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The role of the esophageal and
intestinal microbiome in
gastroesophageal reflux disease:
past, present, and future
Yipan Guan, Hongjie Cheng, Naiwei Zhang, Yanmei Cai,
Qiaoyan Zhang, Xianyang Jiang, Ao Wang, Haixia Zeng
and Boyi Jia*

Department of Spleen and Stomach Diseases, Fangshan Traditional Medical Hospital of Beijing,
Beijing, China
Gastroesophageal reflux disease (GERD) is one of the common diseases of the

digestive system, and its incidence is increasing year by year, in addition to its

typical symptoms of acid reflux and heartburn affecting the quality of patients’

survival. The pathogenesis of GERD has not yet been clarified. With the

development of detection technology, microbiome have been studied in

depth. Normal microbiome are symbiotic with the host and can assist the host

to fulfill the roles of digestion and absorption, and promote the development of

the host. Dysbiosis of the microbiome forms a new internal environment, under

which it may affect the development of GERD from the perspectives of molecular

mechanisms: microbial activation of Toll-like receptors, microbial stimulation of

cyclooxygenase-2 expression, microbial stimulation of inducible nitrous oxide

synthase, and activation of the NLRP3 inflammatory vesicle; immune

mechanisms; and impact on the dynamics of the lower gastrointestinal tract.

This review will explore the esophageal microbiome and intestinal microbiome

characteristics of GERD and the mechanisms by which dysbiotic microbiome

induces GERD.
KEYWORDS

gastroesophageal reflux disease, microbiome, microbial dysbiosis, inflammation,
barrier, motility
1 Introduction

Gastroesophageal reflux disease (GERD) is a chronic condition characterized by reflux

of gastric contents into the esophagus, which can cause uncomfortable symptoms and

potential complications (1). The prevalence of GERD is estimated to be 10-20% of the adult

population inWestern countries and ranges from 2.5 - 7.8% in Asia (2). The chronic nature

of GERD leads to psychological distress, including anxiety and depression, which not only

affects the quality of life of the patient symptomatically, but is also associated with a number
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FIGURE 1

Mechanism of GERD induced by dysbiosis of esophageal microbiome. Figure created with BioRender.com.
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of serious complications (3). Routine diagnostic techniques of

GERD mainly include endoscopy and 24-hour pH monitoring,

and the diagnosis is usually made by symptomatic and empirical

qualitative examination of the patient’s condition. The initial

diagnosis is often made by symptoms and empirical proton pump

inhibitor (PPI) testing. Traditional therapeutic strategies include

lifestyle modifications (e.g., dietary changes and weight loss),

pharmacologic interventions (primarily PPIs and histamine 2

{H2} receptor antagonists), and surgical options for refractory

cases, such as fundoplication (4).

Therapeutic aspects of the combined use of probiotics have a

positive effect on GERD. In a clinical trial, patients with esophagitis

(RE) were randomized into a test or control group, the test group

received rabeprazole tablets + Streptococcus lactis MH-02, and the

treatment group received rabeprazole tablets + placebo, and the

results of the trial showed that patients in the test group experienced

earlier symptom relief, significantly lower Gastrointestinal

Symptom Rating Scale (GSRS) scores, and a longer mean time to

relapse (5). Another study also examined patients with RE, with the

test group taking esomeprazole + Bacillus subtilis and Enterococcus

faecalis enteric capsules, and the control group taking esomeprazole

+ placebo, and its results showed that the time to relapse was

significantly shorter in the control group than in the test group, and

that the risk of relapse was lower in the test group than in the

treatment group at any point in time during the 12-week follow-up

period (6). The above trial results suggest that microbiomes may
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have a positive impact on the treatment of GERD from a more

profound perspective.

