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Myocardial infarction (MI), which is characterized by high morbidity and mortality, is

a serious threat to human life and health, and timely reperfusion therapy to save

ischemic myocardium is currently the most effective intervention. Although

reperfusion therapy effectively restores coronary blood flow and maximally limits

the infarct size, it triggers additional cell death and tissue damage, which is known as

myocardial ischemia/reperfusion injury (MIRI). Multiple immune cells are present in

the reperfusion area, executing specific functions and engaging in crosstalk during

diverse stages, constituting a complex immune microenvironment involved in

tissue repair and regeneration after MIRI. Immunotherapy brings new hope for

treating ischemic heart disease by modulating the immune microenvironment. In

this paper, we explore the regulatory roles of various immune cells during MIRI and

the close relationship between different cell deaths and the immune

microenvironment. In addition, we present the current status of research on

targeting the immune system to intervene in MIRI, with the expectation of

providing a basis for achieving clinical translation.
KEYWORDS

myocardial ischemia/reperfusion injury, myocardial infarction, immune cell, cell
death, immunotherapy
1 Introduction

Disability and death caused by acute myocardial infarction (AMI) seriously affect the

quality of life and health of human beings, and early reperfusion therapy to restore ischemic

myocardial blood supply is currently the main therapeutic method (1). Percutaneous

coronary intervention (PCI), as the preferred reperfusion therapy strategy, has greatly

reduced the mortality rate of patients and has brought about remarkable improvements in
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the treatment and management of AMI (2). However, despite the

reliable efficacy of reperfusion therapy in saving ischemic

myocardium and restoring cardiac function, the process of

reestablishing myocardial blood flow in the diseased myocardium

can lead to myocardial structural and functional dysfunctions,

aggravate the degree of MI, and even lead to a serious

complication, namely myocardial ischemia/reperfusion injury

(MIRI) (3). Clinical manifestations include myocardial stunning,

no-reflow phenomenon, arrhythmia, and fatal reperfusion injury,

the latter two of which are irreversible and can worsen the patient’s

condition or even lead to death (4). The pathological mechanism of

MIRI is complex. Research evidence suggests that it involves

oxidative stress, intracellular calcium overload, mitochondrial

dysfunction, energy metabolism disruption, inflammatory

response, ferroptosis, autophagy, pyroptosis, and many other

biological processes (5).

The immune system plays an important role in the repair and

regeneration of cardiac tissue. Immune cells that reside in and

infiltrate cardiac tissue are involved in the maintenance of cardiac

homeostasis and repair function. During the pathological process of

MIRI, diverse subpopulations of immune cells are present in the

reperfusion area, which undergo dynamic changes at different time

points and exhibit function heterogeneously at various stages of the

disease (6). The main immune cell types in the heart are

macrophages, neutrophils, dendritic cells, T-cells, B-cells, innate

lymphocytes, and mast cells, and different subpopulations of

resident and recruited immune cells have specific functions (7).

Among them, macrophages are the most abundant immune cells in

both the homeostatic and damaged states of the heart, and play an

important role in cardiac development, maintaining homeostasis,

and promoting repair after injury (8). However, the first immune

cells to massively infiltrate the damaged area after the onset of MIRI

are not macrophages but neutrophils. The function of neutrophils

remains unclear. They can initiate and amplify the acute

inflammatory response and also play a beneficial role in the

process of inflammation abatement and cardiac healing (9). Both

T cells and B cells among adaptive immune cells are involved in

regulating wound healing and tissue remodeling after MIRI. For

example, regulatory T cells (Tregs), which accumulate abundantly

in the damaged myocardium, increase collagen content and

promote scar maturation by expressing Sparc (a matricellular

protein), which in turn prevents cardiac rupture and exerts a

cardioprotective effect (10). Various immune cells during MIRI

can interact and crosstalk with each other, constituting an intricate

immune microenvironment. In addition, cardiomyocyte death is a

key pathological aspect of MIRI, and multiple forms of cell death

such as ferroptosis, apoptosis, and pyroptosis are closely related to

the progression of MIRI (11). It has been reported that immune

cells can interact with ferroptosis (12). It is evident that the immune

response is highly involved in the pathological process of MIRI, and

immunotherapy may be a promising treatment for MIRI.

In this paper, we reviewed the initiation of immune response

during MIRI and the important role of different immune cells in
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cardiac homeostasis and injury repair. Furthermore, we explored

the close relationship between multiple forms of cell death

during MIRI and the immune system. Additionally, we

summarized the current research progress in targeting

the immune response for the treatment of MIRI. In recent

years, researchers have designed a large number of novel

biomaterials to improve drug delivery efficiency and therapeutic

efficacy, yet there are almost no relevant reviews; therefore,

in this paper, we describe the latest evidence of biomaterials

for the treatment of MIRI through modulation of immunity, to

provide a reference for clinical treatment. In this study, articles in

PubMed and Web of Science were searched independently or

in combination using the following keywords: immunity,

myocardial ischemia/reperfusion injury, macrophage, neutrophil,

dendritic cell, innate lymphocyte, T cell, B cell, ferroptosis,

pyroptosis, immunotherapy.
2 Initiation of immune response in
MIRI

The immune response plays an important role in the

pathogenesis of MIRI, characterized by the recruitment and

activation of innate and adaptive immune cells, and sterile

inflammation occurs in the ischemic myocardium and

surrounding tissues (Figure 1). The injury and death of

cardiomyocytes resulting from ischemia and reperfusion lead to

the release of damage-associated molecular patterns (DAMPs),

which trigger a complex signaling cascade in the absence of

pathogen invasion, initiating a strong inflammatory response and

exacerbating cardiac injury (13). After reperfusion therapy,

endogenous molecules such as high mobility group box 1

(HMGB-1), heat shock proteins (HSPs), hyaluronic acid,

mitochondrial DNA (mtDNA), circulating extracellular RNA

(exRNA) are released into the outside of the cell, and these

intracellular components are known as DAMPs (14). Pattern

recognition receptors (PRRs) are risk sensors for innate immune

responses and mainly consist of Toll-like receptors (TLRs), NOD-

like receptors (NLRs), C-type lectin receptors (CLRs), and RIG-I-

like receptors (RLRs), which respond to danger signals and initiate

immune responses by binding to DAMPs (15).

