-antigen of hypocretin

neurons, were identified in patients with narcolepsy, thereby

reinforcing the autoimmune etiology of the disorder (115).
3.6 Type 1 diabetes

Type 1 diabetes mellitus (T1D) is a chronic autoimmune

disorder marked by insulin deficiency and hyperglycemia,

resulting from the destruction of pancreatic b cells (116). Paz

et al. reported that a twofold higher risk of subsequent T1D was

detected in the group of pandemic influenza A infection (117).

Yuichi et al. also reported the similar conception that the risk of

T1D increased after influenza in the Japanese population-based

cohort (118). Lijun et al. found a cross-reactive antibody between

H1N1 influenza virus HA and human pancreatic tissue, suggesting

the immune-mediated tissue damage caused by influenza (119).
3.7 Antiphospholipid syndrome

Antiphospholipid syndrome is an autoimmune disorder

characterized by the presence of pathogenic autoantibodies that

target cell surface phospholipids and phospholipid-binding proteins

(120). Melonie et al. reported a case of catastrophic antiphospholipid

syndrome (CAPS), suggesting a link between CAPS and influenza

(121). Further studies are required to elucidate the underlying

mechanisms of autoimmunity induced by influenza.
4 The immune mechanisms of viral
infection-associated autoimmunity

Autoimmune responses arise when the immune system

erroneously targets and damages healthy cells (122). These

conditions are believed to stem from a multifaceted interaction of

genetic susceptibilities, environmental influences, and dysregulated

immune responses (123). Current research suggests that

autoimmune disorders impact approximately 10% of the global

population, encompassing over 80 identified types, such as
Frontiers in Immunology 07
rheumatoid arthritis, type 1 diabetes, and multiple sclerosis (124).

Notably, autoimmune diseases tend to co-occur more frequently

than would be expected by chance, indicating that some

autoimmune diseases may share common risk factors. This co-

occurrence was particularly evident among rheumatic and

endocrine diseases (123). As mentioned above, viral infections are

related to the onset or development of some autoimmune diseases.

Here, we explore a few possible mechanisms of infection associated

autoimmune diseases (Figure 4).
4.1 Anergy reversion of B cells

Autoantibodies are considered as the most prominent

immunological manifestation of autoimmune diseases, which serve

as biomarker for diagnosis, classification and the progression of

disease (125). Allan et al. detected autoantibodies against antigens

such as IL-6, IL-7, IL-12p70, and IL-22 in 48% of hospitalized

patients with influenza, whereas none were found in the healthy

control group. Furthermore, antibodies linked to rare connective

tissue diseases (CTDs) were prevalent in 25% of the influenza patients

in America (126). Autoantibodies were prevalent in SARS-CoV-2

patients with acute respiratory distress syndrome as well as non-

SARS-CoV-2 infections of patients with severe pneumonia (127,

128). Moreover, the presence of autoantibodies in patients with

influenza and COVID-19 has been correlated with the severity of

these diseases. These autoantibodies specifically target Type I IFN,

granulocyte-macrophage colony-stimulating factor (GM-CSF), and

IL-6 (127, 129). B cells play an essential role in host defense by

secreting antibodies and presenting antigens from foreign

microorganisms to T cells (130). Depletion of B cells tends to be

favorable in autoimmune diseases such as systemic lupus

erythematosus (SLE) (131) and rheumatoid arthritis (132),

probably through reduced production of autoantibodies as well as

antigen presentation to autoreactive T cells. After central tolerance

mediated clonal deletion, 15%-20% of mature B cells have a capacity

reactive with self-antigens, especially in newly formed B cells, of

which the proportion up to 50% (133). In healthy individuals, the

underlying autoreactive B cells are functionally silenced by the

mechanism of anergy. However, the anergic state could be

reversible. In pathological settings, the anergic B cells reactivate and

produce autoantibodies against host tissue such as dsDNA and

ssDNA. Noorchashm et al. reported that the anergic B cells are

partially reversible upon stimulation of IL-4 and CD40 ligands

derived from T cells associated factors (134). Peter et al. reached a

similar conclusion that the anergic state of B cells have the potential

to transfer to autoantibodies-secreting plasma cells and contribute to

autoimmunity (135). Altogether, anergy reversion contributes to the

transfer of anergy B cells to auto-reactive B cells, which secrete

autoantibodies to damage tissues. Anergy reversion of B cells

contributes but not sufficient to explain viral infections implicated

in the development or exacerbation of autoimmune disease (136).

Further studies may provide new insights in understanding the role of

B cells during the development of infection-induced autoimmunity.
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4.2 Molecular mimicry

The term “molecular mimicry” was formally introduced by

Damian in 1964 to describe the phenomenon wherein infectious

organism express antigens that are structurally similar to those of
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their host. This similarity may confer an advantage to the microbes

by enabling them to evade the host’s immune response (137).

Molecular mimicry occurs when viral antigens share structural

similarities with host-antigens, leading to the cross-reactive

immune response. This phenomenon has been noted in cases
FIGURE 4

The mechanisms of autoimmune response induced by pathogen infections. (A). Anergic B cells reversion. (B). The molecular mimicry between
Influenza virus (IV) and Narcolepsy type 1 (NT1). (C). Bystander activation mechanisms induced by pathogen infections. (D). During infections, self-
epitope spreading distinct from the epitopes of initial pathogen contributes to tissue damages.
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involving varicella zoster virus (VZV) (138) and Epstein-Barr virus

(EBV) (139), which were thought to play roles in the pathogenesis

of diseases like multiple sclerosis. There are four types of molecular

mimicry that have been reported (140–143). Type 1 molecular

mimicry: “microorganisms and their hosts have complete protein

identity” (e.g., in chronic graft-versus-host disease, CMV hijacks

CD13 and presents it to antigen-presenting cells to trigger

autoimmune responses against the autoantigen); Type 2

mo l ecu l a r mimic ry : “molecu l a r homo logy be tween

microorganisms and their hosts, based on a protein encoded by

the bacteria” (e.g., human carbonic anhydrase II and alpha-carbonic

anhydrase of Helicobacter pylori share a homologous binding motif

with the HLAmolecule DRB1*0405, which is linked to autoimmune

pancreatitis.); Type3 molecular mimicry: microorganisms or

environmental agents that share similar amino acid sequences or

epitopes with its host; Type 4 molecular mimicry: “microbes or

environmental agents have structural similarities to their hosts”.