This paper will summarize the structural characteristics of the

esophageal and intestinal microbiome of GERD and the known

possible triggering mechanisms and potential future triggers

are detailed.
2 Esophageal microbiome

Traditionally, the esophagus was thought to have no significant

microbiota, and the microbiota in the normal esophagus was

thought to be derived from the oral cavity and to be variable (7–

10). In 1998, Gagliardi et al. isolated the microorganism

Streptococcus viridans from oropharyngeal cultures by traditional

esophageal culture (9). With the development of next-generation

sequencing technologies such as 16S rRNA gene sequencing,

internal transcribed spacer region (ITS) sequencing, Polymerase

Chain Reaction (PCR), Birdshot Macro-genomics, Macro-

transcriptomics, Metabolomics, and Macro-proteomics Mass

Spectrometry, etc., the study of esophageal microecology has been

gradually improved (11). It has been found that some members of

the phylum Thick-walled Bacteria, including Clostridium spp,

Fusobacterium spp, Megalococcus spp, Morgillus spp, and Moriella

spp, are unique microbiota of the esophageal mucosa, which are

found only in the esophagus and not in the oral cavity (12–14).
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FIGURE 2

Potential mechanism of esophageal protection against reflux reduction by short-chain fatty acids. Figure created with BioRender.com.
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2.1 Dominant bacterial families in the
esophagus of healthy individuals

Esophageal microbiota is the dynamic community of

microorganisms inhabiting the esophagus (15). Since the early

2000s, many scholars have begun to study sesophageal microbiomes

using new techniques. In 2004 Pei et al. examined biopsy tissues from

the normal esophagus of four adults by using wide-range 16S rDNA

PCR and showed that members of six phyla: Thick-walled Bacteria,

Anaplastic Bacteria, Actinobacteria, Aspergillus, Clostridium, and TM7

were all represented, with Streptococcus spp. (39%), Prevotella spp.

(17%) and Veronella spp. (14%) were the most prevalent (11). In 2012,

Fillon et al. identified the esophageal microbiota in 15 individuals from

children with normal esophageal mucosa, and investigated the

bacterial composition by using 16S r RNA gene sequencing to

identify 31 genera, of which Streptococcus, Prevotella, and Veronella

spp. were the three most common (16). Macrogenome sequencing of

human populations has shown that the gastroesophageal (GE)

microbiome is broadly controlled by six major phyla (ibid), and

Streptococcacae, Veilonellacae, and Prevotellacae have been described

by other authors as the dominant bacterial phyla in the healthy

esophagus by 16Sr RNA sequencing technology (12, 16, 17).
2.2 Esophageal microbiome in reflux

The microbiome changed with the spatial structure of the

esophagus. The relative abundance of Streptococcus spp. increased
Frontiers in Immunology 03
proximally to the middle of the esophagus and then decreased

significantly in the distal esophagus, with gram-negative(G-)

microorganisms concentrated in the distal esophagus (18).

2.2.1 Changes in esophageal microbiome by age,
medicine, and diet which potentially
affecting GERD

Esophageal microbiome changes with age. A study also showed

that the composition of the microbiome was more stable with age,

with more gram-positive (G+) bacteria and fewer G- bacteria,

regardless of disease state (19). The change in microbiome toward

a G+ microbiome may have a support ive e ff ec t on

esophageal function.

Esophageal microbiome changes with medication. A study

recruiting healthy subjects partially treated with Proton Pump

Inhibitors (PPIs) showed that short-term PPI treatment increased

the microbial abundance of Streptococcaceae, Leuconostacaceae, and

Pasteurellaceae at the family level and at the corresponding genus

level. PPIs may enhance the colonization of some probiotic species

such as Streptococcus thermophilus and other species present in the

multi-strain probiotic (20). Another study in patients with non-erosive

reflux disease (NERD), esophagitis (RE) and Barrett’s esophagus (BE)

found that PPIs use was associated with a reduction in Bacteroidetes in

NERD and RE (19). In another study, esophageal biopsies performed

before and after 8 weeks of PPIs treatment showed a significant

decrease in G- Clostridium spp. species and an increase in G+

Clostridia (Clostridiaceae and Lacertidae species) and

Actinobacteriaceae (Micrococcaceae and Actinobacteriaceae species)
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(18). This implies that acid suppression by PPIs alters the survival

environment of the microbiome in favor of G+ bacteria that prefer

high pH environments, thereby altering the esophageal microbiota.

Therefore, PPIs may have a positive impact on the treatment of GERD

in terms of directly reducing chemical damage and improving the

esophageal microenvironment to reduce the inflammatory response.

Potassium-Competitive Acid Blocker (P-CAB): have an effect

on oral microbiome. In a randomized trial, patients with

laryngopharyngeal reflux disease (LPRD) were enrolled were

given oral vonoprazan and saliva specimens were collected before

and after treatment, and Neisseria, Burkholderia, and Leptospira

were found to be more prevalent in the LPRD group than in the

post-LRPD group. In contrast, the LPRD group had a lower

abundance of Fulminant Prevotella and unidentified negative

bacteria compared to the post-LPRD group (21).