TLRs are the first family of PRRs to be recognized in humans

and the most intensively studied. They activate the innate immune

system by triggering downstream signaling through the recognition

of DAMPs and are also an important bridge between innate and

adaptive immunity (16). TLRs are not only present in a variety of

immune cells, but also expressed in cardiovascular cells, such as

cardiomyocytes, endothelial cells, and smooth muscle cells. Chronic

low-grade inflammation resulting from sustained activation of

TLRs accelerates cardiomyocyte death and adverse cardiac

remodeling (17). Among them, TLR2 and TLR4 are highly

expressed in cardiac tissues, and their binding to ligands prompt

the translocation of nuclear factor-kappa B (NF-kB) and interferon
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regulatory factor (IRF) to the nucleus to initiate an inflammatory

response, release inflammatory cytokines, and mediate cardiac

injury (18). NLRP3 inflammasomes are major members of the

NLR family, and the pathogenesis of MIRI is closely related to the

initiation and activation of NLRP3 inflammasomes. During

reperfusion, endogenous cytokine release, massive reactive oxygen

species (ROS) production, calcium overload, and endothelial

dysfunction all contribute to the formation and activation of

NLRP3 inflammasomes, followed by IL-1b and IL-18 production

as well as pyroptosis involved in the progression of MIRI (19). Pro-

inflammatory cytokines and chemokines expressed by the

cardiovascular system cells and cardiac resident immune cells

recruit neutrophils, monocytes, and macrophages to the injury

site, further activating the immune system and amplifying the

inflammatory response (20). In addition, endothelial dysfunction

is manifested by decreased NO production and increased

expression of adhesion factors, which contribute to the adhesion

and infiltration of neutrophils and monocytes (3). Thus, in the early

stages of MIRI, DAMPs bind to PRRs to activate downstream signal

transduction, upregulate inflammatory cytokines and chemokines,

and in turn recruit a variety of innate immune cells to reach the

injured area and initiate an immune response.
Frontiers in Immunology 03
3 MIRI and immune
microenvironment

Immune cells are the main component supporting the

functioning of the immune system, and their repair process of

MIRI undergoes three stages: inflammation, proliferation, and

maturation (21) (Figure 2). There are various innate and adaptive

immune cells in the heart, including immune cell populations that

reside permanently in the heart and peripheral immune cells and

their precursors recruited to the heart (7). Various immune cells

perform specific functions and interact with each other at different

stages to produce pro- or anti-inflammatory cytokines, modulate

inflammation, cardiomyocyte proliferation, fibrosis, as well as

extracellular matrix formation, and influence wound healing and

scar formation to maintain cardiac structure and function (Figure 3).
3.1 Innate immunity

3.1.1 Neutrophils
After the occurrence of AMI, neutrophils will rapidly accumulate

in large numbers on the damaged myocardial tissue, the infiltration of
FIGURE 1

Immune response after myocardial ischemic injury. DAMPs released by necrotic cardiomyocytes bind to PRRs to initiate an immune response.
Resident macrophages produce pro-inflammatory cytokines and chemokines, which recruit monocytes and neutrophils to the injured area to
remove cellular debris and remodel the extracellular matrix. Dendritic cells present antigens to lymphocytes to activate an adaptive immune
response. After entering the repair phase, immune cells transform into a repair phenotype and secrete anti-inflammatory cytokines to mediate the
resolution of inflammation. Fibroblasts activate into myofibroblasts, leading to scar formation. DAMPs, damage-associated molecular patterns; PRRs,
pattern recognition receptors.
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neutrophils reaches the peak on days 1–3 and rapidly returns to a

lower level on days 5-7 (9). Neutrophils are mainly involved in the

early pathological process of reperfusion injury. In the injured area,

neutrophils release large amounts of ROS, pro-inflammatory

cytokines, chemokines, proteases, and so on, which promote the

recruitment of more immune cells and exacerbate the inflammatory

response as well as tissue damage. Evidence suggests that the alarm

proteins S100A8 and S100A9 released by neutrophils can bind to

TLR4, trigger the assembly and activation of NLRP3 inflammasomes,

and promote the secretion of IL-1b, which ultimately induces

granulopoiesis (22). A high number of neutrophils serves as a risk

factor for adverse cardiovascular outcomes after myocardial infarction

revascularization (23). In addition, neutrophils release neutrophil

extracellular traps (NETs), which are complex network structures

composed of DNA, histones, and granule proteins (24). It has been

demonstrated that during MIRI, NETs in the myocardium exacerbate

endothelial damage, activate the coagulation cascade reaction, trigger

platelet binding and erythrocyte capture, and provide a scaffolding for

thrombus formation, thereby mediating microcirculation obstruction

and exacerbating ischemic injury (25, 26). A randomized, double-
Frontiers in Immunology 04
blind, placebo-controlled clinical trial included 363 AMI patients after

PCI treatment to evaluate the relationship between neutrophil count

and infarct size as well as ejection fraction. The results showed that a

high neutrophil count was an independent predictor of short-term

and long-term adverse clinical outcomes (27). The neutrophil to

lymphocyte ratio (NLR) is a novel inflammatory biomarker, and MI

patients with high NLR have a higher risk of developing angina,

thrombosis, heart failure, major cardiovascular adverse events, and all-

cause mortality. It has greater clinical predictive value than a single

white blood cell count (28).