Among them, type 3 is the most prevalent type in eliciting

autoimmune responses. However, molecular mimicry mediated

autoimmunity is rare and complex, which is not sufficient to

breach host immune tolerance mechanism (144), suggesting other

factors are involved in the autoimmunity.
4.3 Bystander activation

Bystander activation was first described by Tough et al. in 1996.

They found that a massive expansion of T cells after viral infection

was mediated by cytokines other than T cell receptor (TCR) and

type I IFN was a robust inducer (145). Zarozinski et al. and Murali-

Krishna et al. also found that the majority of clonally expanded T

cells were virus-specific but of which include a small proportion of

non-virus-specific clones (146–148). Memory CD4+ and CD8+ T

could be bystander activated and proliferate in IFN-g or IL-12-

dependent but TCR-independent manner (149). The bystander

activation of naïve CD8+ T also occurs during the early phase of

infection and displays an innate anti-viral feature (150). The

bystander activation of naïve CD4+ T also could be induced by

high-dose IL-2 but independent on TCR activation (151). However,

bystander activation is a double-edged sword. Martin et al. reported

that bystander CD8+ T cells were activated by inflammatory

cytokines following infection and provided protective roles in

host defenses (152). Preexisting non-specific memory CD8+ T

cells are activated rapidly and display cytotoxic features following

infections, which target infectious cells and contribute to pathogen

clearance in an NKG2D-dependent manner (153). Rolot et al. made

a similar finding that IL-4 rapidly expands non-specific CD8+ T

cells, which are essential to the activation of antigen-specific CD8+

T cells for controlling virus load (154). On another hand,

Bergamaschi et al. reported that hospitalized individuals of

COVID-19 manifested delayed bystander CD8+ T cells activation

which might drive lung pathology, suggesting a role of

immunopathogenesis in severe pneumonia (155). Zhang et al.

found that high level of IL-15 drove bystander activation of CD8+
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T cells through NKG2D, which mediated endothelium injury in the

Hantana virus (HTNV) infection model (156). Ohya et al. analyzed

23 autopsy specimens come from patients of diffuse alveolar

damage, in which large amount of non-antigen-activated

bystander CD8+ T cells were observed. These CD8+ T cells

expressed unique granzyme B marker and might involve in the

tissue injury in the progression of diffuse alveolar damage (157). Lee

et al. reported bystander-activated CD4+ T cells also contributed to

the progression of autoimmune diseases (158). Bystander activation

of T cells plays an essential role in antigens clearance and also

causes tissues injuries. Further studies are required to elucidate

molecular mechanisms involved in different immune responses to

onset and/or exacerbations of infectious diseases.
4.4 Epitope spreading

Epitope spreading comprises intramolecular and intermolecular

spreading. Intramolecular spreading refers to the phenomenon

where an immune response extends from the initially targeted

epitope to additional epitopes within the same molecule. In

contrast, intermolecular spreading describes the process by which

an immune response broadens to include epitopes on a different

antigenic molecule (159). The etiology of autoimmune diseases

remains incompletely elucidated, with numerous factors

influencing the development of autoimmunity. The involvement

of the epitope spreading mechanism is implicated in human

diseases such as autoimmune hepatitis and primary biliary

cholangitis (160, 161). This study provides evidence that viral

infections can induce autoimmune diseases through epitope

spreading. Specifically, chronic infection with Theiler’s murine

encephalomyeli t is virus (TMEV) in mice resulted in

demyelination, which was initiated by a TMEV-specific CD4+ T

cell response. The subsequent T-cell response to multiple myelin

autoepitopes was secondary to the virus-specific T cell response and

arose from epitope spreading rather than molecular mimicry (162).

Epitope spreading following viral infection may play an important

role in the development of autoimmune pathogenesis.
5 Conclusions and future perspectives

Influenza exerts a significant impact on global health through its

annual epidemics and occasional pandemics. Autoimmune

pathogenesis, characterized as chronic and disabling conditions,

impose a considerable burden on individuals, families, and society.

While infections have frequently been implicated in the

development of autoimmune diseases, they are not sufficient on

their own to trigger these conditions. Factors such as genetic

predispositions, defects in the innate and adaptive immune

systems, and gender are known to increase the risk of

autoimmune diseases. Both influenza and other viral infections

such as COVID-19 have been reported to be associated with

autoimmune responses and the onset of autoimmune diseases.
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The underlying mechanisms remain to be elucidated. Further

clinical and basic investigations are necessary to uncover the

mechanisms underlying autoimmune diseases following viral

infections. Such research will be crucial for the prevention of

post-infection autoimmunity and may offer insights for the

development of immune cell-based therapeutic strategies for the

treatment of autoimmune diseases.
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388:717–27. doi: 10.1016/S0140-6736(16)00339-1

98. Leonhard SE, Mandarakas MR, Gondim FAA, Bateman K, Ferreira MLB,
Cornblath DR, et al. Diagnosis and management of Guillain-Barré syndrome in ten
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