Esophageal microbiome changes with diet. In a study where

subjects underwent esophageal sampling along with a validated

food frequency questionnaire to quantify dietary fiber and fat

intake, findings showed that increased fiber intake was

significantly associated with increased relative abundance of

thick-walled phyla and decreased relative abundance of overall G-

bacteria, including Prevotella, Neisseria, and Eikenella (22).

Therefore, in the treatment of GERD while requiring dietary

modifications makes sense for the treatment of GERD.
2.2.2 Altered esophageal microbiome is strongly
associated with GERD

In 2009, Yang et al. proposed that esophageal microbiome can

be divided into two categories: type I microbiome for normal

people is dominated by G+ taxonomic units, with Streptococcus

spp. as the main bacterial taxa; type II microbiome for patients

with GERD and Barrett’s esophagus is dominated by G-

taxonomic units, including Weyoungerella spp., Prevotella,

Haemophilus, Campylobacter, Clostridium, and Actinomyces,

etc., and his study found high exposure to type II microbiota in

GERD (23). Similarly, Park found that esophageal microbiome of

NERD patients was most commonly dominated by type II

microbiome at the phylum level in the phyla Thick-walled

Bacteria, Aspergillus and Mycobacterium (24). Fusobacterium,

Neisseria and Veilonella were commonly detected in patients

with RE and BE. Blackett et al. found increased abundance of

Campylobacter in GERD patients (25).

The ratio of G+ to G- changes in the GERD esophagus. Liu et al.

By comparing the esophageal microbiome of patients in 3 groups:

normal esophagus, RE, and Barrett, they found that Streptococcus

spp. had a slightly higher proportion in the normal group than in

the RE or BE groups, and that the esophageal microbiome in the

RE/BE state was highlighted by an increased proportion of G-

bacteria (26). In the Zhou trial, the composition of the microbiome

of NERD patients was characterized by higher levels of

Proteobacteria and Bacteroidetes, and reduced levels of the

microorganisms Clostridium and Actinobacteria (27).

Overall, the dysbiosis in GERD patients is characterized by an

increase in G- bacteria.
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3 Intestinal microbiome

Intestinal microbiome are normal microorganisms in the gut

that synthesize a variety of vitamins essential for human growth and

development, participate in glucose metabolism and protein

metabolism, maintain normal intestinal physiological functions,

and antagonize the colonization of pathogenic microorganisms

(28). The intestinal microbiome affects the systemic metabolism

by influencing intestinal nutrient absorption and catabolism, etc.

(29), which in turn affects the systemic immune and inflammatory

status, and has a significant impact on the progression of disease

(30). Blackett et al. (25) found that the intestinal microbiome has

128 phylotypes, which belong to 8 phyla, of which the dominant

microbiome accounts for 5 phyla, which are Thick-walled phyla,

Actinobacteria phylum, Anaplasmomycetes, Clostridium and

Methanobacteria phylum. Based on their association with the

host, the intestinal microbiome are divided into commensal,

conditionally pathogenic and pathogenic bacteria (31). Several

experiments have shown that bifidobacteria, lactobacilli, and

Streptococcus pepticus predominate in the intestinal microbiome

of healthy subjects.
3.1 GERD affects intestinal microbiome

GERD patients have a decreased number of commensal bacteria

and an increased number of conditionally pathogenic and

pathogenic bacteria in their intestinal microbiome. A

retrospectively analyzed study, by comparing the intestinal

microbiome between patients with GERD and healthy subjects,

found that the abundance of microorganisms such as

Desulfovibrioides, Halobacterium species, and Sphingobacterium

was higher in patients with GERD, and that microorganisms such

as Lactobacillus intestinalis and Streptococcus pepticus were in

higher abundance in a control group made up of healthy subjects

(32). Another randomized trial, comparing LPRD patients with

healthy subjects, found that there were significant differences in the

structure of the intestinal microbiome between the two groups. Not

only was the relative abundance of Actinobacteria phylum in the

LPRD group significantly higher than that of the healthy control

group, but also the genera of Rhodobacteriaceae, and Collins’ spp.