Neutrophils play a dual role in reperfusion-induced injury. In

addition to pro-inflammatory responses and tissue damage,

neutrophils are involved in regulating the regression of

inflammation, wound healing, and cardiac remodeling (29). By

constructing a model of chronic MI, a study found that neutrophil

depletion induced deterioration of cardiac function, increased

myocardial fibrosis, and elevated levels of biomarkers associated with

heart failure (30). Neutrophils facilitate cardiac healing and remodeling

by promoting macrophage polarization towards reparative M2

macrophages that mediate inflammatory abatement, thereby
FIGURE 2

Immune cells in three pathological stages after AMI. During the inflammatory phase, immune cells clear dead cells and initiate an inflammatory
response. During the proliferative phase, they promote angiogenesis and fiber repair. During the mature phase, immune cells decrease and collagen
deposition forms mature scars.
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effectively removing dead cells and promoting angiogenesis, as well as

the accumulation of myofibroblasts and collagen (30, 31). Similar to

macrophages, neutrophils in the infarcted myocardial region have pro-

inflammatory N1 and anti-inflammatory N2 phenotypes, and the

proportion of the N2 phenotype increases over time, exerting anti-

inflammatory and repair functions (32). A recent study applied single-

cell RNA sequencing (scRNA-seq) to reveal the heterogeneity and

diversity of neutrophils duringMIRI pathology (6). Research has found

that Ym-1hiNeu increases one day after reperfusion, and this tissue-

specific subset exerts cardioprotective effects by promotingmacrophage

polarization to an anti-inflammatory phenotype, which may be a key

subset mediating the repair of reperfusion injury and prognostic

improvement (6, 33). Targeting neutrophil subpopulations is a novel

approach for treating MIRI.

3.1.2 Macrophages
In the healthy heart, residentmacrophages are the most abundant

immune cell type, originated from yolk sac and fetal liver monocytes,

which reside in the heart during embryonic development and have

the capacity for self-renewal and repair (34). Resident macrophages
Frontiers in Immunology 05
play an important role in maintaining cardiac homeostasis, with

functions such as anti-inflammation, removal of apoptotic cells,

regulation of myocardial fibrosis, and promotion of tissue repair

(35). After myocardial injury, recruited macrophages become

dominant in both number and function. This type of macrophage

is derived from circulating monocytes that produce inflammatory

cytokines to amplify the inflammatory response and engulf necrotic

tissue (36). Macrophages can be categorized simply based on function

into pro-inflammatory M1 and anti-inflammatory M2 cells, with

shifts in the dominant subpopulation occurring at different stages of

repair process, but the transcriptional heterogeneity of macrophages

in the infarcted area does not fully conform to this categorization (37,

38). M2 macrophages are divided into four subtypes based on

stimulation: M2a, M2b, M2c, and M2d. In addition to M1 and M2

macrophages, there are special subgroups with different functions in

MI, includingM (Hb), Mhem, Mox, and M4 (39). These macrophage

phenotypes have different cellular markers and functional

characteristics, summarized in Table 1; Figure 4. In addition,

researchers identified a new subtype of lipid-associated

macrophages in MIRI, characterized by high expression of Spp1
FIGURE 3

Immune cells in cardiac injury and repair. Innate immune cells (neutrophils, macrophages, dendritic cells, innate lymphocytes) and adaptive immune
cells (T cells, B cells) in the ischemic heart are involved in cardiac tissue repair and regeneration. ROS, reactive oxygen species; NETs, neutrophil
extracellular traps; ECM, extracellular matrix; APC, antigen presenting cell; ILC, innate lymphoid cell; INF-g, interferon g; GM-CSF, granulocyte-
macrophage colony stimulating factor; TGF-b, transforming growth factor-b; Tregs, regulatory T cells.
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TABLE 1 Classification and function of macrophages.

Classification Cell marker Stimuli Secretory products Function Refs

TNF-a, IL-1a, IL-1b, IL-6, TNF-a, COX-
2, iNOS

Pro-inflammatory; myocardial injury (35,
42, 43)

TGF-b, IL-10, CCL5, CCL17,
CCL22, CCL24

Promote wound healing and tissue repair;
inflammation resolution

(35, 42)

like receptors or IL-1 IL-10, TNF-a, IL-1b, IL-6 Immune regulation; improvement of tissue damage (44–46)

IL-10, TGF-b, CCL18 Immunosuppression; tissue remodeling; phagocytosis (47, 48)

VEGF, IL-10, IL-12 Pro-angiogenesis; immunosuppression (46, 49)

plexes IL-10, ferroportin Promote cholesterol efflux; reduce intracellular iron and ROS;
anti-inflammatory

(50) (51)

IL-10, HMOX-1 Promote cholesterol efflux; iron-handing; anti-inflammatory (51, 52)

IL-1b, IL-10 Anti-oxidative stress (53, 54)

IL-6, TNF-a Pro-inflammatory (52, 55)

; MHC-II, major histocompatibility complex-II; IL, Interleukin; COX-2, cyclooxygenase 2; iNOS, inducible nitric oxide synthase; Arg1, arginase1; FIZZ1, transcription
lial growth factor; ATF1, activating transcription factor1; CCL17, chemokine (C-C motif) ligand 17; HMOX-1, heme oxygenase-1; Nrf2, nuclear factor E2-related factor
4, C-X-C motif chemokine 4.
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M2b CD86, MHC-II Immune complexes and tol
receptor agonist

M2c CD163, CD206, MerTK IL-10, TGF-b, glucocorticoi

M2d CD86, CD206 IL-6, LPS,
adenosine A2A receptor
agonists,
TLR antagonists

M(Hb) CD163, mannose receptor Hemoglobin,haptoglobin co

Mhem CD163, ATF1 Heme

Mox Nrf2, HMOX-1, Srxn1, Txnrd1 Oxidized phospholipids

M4 CD206, MMP7 CXCL4

LPS, lipopolysaccharide; GM-CSF, granulocyte-monocyte colony-stimulating factor; IFN, interferon
factor found in inflammatory zone 1; TGF-b, transforming growth factor-b; VEGF, vascular endothe
2; Srxn1,sulfiredoxin 1;Txnrd1, thioredoxin reductase 1; MMP7, matrix metalloproteinase 7; CXC
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and Trem2 genes, which are involved in regulating lipid metabolism

and cardiac remodeling (40). Another study applied single-cell RNA

sequencing technology to identify a unique S100a9hi macrophage

population that participates in activating aseptic inflammation during

the acute phase. However, when the tissue environment changes to

reparative, this macrophage population can transform into a

reparative phenotype, promoting fibroblast activation, repairing

damaged tissue, and increasing angiogenesis (41). It can be seen

that there are diverse populations of macrophages in the infarcted

heart, and even the same phenotype may play different roles at

different stages.

In the infarcted heart, macrophages participate as core cells in

all three stages of the repair process following reperfusion injury

(56, 57). In the early stage of injury, monocyte-derived

macrophages are recruited and activated, releasing large amounts

of ROS and inflammatory mediators, which are involved in

initiating the inflammatory response, engulfing dead cells, and

degrading the extracellular matrix. Subsequently, macrophages

clear apoptotic cells and trigger an anti-inflammatory response,

which promotes the activation of myofibroblasts and angiogenesis

to provide oxygen and nutrients to the deposited granulation tissue.

In this way, the repair process moves from the inflammatory phase

to the proliferative phase. The maturation phase occurs a few
Frontiers in Immunology 07
months after the proliferative phase, at this time there are fewer

immune cells in the injured area, the extracellular matrix (ECM) is

remodeled, the ventricle undergoes morphological and functional

changes and a mature scar is formed (20, 56). The contribution of

macrophages in the maturation phase needs to be further

investigated. Cardiac remodeling after MI depends largely on the

regulation of the ECM, which is composed mainly of structural and

nonstructural matrix cellular proteins and proteases (58). During the

inflammatory phase, macrophages secrete fibrous mediators to initiate

fibrosis, releasing matrix metalloproteinases (MMP) to degrade

collagen, fibronectin, and other ECM components. The synthesis of

ECM components is significantly enhanced during the proliferative

phase, in which themassive deposition of collagen forms amature scar

(59). One study reported the transcriptome changes of macrophages

in the first week after infarction. It was found that macrophages

exhibit pro-inflammatory features on day 1, engage in phagocytosis,

proliferation, and metabolic reprogramming on day 3, and exhibit

pro-repair features on day 7, reflecting the inflammatory, proliferative,

and maturation phases of early injury repair (60). During MIRI, the

metabolic processes and energy pathways of macrophages are altered,

transitioning from anaerobic glycolysis to oxidative phosphorylation,

which leads to a shift from pro-inflammatory to reparative

macrophages. Early targeting of glycolysis facilitates the attenuation
FIGURE 4

Macrophages in myocardial infarction. Diverse macrophage phenotypes exist in MI, which secrete multiple cytokines and perform different functions
in response to different stimuli. LPS, lipopolysaccharide; GM-CSF, granulocyte-monocyte colony-stimulating factor; IFN, interferon; IL, Interleukin;
COX-2, cyclooxygenase 2; TGF-b, transforming growth factor-b; VEGF, vascular endothelial growth factor; CCL17, chemokine (C-C motif) ligand 17;
HMOX-1, heme oxygenase-1; CXCL4, C-X-C motif chemokine 4.
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of cardiac injury and the improvement of cardiac function (61).

Macrophages play an indispensable role in the MIRI process,

promoting inflammatory resolution and damage repair through

phenotype transformation, but excessive activation and infiltration

exacerbate cardiac damage and remodeling.

3.1.3 Dendritic cells
In addition to neutrophils and macrophages, dendritic cells

(DCs) also play an important role in the pathological process of

MIRI. DCs, as the main antigen-presenting cells, are the bridge

between innate and adaptive immunity and contain two subtypes,

cDCs and pDCs. The cDCs in the myocardium can be further

categorized into cDC1s and cDC2s (21). Some investigators have

quantified the extent of DCs infiltration in infarcted hearts, patients

with ruptured hearts have less DCs, less reparative fibrosis, and

more macrophage infiltration in myocardial tissues compared to

patients with unruptured hearts (62). DC depletion exacerbates

post-infarction cardiac dysfunction and remodeling and is

associated with inducing degradation of the extracellular matrix,

accelerating myocardial fibrosis, affecting angiogenesis, and

enhancing inflammatory macrophage recruitment (63). It can be

seen that DCs possess an immune protective effect after MI, which

is beneficial for the repair and healing of the heart. Tolerogenic DCs

have demonstrated potential for clinical translation as a new

therapeutic strategy by inducing systemic activation of infarction-

specific Tregs and promoting the conversion of macrophages from

pro-inflammatory M1 to reparative M2 subpopulations, which

leads to an improvement in cardiac remodeling and cardiac

function (64). However, DAMPs released from ischemic

cardiomyocytes during reperfusion stimulate pDCs to produce

type I interferon, amplifying inflammatory response and

exacerbating reperfusion injury (65). Exosomes are nanoscale

extracellular vesicles released by cells, containing large amounts of

cytoplasmic proteins, lipids, and nucleic acids that mediate

intercellular signal transduction and communication (66). Several

studies have demonstrated that DC-derived exosomes can promote

angiogenesis, activate CD4+ T cells and Tregs, and regulate

macrophage polarization, thereby improving cardiac function and

exerting cardioprotective effects in infarcted hearts (67–70). There

are fewer studies related to DC-derived exosomes intervening in the

pathological process of MIRI, but exosomes have been recognized

to attenuate reperfusion injury. The underlying mechanism might

be related to the activation of the TLR4 downstream signaling

pathway (71, 72). Its cardioprotective effect deserves in-depth study

in the future.