which belong to the same phylum of Actinobacteria, were enriched

in the LPRD, and it was also found that Streptococcus spp.,

Prevotella species, and Clostridium spp. were enriched in the

LPRD group (33). Using GERD patients as the study group and

selecting healthy volunteers in the same period as the control group,

it was found that the number of fecal E. coli and Enterococcus spp. in

the test group was higher than that in the control group, and the

number of Lactobaci l lus spp. , Bacteroidetes spp. and

Bifidobacterium spp. in the test group was lower than the control

group (34). Bifidobacteria and Lactobacillus counts were

significantly higher in non-GERD patients than in GERD

patients, while Staphylococcus and E. coli counts were significantly

lower than in GERD patients (35).
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3.2 Changes in intestinal microbiome with
GERD treatment

In patients with GERD, the relief of clinical symptoms is

accompanied by changes in the intestinal microbiome, the

number of commensal bacteria rises significantly after treatment.

In a randomized controlled study, GERD patients were randomly

grouped, the test group was given PPI+Moxabilis, and the control

group was given PPI, and the within-group comparison revealed

that the number of Escherichia coli and Staphylococcus spp.

decreased, and the number of bifidobacteria and Lactobacillus

spp. increased in the two groups, which also revealed that the

clinical remission rate of the test group was higher than that of the

control group, and the number of bifidobacteria and Lactobacillus

spp. was higher than that of the control group, and the number of

Escherichia and Staphylococcus counts were lower than the control

group (36). Another randomized controlled study also divided

GERD patients into 2 groups, the control group was treated with

western medicine, and the treatment group was given western

medicine + Chinese herbal medicine compound, and the results

of the treatment showed that the symptomatic relief of the 2 groups

was accompanied by an increase in the number of Lactobacillus and

Bifidobacterium in the intestinal tract and a decrease in the number

of Staphylococcus in the intestinal tract compared with that of the

control group before the treatment (37). The phenomenon of

improvement of symptoms and change of microbiome was also

found in another trial, the results of this study showed that the

clinical symptoms of patients in both groups improved significantly

after treatment, and the numbers of Enterobacteriaceae and

Enterococcus were lower than before treatment, and the numbers

of Lactobacillus and Bifidobacterium microbiome were higher than

before treatment (38).
4 Mechanisms of dysbiosis on GERD

Ecological dysbiosis is an abnormal state of the microbial

ecosystem in the host (39). Dysbiosis may be one of the

environmental factors contributing to the etiology of GERD

(23) (Figure 1).
4.1 Activation of Toll-like receptors by
dysbiotic microbiome affects esophageal
barrier structure, epithelial repair, and
triggers inflammatory responses involved
in GERD

G- bacteria are key producers of lipopolysaccharide (LPS),

which abnormally activates a variety of Toll-like receptors (TLRs)

leading to epithelial barrier dysfunction and inflammatory

responses leading to GERD.

TLRs are pattern recognition receptors expressed by immune cells

and epithelial cells that assist the host in differentiating between

pathogenic and commensal microorganisms by recognizing

pathogen-associated molecular patterns (PAMPs), conserved
Frontiers in Immunology 05
structures specific to pathogenic and non-pathogenic

microorganisms, or damage-associated molecular patterns (DAMPs)

(40). Activation of TLRs exerts phagocytosis, inflammatory cytokine

release, and complement activation (41, 42). When TLRs recognize

PAMPs expressed by LPS, there is activation of downstream

transcription factors that regulate cytokine gene expression of NF-

kB, generating an inflammatory response leading to GERD.

TLR2 is widely activated in GERD patients, and activated TLR2

regulates the epithelial barrier, epithelial cell proliferation, and

inflammatory responses of the body, which in turn are involved

in the development of GERD. Compared with normal esophageal

epithelium, TLR2 mRNA expression was increased in inflammatory

cells and epithelial cells in biopsies from patients with GERD (43),

and TLR2 also recognized a variety of PAMPs expressed by

dysbiotic colonies (44, 45). In normal esophageal epithelium,

moderately activated TLR2 up-regulated the tight junction

complexes kelotanin-1 and occluding zona pellucida-1, which

enhanced the function of the esophageal epithelial barrier (46).