3.1.4 Innate lymphoid cells
Innate lymphoid cells (ILCs) are a small family of immune cells,

a subpopulation of leukocytes with lymphoid properties that do not

express antigen-specific receptors (73). ILCs are broadly classified

into ILC1, ILC2 and ILC3 subtypes. After the injury, ILCs respond

rapidly and participate in the immune response, producing effector

cytokines such as IFN-g, IL-5, and IL-13 in a manner similar to that

of memory T cells, activating and modulating the immune response

(74). In the healthy heart, ILCs are undifferentiated, do not express
Frontiers in Immunology 08
ILC2-specific markers, lack ILC1 and ILC3 markers, and these cells

remain quiescent under physiological conditions (75). Deng et al.

constructed a myocardial necroptosis mouse model using

adriamycin and applied flow cytometry to analyze ILC

subpopulations in the heart, and the results showed that ILC2 is

the predominant cardiac resident ILC subpopulation, with type 1

ILCs present in a small quantity and ILC3 being nearly absent (7,

76). After myocardial injury, cardiac fibroblasts express increased

IL-33, which induces rapid expansion and activation of ILC2 as well

as the secretion of IL-4 to promote inflammation and tissue repair

processes (75, 76). Yu et al. (77) reported that ILC2 residing in

pericardial adipose tissue expands after MI. The deficiency of ILC2

increases the accumulation of inflammatory monocytes and

macrophages and impedes cardiac remodeling and the recovery

of cardiac function, activation of ILC2 with low-dose IL-2 can

reverse these changes. It can be seen that amplification and

activation of ILC2 in damaged myocardium are beneficial. In

addition, natural killer (NK) cells, the only known cytotoxic

member of the ILC family, are found in small numbers in the

heart. These cells modulate the immune response after MI,

preventing myocardial fibrosis and promoting vascular

remodeling, which are beneficial to cardiac healing (78).
3.2 Adaptive immunity

3.2.1 T cells
Abundant evidence suggests that adaptive immune responses

regulate cardiac remodeling after MI and that T cells play an

important role in cardiac injury and repair processes. In a mouse

model of permanent coronary infarction, CD4+ T cells, CD8+ cells,

and gd T cells progressively infiltrate the heart, reaching a peak at

day 7, whereas prompt reperfusion therapy advances the peak to

day 3, promotes early inflammation abatement, avoids persistent

inflammation, and limits infarct size (79). Myocardial damage

activates four main subsets of CD4+ T cells, including helper T

cells, i.e., Th1, Th2, and Th17 cells, and Tregs, with Th1 and Tregs

being the major subsets (21). Th1 cells play a complex role in MIRI

by inducing cell-mediated immune responses to combat infections

and diseases, contributing to necrotic tissue clearance and damaged

tissue recovery (80). But they are also associated with pathological

events such as exacerbation of cardiomyocyte apoptosis, inhibition

of myocardial fibrosis, enlargement of the damaged area and cardiac

rupture (80). Th2 cells mainly regulate humoral immunity and

secrete cytokines such as IL-4, IL-5, and IL-13, which play a crucial

role in decreasing reperfusion injury, promoting myocardial

fibrosis, inhibiting excessive inflammatory responses, and

regulating immune homeostasis (80). Regulating the functional

balance of Th1 and Th2 cells may be a potential therapeutic

approach for MIRI. Th17 cells produce or induce the expression

of pro-inflammatory cytokines such as IL-6, IL-1b, and IL-17,

which exacerbate the inflammatory response and cause greater

damage to cardiomyocytes , and also produce matrix

metalloproteinases or proteoglycans to promote matrix

remodeling after myocardial injury (80–82). In contrast to pro-
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inflammatory Th17 cells, Tregs are a specialized subpopulation of T

cells that negatively regulate the immune response. Tregs mediate

immunosuppression and immune tolerance, control the

inflammatory response, maintain immune homeostasis, and help

attenuate cardiac injury caused by reperfusion. Treatment with

Tregs reduces cardiomyocyte death, promotes angiogenesis, and

induces an anti-inflammatory environment, which in turn

improves cardiac function and enhances the outcome of cardiac

repair (83). In contrast, Tregs dysfunction exacerbates MIRI,

enlarges infarct size, and deteriorates cardiac function, and

pathological findings reveal more pro-inflammatory cells

infiltration, increased cardiomyocyte apoptosis, and severe fibrosis

(84). CD8+ T cells are also recruited and activated after myocardial

ischemic injury, promoting cardiomyocyte death and leading to

enhanced inflammation and decreased cardiac function, and their

pathogenic role in the pathological process of MIRI has been

demonstrated (85, 86). gdT cells are a special subset of T cells

that perform innate immune functions, connecting innate

immunity with adaptive immunity. These cells can rapidly

produce large amounts of the pro-inflammatory cytokine IL-17A,

which promotes cardiomyocyte apoptosis and neutrophil

infiltration, ultimately exacerbating reperfusion injury (87, 88).

3.2.2 B cells
B cells are ubiquitous in the naïve heart and represent a

subpopulation of circulating B cells found in the cardiac

microvascular system, mainly derived from bone marrow. The

vast majority of B cells adhere closely to the vascular endothelium

and only a few cross the endothelium into myocardial tissue. After

injury occurs, mature B cells will be recruited to the damaged

myocardial area, playing an important regulatory role in adverse

cardiac remodeling (7, 89). After MI, the number of B cells

infiltrating into the infarcted area reaches its peak on day 5,

thereby mediating an immune response. Depletion of these cells

significantly reduces the inflammatory response, decreases

monocyte recruitment, limits the area of post-ischemic injury,

prevents adverse ventricular remodeling, and improves cardiac

function (89, 90). A study revealed a potential mechanism by

which splenic marginal zone B cells regulate cardiac remodeling

after MI, possibly through activation of the miR21/HIF-1a
signaling pathway and upregulation of the expression of

chemokine CCL7, which in turn promotes infiltration of

inflammatory monocytes and adverse cardiac remodeling (91). If

splenic B cells isolated from an infarcted mouse model are

transferred to an atherosclerotic mouse model, they will increase

IgG accumulation in plaques, expand the lesion area and accelerate

the progression of fragile plaques (92). Targeting B-cell activation

and antibody production constitutes a potential strategy for

preventing recurrent cardiovascular events. Moreover, leukocyte

infiltration and collagen deposition can be reduced by blocking the

binding of lgM to ischemia-associated antigens in the heart,

effectively alleviating MIRI (93). However, in addition to antibody

production, some cytokines produced by B cells may allow them to

play a beneficial role in myocardial infarction and reperfusion. For

example, Wu et al. (94) found that pericardial adipose tissues are
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enriched with CD5+ B cells producing the anti-inflammatory

cytokine IL-10. These cells expand and accumulate in ischemic

hearts after MI, facilitating inflammatory regression and reducing

myocardial injury. Thus, the roles of different B cell subpopulations,

as well as the antibodies and cytokines they produce during

myocardial injury are complex. The function of B cells in

ischemic cardiovascular disease needs to be further investigated.
3.3 Crosstalk between different immune
cells

After AMI, a large number of innate and adaptive immune cells

are present in the injured area, which can interact with each other

and jointly regulate the repair and remodeling of the infarcted heart.

Macrophages, as one of the most active immune cells in the repair

process of the damaged heart, can crosstalk with a variety of

immune cells, such as neutrophils and T cells, which contribute

to cardiac remodeling after AMI (36). Crosstalk between

macrophages and neutrophils may be associated with IL-4, which

down-regulates pro-inflammatory genes in neutrophils, up-

regulates anti-inflammatory genes in macrophages, and enhances

macrophages phagocytosis of neutrophils, inducing a more rapid

reduction in inflammation (95). MMP-12 produced by Ly6Clow

macrophages induces a more rapid decrease in inflammation by

attenuating the chemokines CXCL1, CXCL2, and CXCL5 activity to

inhibit neutrophil infiltration in the infarcted heart, thereby

promoting wound healing (96). Depletion of resident

macrophages in MIRI can alter macrophages crosstalk with other

immune cells, inducing pro-inflammatory features of neutrophils,

which are detrimental to cardiac remodeling (97). In addition,

neutrophil apoptosis in the injured region can promote

macrophage polarization towards a pro-repair phenotype, which

in turn mediates the process of inflammatory abatement and

cardiac repair (98). Neutrophils not only interact with

macrophages but also exert a dual regulatory effect on adaptive

immunity. On the one hand, neutrophils can activate and induce

the proliferation of T cells and the secretion of cytokines, and

regulate the activation of B cells, and on the other hand, neutrophils

can inhibit adaptive immune responses to prevent excessive

activation (31). Macrophages, as important antigen-presenting

cells, phagocytose and process dead cells and cellular debris for

presentation to T cells, initiating an adaptive immune response,

which is associated with pathological remodeling of the infarcted

heart. Cytokines secreted by T cells influence macrophage

polarization. Th1 subpopulation of CD4+ T cells promotes

macrophage polarization towards the M1 phenotype, while Th2

and Tregs promote macrophage polarization towards the M2

phenotype (99). Exosomes are key mediators of intercellular

crosstalk that modulate the immune response after MI and

maintain cardiac function through interactions between immune

cells or between immune cells and cardiomyocytes (100). Exosomes

may be associated with crosstalk between T cells and macrophages.

DCs-derived exosomes have been found to activate Tregs, which in

turn modulate macrophage polarization towards the M2 type to
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protect cardiac function in the infarcted heart (69). ILCs reflect the

cytokine production and function of T cells, which can rapidly

respond to injury and exert regulatory effects on T cells through

MHC II-mediated antigen presentation or by regulating DCs (74).

The crosstalk among ILCs, T cells, and DCs constitutes a complex

network. Cardiac B cells can regulate different cell types, such as T

cells, macrophages, and DCs, or interact with them to produce

multiple cytokines (101).

Immune cells can interact with each other and crosstalk with

cardiac parenchymal cells such as cardiomyocytes and fibroblasts.

Large numbers of cardiomyocytes die in ischemic regions, and

macrophages recognize and phagocytose dead cardiomyocytes via

MerTk receptors, and increased CD47 expression in cardiomyocytes

impairs the clearance of dead cells by macrophages (102). In addition

to phagocytosis, macrophages also promote the proliferation and

regeneration of cardiomyocytes (103). A recent study reported that

SPP1hi macrophages, present in the early stages after MI, interact with

reparative fibroblasts to promote collagen deposition and scar

formation (104). Furthermore, exosomes derived from different

immune cells can mediate fibroblast proliferation, migration,

activation, and other processes that regulate myocardial fibrosis and

remodeling after MI (105).
4 Cell death and immunity in MIRI

Various types of cell death occur during MI and reperfusion,

such as apoptosis, necroptosis, ferroptosis, pyroptosis, and

autophagy. There is an intricate relationship between cell death

and the immune microenvironment. Apoptosis and necroptosis are

the forms of cell death in the early stages of MIRI, while the

predominant form of cardiomyocyte death in the later stages is

ferroptosis, which is important for reperfusion-induced long-term

cardiac injury (106). The Alox15-derived intermediate metabolite

15-HpETE has been reported to trigger cardiomyocyte ferroptosis

by inducing mitochondrial dysfunction, leading to cardiomyocyte

loss and exacerbating cardiac injury. The pharmacological

inhibition of Alox15 reverses cardiomyocyte ferroptosis, thereby

exerting cardioprotective effects (106). Zhang et al. (107) found that

ferroptosis is involved in the pathogenesis of MIRI, and exosomes

derived from bone marrow mesenchymal stem cells attenuate

reperfusion-induced cardiac injury by inhibiting cardiomyocyte

ferroptosis, and then improve cardiac function in mice.