Normal G-stimulation of TLR2 is beneficial to the enhancement of

esophageal barrier function, but activation of the NF-kB pathway

through other pathways leads to esophageal barrier dysfunction

when the microbiome is dysbiotic. Experiments have found that

overexpression of the NF-kB subunit and NF-kB target genes in

esophageal tissues of mice with GERD and down-regulation of the

tight junction complexes, claudin1 and claudin4, resulted in

esophageal barrier dysfunction in the mice. Esophageal barrier

dysfunction (47). TLR2 agonists significantly increase the

proliferation of epithelial cell lines through multiple protein

kinase pathways, and such experimental results were further

confirmed by experiments in TLR2-deficient mice, where

epithelial value-added was reduced in TLR2-deficient mice (46),

and this effect would potentially impact on esophageal mucosal

injury and repair.

A prospective study analyzing esophageal microbiology in

patients with GER found that patients with GER symptoms

exhibited significantly higher TLR2 expression, reduced claudin-1

expression, and dilated intercellular spaces (DIS). In vitro, exposure

of human esophageal epithelial cells to LES significantly

upregulated TLR2 expression and downregulated claudin-1 and

DIS expression. These effects can be mediated by blocking TLR2.

Thus, enriched G- in patients with GER symptoms may induce

esophageal barrier dysfunction via the LPS-TLR2-IL-6-claudin-1-

DIS pathway (48).

TLR4 expression is increased in patients with GERD, triggering

an inflammatory response involved in the further development of

GERD.TLR4 expression in normal squamous epithelial samples is

mainly confined to the basal layer of the squamous epithelium,

which routinely may not come into contact with PAMPs expressed

by the esophageal microbiota, and reflux increases TLR4 expression

(49). TLR4 expression is increased (1.9-fold) in the squamous

epithelium of patients with RE compared to normal esophageal

squamous epithelium (50). Epithelial myofibroblasts from GERD

patients were found to activate TLR4 upon acid and LPS

stimulation, which in turn activates the downstream NF-kB
inflammatory pathway and promotes the secretion of

inflammatory factors IL-6 and IL-8 (51).
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4.2 Dysbiotic microbiome stimulates
cyclooxygenase-2 expression, affects
gastric emptying, and induces GERD

Cyclooxygenase-2 (COX-2) is the rate-limiting enzyme that

catalyzes the initiating step in the metabolism of arachidonic acid

to prostaglandin H2 and is a precursor to prostaglandins such as

prostaglandins, thromboxanes, and prostacyclins, which act as

autocrine and paracrine lipid mediators in the maintenance of

local homeostasis by mediating vascular function, wound healing,

and inflammation (52). Dysbiotic colonies with their LPS-

induced COX - 2 expression may mediate the development of

GERD, a study treated rats with LPS as well as different

prostaglandins and COX - 2 inhibitors and showed that the use

of COX - 2 inhibitors blocked LPS-induced delayed gastric

emptying, which is a possible risk factor for GERD (53, 54).

Delayed gastric emptying dilates the stomach, making more food

available for reflux into the esophagus. This also produces

transient lower esophageal sphincter relaxation, which

facilitates GERD (55).
4.3 Dysbiosis leads to overexpression of
inducible nitric oxide synthase affecting
LES function and inducing GERD

Inducible Nitric Oxide Synthase (iNOS) is an enzyme that

produces nitric oxide (NO) by oxidizing L -arginine. Under the

action of appropriate stimulating factors, almost any type of cell can

be induced and thus express iNOS, and LPS is one of the inducing

factors. Compared to normal esophagus, iNOS is overexpressed in

BE (56, 57). iNOS-produced NO induces LES relaxation leading to

the development of GERD, and in a mouse model of sepsis infected

with lipopolysaccharides, the LES releases INOS causing impaired

LES contraction, which can be blocked by utilizing NOS inhibitors

(58). In addition, NO can damage pathogenic and host cells by

affecting cellular energy production (59), forming inflammatory

free radicals and causing DNA rupture (56, 60), leading to cell

necrosis, dysfunction, and inflammatory responses that lead

to GERD.
4.4 Activation of NLRP3 inflammatory
vesicles by dysbiotic microbiome triggers
inflammatory response and cell necrosis,
inducing GERD

Inflammatory vesicles are expressed by epithelial and

immune cells. LPS expressed by G- dysbiotic colonies both

initiates and activates the NLRP3 inflammasome and leads to

downstream production of IL-1 b and IL-18. The NLRP3

inflammasome triggers an immune response in due course,

causing cellular pyroptosis (61). Inflammatory response,

cellular pyropoiesis is a potential mechanism for the

development of GERD.
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4.5 Dysbiosis leads to abnormal immune
function of the body and inflammatory
response triggers GERD

NF⁃kB is an important transcriptional regulator associated with

inflammation in cells and is usually inactivated, and colony dysbiosis

can activate NF-KB, which in turn encodes many pro-inflammatory

genes (62). In RE rats, activation of the NF-kB pathway was found to

result in the release of large amounts of TNF-a and IL-6 (63).