Ferroptosis is essential in the immune microenvironment and can

interact with immune cells to promote the proliferation and

activation of macrophages, T cells, and B cells, initiating an

immune response by affecting the number and function of

immune cells (12). The strong relationship between macrophages

and ferroptosis has been demonstrated. On the one hand,

macrophages can regulate iron metabolism and recognize and

phagocytose iron-dead cells, on the other hand, ferroptosis

induces macrophage polarization by affecting iron metabolism in

macrophages and promotes macrophage recruitment to regulate

immune responses (108–110). In addition, macrophages can
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undergo ferroptosis and participate in the pathological processes

of several diseases, including atherosclerosis, tumors, and infectious

diseases (108). It has been shown that extracellular vesicles released

by macrophages remove excess transferrin-bound iron via surface

transferrin receptors, attenuating iron overload and ferroptosis after

MI, and thus exerting a protective effect against ischemia-induced

cardiac injury (111). However, ferroptosis inhibition is not always

beneficial to the heart. Research evidence suggests that iron-dead

cardiomyocytes secrete IL-19 after MI, which promotes

angiogenesis and modulates macrophage polarization towards the

M2 type, favoring repair of damaged myocardium (112). In

contrast, anti-iron death therapy inhibits angiogenesis and alters

the immune response, further exacerbating cardiac injury (112).

For cell death after MI, it has been noted that the forms of cell

death in ischemic myocardium include apoptosis, necroptosis, and

pyroptosis, but do not include ferroptosis. Among them, pyroptosis

is the most predominant form of programmed cell death,

accelerating cardiac remodeling and dysfunction (113). During

myocardial reperfusion, NLRP3 inflammasomes in macrophages

activate and induce pyroptosis. Dying macrophages release more

inflammatory cytokines, increase immune cell infiltration, promote

damage to cardiac microvascular endothelial cells, and exacerbate

microvascular dysfunction after revascularization (114). Stachyose

has been reported to inhibit cardiomyocyte ferroptosis and

macrophage pyroptosis, thereby significantly improving cardiac

function and shrinking the infarcted area in MIRI mice (115).

PANoptosis, a novel mode of programmed cell death, constitutes an

integral part of the innate immune system and is driven by the

innate immune sensors, pyrin, and ZBP1. This form of death

exhibits key characteristics of apoptosis, necroptosis, and

pyroptosis simultaneously, but cannot be explained by any one of

these individual modes of death alone (116, 117). MIRI is an

important inducer of PANoptosis, and combined inhibition of

multiple forms of cell death exhibits a stronger cardioprotective

effect than inhibition of one form of cell death alone, and targeting

PANoptosis is a reliable way to ameliorate MIRI (117, 118).

Neutrophils in infarcted hearts undergo a specific mode of cell

death called NETosis and form NETs. Although it facilitates the

clearance of pathogens, excessive NETosis amplifies the

inflammatory response, exacerbates tissue damage and adverse

remodeling, and may promote the onset and progression of heart

failure (118). In addition to the above modes of cell death,

autophagy can regulate the number and function of macrophages.

Moderate macrophage autophagy can inhibit the inflammatory

response, attenuate vascular injury, and promote regeneration of

post-injury cardiomyocytes, which can help to ameliorate MIRI

(119). Therefore, targeting different types of cell death in infarcted

hearts may be a new therapeutic strategy for MIRI.

5 Targeting the immune system to
intervene in MIRI

Immunotherapy is a promising treatment for ischemic heart

disease. Immune cells, as the main executors of immune function, are

used to readjust the immunemicroenvironment and thus regulate the
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body’s immune function to treat the disease. The CANTOS trial

investigated the effects of a monoclonal antibody called

Canakinumab in patients with previous MI and elevated high-

sensitivity C-reactive protein. Canakinumab significantly reduced

the recurrence of cardiovascular events by targeting the IL-1b
innate immune pathway, demonstrating for the first time that

immunotherapy can be beneficial for cardiovascular outcomes in

patients (120, 121). This section will describe the progress of research

related to immunotherapies that modulate the immune system to

attenuate cardiac injury and promote tissue repair (Table 2).
5.1 Innate immunity

5.1.1 Neutrophils
Neutrophils are the first type of leukocytes to infiltrate into the

injured area after myocardial injury and play an important role in

the immune system. Designing novel drugs and methods targeting

neutrophils is crucial for limiting cardiac injury. Feng et al. (122)

constructed a mouse model of MIRI and injected mesenchymal

stem cell-derived exosomes (MSC-Exo) into the experimental

group of mice via tail vein. MSC-Exo were found to significantly

inhibit neutrophil infiltration and reduce the formation of NETs,

attenuate the inflammatory response, and reduce microvascular

obstruction during reperfusion injury, thereby improving cardiac

function and exerting cardioprotective effects. The underlying

mechanism may be that miR-199 packaged in MSC-Exo reduces

the secretion of S100A8/A9 and inhibits the activation of NLRP3

inflammasomes, which in turn suppresses neutrophils. Clinical data

have indicated that extensive microvascular obstruction is closely

associated with higher neutrophil counts, and colchicine attenuates

microvascular obstruction after MIRI through a similar mechanism,

may be a potential agent to improve the prognosis of MI patients

(123). A study developed endothelial cell-targeting and ROS-

ultrasensitive nanocomplexes that synergistically limit neutrophil

recruitment to the injured myocardium by co-delivering VCAM-1

siRNA and dexamethasone to exert an anti-inflammatory effect,

thereby attenuating MIRI and promoting cardiac recovery (124).