Activation of NF-kB pathway signaling initiates the transcriptional

release of IL-6, TNF-a, etc., and promotes the polarization of M1

macrophages (64, 65). M1 macrophages also release a large amount of

pro-inflammatory factors, such as TNF-a, IL-1b and other pro-

inflammatory factors, which can cause peripheral and central

sensitization, and then enhance the esophagus’s susceptibility to a

variety of reflux stimuli. sensitization of the esophagus to various reflux

stimuli, and symptoms such as reflux and heartburn are manifested.

Inflammatory response induced by microbiome is a possible cause

of GERD.Many studies have found that reflux does not directly damage

the esophageal epithelium, but stimulates the secretion of inflammatory

chemokines by the epithelial cells, which induces proliferative changes

in the epithelium and recruitment of inflammatory cells such as T

lymphocytes, which in turn leads to the damage of the esophageal

epithelium. A study reported that histological abnormalities were first

observed in the esophageal tissues of rats with reflux esophagitis, and

found that the recruitment of inflammatory cells and the expression of

inflammatory chemokines within the esophageal mucosal epithelium

were significantly earlier than the macroscopically or microscopically

visible esophageal epithelial cell injury (66). In in vitro studies, transient

exposure of human esophageal squamous epithelial cells to acidic bile

salt solution did not result in epithelial cell necrosis, but rather promoted

cellular secretion of IL-8 and IL-1b, which induced recruitment of

lymphocytes and neutrophils further leading to epithelial cell necrosis

(66). In addition, it has been found that inflammation can induce GERD

by decreasing the function of the upper laryngeal-esophageal sphincter

and pharyngeal-esophageal sphincter receptors (67).

Bacterial colonies stimulate the production of pro-

inflammatory cytokines through multiple effector pathways,

including the formation of inflammatory vesicles and nuclear

factor-kB (NF-kB), stress kinases, and interferon regulatory factor

(IRF); genotoxins released by bacteria, such as reactive oxygen

species (ROS), reactive nitrogen species (RNS), and hydrogen

sulfide (H2S), may have a direct cytotoxic effect (68); and

microbial metabolites, such as short chain fatty acids (SCFAs) or

lipopolysaccharides (LPS), can modulate immune cells.
4.6 Bacterial microbiome affecting lower
GI tract dynamics may indirectly
trigger GERD

The microbiome may induce reflux by affecting the lower GI

tract dynamics, which in turn affects emptying. Lower GI pressure

plays an important role in the pathogenesis of GERD. It has been

shown that lower GI pressure is significantly elevated in patients
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with GERD compared to healthy subjects, which may be a major

factor in the development of GERD (69, 70). It has also been

suggested that delayed emptying of the lower GI tract in one-half of

GERD patients leads to an increase in intragastric pressure, and that

a decrease in barrier pressure (the difference between the lower

sphincter pressure and the intragastric pressure) is one of the

factors contributing to the pathogenesis of GERD (71). A study

found a higher prevalence of small intestinal bacterial overgrowth

(SIBO) in patients with RE (72) and SIOB is associated with

intestinal motility failure (73, 74). One trial found that intestinal

microbiome promotes circulation and distal spread of migrating

motility complexes (MMCs) in the interdigestive phase, as well as

intestinal transport during and after feeding (75, 76). There are also

trials demonstrating the important role of Lactobacillus acidophilus

and Bifidobacterium bifidum in promoting the migration of MMCs

and facilitating small intestinal transit, lower GI motility (77).
4.7 The products of microbiome (SCFAs)
indirectly protect the esophagus from
multiple pathways and have potential for
the treatment of GERD

Microorganisms in the colon are capable of fermenting

indigestible food components and consuming prebiotics to produce

short-chain fatty acids (SCFAs) (78, 79) The relationship between

SCFAs and GERD is not yet clear, but known studies have found that

SCFAs have some potential for treating GERD (Figure 2).

4.7.1 SCFAs regulate gastrointestinal motility
Bowel motility influences GERD, and SCFAs have been suggested

in several studies to influence bowel motility. Fecal SCFAs

concentrations are low in patients with constipated IBS (IBS-C)

and high in patients with diarrheal IBS (IBS-D) (80). SCFAs

promote the production of 5-Hydroxytryptamine affecting

gastrointestinal motility, enterochromaffin (EC) cells sense SCFAs

and produce 5-HT, which promotes gastrointestinal motility through

activation of 5-HT4 expressed on enteric neuron receptors to

promote gastrointestinal motility (81); 5-HT signaling system is

very important in visceral hypersensitivity, and many scholars

believe that 5-HT ergic neurons are the underlying structure for

the regulation of visceral sensorimotor and autonomic functions

(71, 82).A randomized trial found that serum levels of 5-HT were

higher in GERD patients than in healthy subjects. SCFA cells sense

SCFAs and produce 5-HT subjects (83). SCFAs may affect ileal motor

function after colo-ileal reflux by causing long-duration contractions

and discrete clusters of contractions (84), which can directly stimulate

ileal and colonic smooth muscle contractility (85). SCFAs affect

emptying by influencing gastrointestinal motility, which can have

an impact on reflux symptoms in GERD.

4.7.2 Increase in SCFAs enhances barrier function
and mucus secretion of epithelial cells

The three defense barriers of the esophageal mucosa (86),

among them are the pre-epithelial barrier consisting of the mucus
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layer and bicarbonate, etc., and the epithelial barrier and post-

epithelial barrier of the second layer of the intercellular and apical

linking complexes constituting the tight junction (TJ).

SCFAs induce redistribution of the tight junction protein

occludin and the closed-loop mini-loop protein ZO - 1 in the

cell membrane (87–89). In monolayer differentiated intestinal

epithelial cells (cdx2-ECE), butyrate enhances intestinal barrier

function by increasing the expression of the TJ protein claudin- 1

(90). An experiment in an in vitro model of a porcine intestinal

epithelial cell line (IPEC-J2) found that butyrate attenuated the

negative effects of LPS on epithelial integrity while selectively up-

regulating TJ protein expression (91). Another animal experiment

caused changes in the colony structure of mice by altering their

feeding regimen, resulting in increased production of SCFAs, and

found that multiple aspects of mucus and epithelial barrier

integrity were enhanced (92). SCFAs also stimulated the

expression of the MUC2 gene, which resulted in an increase in

mucus volume (93, 94).

There is no clear evidence that SCFAs can affect esophageal

barrier function, but production of SCFAs in the colon is

completely and rapidly absorbed by colonic cells and circulates

systemically through the portal vein (95).

The modulation of esophageal defenses after the absorption of

SCFAs into the bloodstream needs to be further studied

and explored.

4.7.3 SCFAs may alleviate GERD symptoms by
supporting immune homeostasis and
reducing inflammation

SCFA, especially butyrate, can alter the secretion of pro-

inflammatory mediators (e.g., interferon (IFN) - g (IL-1, IL-2,

IL-6, IL-8, tumor necrosis factor (TNF) - a) by a possible

mechanism through inhibition of NF-kB in intestinal epithelial

cells (96, 97). Activation of G protein-coupled receptors (GPRs)

on immune cell membranes by butyric acid leads to an increase in

cytoplasmic calcium levels, and an increase in calcium

concentration leads to the activation of NLRP3 inflammatory

vesicles and subsequent activation of caspase - 1. Activated

caspase - 1 converts pro - IL - 18 to IL - 18 which promotes

epithelial repair (98), but in there are also data to support that IL-

18 contributes to intestinal inflammation (98). SCFAs also inhibit

the release of pro-inflammatory cytokines from intestinal

epithelial cells induced by TLR activators such as LPS (99).

SCFAs alleviate the symptoms of GERD by reducing the

inflammatory response through their role in supporting immune

homeostasis (100, 101).
4.8 Bacteriocins and polysaccharides
protect the esophagus from
multiple perspectives

Bacteriocins are ribosome-derived peptides produced by

microorganisms that reside in the gastrointestinal tract and are

thought to inhibit competitive microbiome. Bacteriocins in humans
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are thought to maintain barrier function, participate in

immunomodulation, and have direct anti-microbial activity (102).

Recent studies have reported that the size and nature of bacteriocins

allow them to cross this intestinal blood barrier (103). Size and

charge help bacteriocins to cross cell membranes and barriers and

play important roles in different physiological mechanisms.

Bacteriocins in the gastrointestinal tract also have specific and

potent antimicrobial properties (104, 105). This antimicrobial

property makes it essential in maintaining and influencing the

composition of the local microbiome. It has been found in

Anabaena fragilis and has been associated with the synthesis of

metabolites with immunomodulatory properties. Polysaccharide A

(PSA) produced by this bacterium has been shown to modulate the

immune response by promoting the production of anti-

inflammatory cytokines (106).

Polysaccharides (PSs) have a wide range of pharmacological

activities, including modulation of immune function (107),

antioxidant effects (108), anti-inflammatory properties (109),

and gastrointestinal health benefits (110). PSs modulate the

intestinal microbiota and have anti-inflammatory and

antioxidant potential (111, 112). PSs have a positive effect on

Gastroesophageal reflux (GR), and dibasic sodium alginate has

emerged as a promising therapeutic option, because in addition

to protecting the esophageal mucosa and limiting gastric reflux

into the esophagus, they also adhere to the gastric mucosa,

protecting it and promoting its repair (113). PSs regulate

gastric juice secretion, increase mucus production, enhance

antioxidant capacity, reduce inflammation (114, 115), and act

as probiotics in the gut microbiota and are involved in protein

regulation, which ensures the maintenance of barrier function

and mucin production.
5 Discussion

Normal microbiome and the human body to live in harmony,

through the microbiome of digestion, decomposition, promote

the absorption of the role of the host better, the host can also

provide a good environment for its habitat. Bacterial

microbiome is an intelligent living organism, its existence for

the organism in the end is symbiotic beneficial bacteria or

harmful bacteria with toxicity, such a delineation of the

boundar i e s shou ld take in to account not on ly the

characteristics of the bacteria themselves, the composition of

the microbial ratio, but also should take into account the host’s

own functional conditions, assuming that the purpose of our

medicine is to guide the adjustment of the bacterial microbiome,

the use of the bacterial microbiome, so as to let it give play to its

own complex, multi-faceted and subtle functions, through the

treatment of disease in this way may be more comprehensive.

treating the disease in this way may be more comprehensive.
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Understanding the microbiome as much as possible is only the

first step, and the ultimate goal is to harmonize the symbiosis of

good people and microorganisms.

The effects of microbiome and its metabolites on body functions

are complex, and in many studies we have found that the

improvement of symptoms before and after treatment is

accompanied by a certain change in the microbiome structure, a

phenomenon that leads us to think further about the question of

whether a drug is effective by targeting a certain stage of the

physiological/pathological response directly, or whether a drug is

effective by affecting certain signals through changes in the internal

environment affecting the structure of the microbiome, or both. Or

both. Current basic research in pharmacology is mostly devoted to

the effects of pathways activated by specific drugs, but the role

played by drugs in the human microbiome is multifaceted. If the

human microbiome can be transplanted in experimental animals, in

addition to the study of the direct effect of drugs can play, but also to

further observe the effect of drugs on the microbiome, the

microbiome on the body.

Based on the existing research, we can clearly see the interaction

between microbiome and GERD, and there is a close relationship

between microbiome and the pathogenesis of GERD. However, due

to the complexity of the composition of the microbiome and its

effect on the organism, future research needs to gain a deeper

understanding of the esophageal and intestinal microbiome and

their metabolites in GERD through basic research to understand

how the microbiome and their metabolites influence the occurrence

of GERD, and also in the pathogenesis of GERD, abnormalities in

digestive tract dynamics are gradually being emphasized by

researchers. In addition, in the pathogenesis of GERD, the

abnormalities of digestive tract dynamics have gradually been

emphasized by researchers, and it has been further found that the

brain-gut peptide (neurotransmitter) in the “brain-gut axis” is not

only related to visceral hypersensitivity, but also plays an important

role in regulating gastrointestinal dynamics, and changes in the

bacterial microbiome and its structure can stimulate the secretion of

brain-gut peptide, so the emphasis on the bacterial microbiome in

the future research will also provide therapeutic opportunities for

the treatment of GERD. likewise provides new therapeutic ideas for

the treatment of GERD.
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