Studies have demonstrated that delivery of the adenosine-

producing enzymes CD39 and CD73 using hydrogels reduces

immune infiltration after MIRI, decreases neutrophil recruitment

and activation, and facilitates long-term improvement in cardiac

function (125). In addition, injection of nanoparticles loaded with

roscovitine into a MI rat model to induce apoptosis of activated

neutrophils can promote macrophage efferocytosis and M2

polarization, mediate inflammatory resolution, and protect

cardiac function (98). Similarly, engineered neutrophil apoptotic

bodies constructed by researchers can enhance macrophage

phagocytosis and reprogramming, while initiating heme

biosynthesis and production of anti-inflammatory bilirubin upon

intracellular release, which in turn improve MI and promote cardiac

tissue regeneration (126). Several studies have demonstrated that

neutrophil membrane-encapsulated biomimetic nanoparticles can

migrate more efficiently to the inflammation site, neutralize pro-

inflammatory cytokines, modulate the immune microenvironment,
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and promote angiogenesis, thereby reducing cardiac damage and

facilitating the repair of injured myocardium (127–129).

5.1.2 Macrophages
As the most abundant immune cell population in the heart, the

residence and polarization of macrophages are closely related to

cardiac injury and repair. The development of drug delivery

strategies that precisely target macrophages has potential

therapeutic effect. Currently, studies have been conducted to

improve macrophage targeting efficiency using tissue- or cell-

specific promoters, surface-modified nanoparticles, and exosomes,

but they are still in the early stages of development, with the

ultimate goal of clinical translation (130). Li et al. (131) prepared

platelet membrane-modified extracellular vesicles based on the

membrane fusion method, which were delivered to the ischemic

region using the ability of platelets to bind to monocytes. After

escaping from the lysosomes of macrophages, they release miRNAs,

promoting the transformation of inflammatory M1 macrophages

into reparative M2 macrophages, and mediating cardiac repair by

regulating the immune microenvironment (131). Researchers

explored the potential mechanism by which lipid nanoparticle-

delivered yREX3, a non-overlapping small Y RNA, exerts a

cardioprotective effect, identifying macrophages as the target cells

for its action. yREX3 silences Pick1 through DNA methylation,

activates Smad3 to enhance phagocytosis, and then promotes

cardiac tissue repair after MI (132). He et al. (133) prepared

engineered macrophage membrane-coated siRNA nanoparticles.

The surface-modified hemagglutinin ensured that the

nanoparticles would not be damaged by lysosomal digestion,

enabling them to effectively target the site of myocardial ischemia,

improving the delivery efficiency of siRNA, reducing the level of

S100A9, and improving the cardiac function of MIRI mice.

Evidently, by constructing nanoplatforms coated with

macrophage membranes on the surface, the precise targeting of

ischemic areas and neutralization of pro-inflammatory cytokines

can be achieved, thus improving drug delivery efficiency and

therapeutic effects (134). Exosomes can protect the heart by

regulating macrophage polarization. Studies have shown that

miR-25-3p delivered by exosomes derived from bone marrow

mesenchymal stem cells promotes a shift in macrophage

phenotype to the anti-inflammatory M2 type, which in turn

inhibits the inflammatory response and ameliorates MIRI (135).

Some researchers have found that hydrogels prepared from natural

biomaterials can regulate macrophage polarization and scavenge

ROS through PI3k/Akt1/mTOR pathway to avoid cardiomyocyte

apoptosis, which can be used for cardiac repair (136). Farrerol, a

bioactive constituent of Rhododendron, can reduce the secretion of

myocardial damage factors such as CK-MB, LDH, and NT-proBNP,

and inhibit the release of IL-1b, IL-6, and TNF-a. It can also

increase the level of antioxidant enzymes to alleviate oxidative

stress, demonstrating powerful anti-inflammatory and antioxidant

abilities. Farrerol has been reported to protect cardiomyocytes

indirectly by inhibiting the activation of NLRP3 inflammasomes

in macrophages and can be used as an immunomodulator for the

treatment of reperfusion injury (137).
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5.2 Adaptive immunity

5.2.1 T cells
The modulation of immune responses mediated by different

subpopulations of T cells can be used for cardiac injury treatment

and repair. At present, the main T cell therapies for the treatment of

MI mainly include Chimeric Antigen Receptor (CAR)-T cell

therapy and the expansion and activation of Tregs. CAR-T

therapy uses genetic engineering technology to modify T cells

collected from a patient’s blood to express the CAR gene (138).

These modified T cells are expanded in vitro and then infused back

into the patient’s body, which is a precision-targeted therapeutic

approach that has shown significant clinical efficacy in the

treatment of cancer (138). Engineered T cells can also be applied

in non-cancer therapies, and it has been found that adoptive

transfer of specific CAR-T cells targeting fibroblast activation

protein (FAP) attenuates fibrosis in the injured heart and

promotes functional recovery (139). Rurik et al. (140) developed

an in vivo method of generating CAR T cells, using CD5-targeted

lipid nanoparticles to deliver therapeutic mRNAs encoding CAR

receptors targeting FAP, in order to reprogram T cells in vivo to

generate transient, potent CAR T cells. These cells eliminate pro-

fibrotic cells in injured myocardium, thereby reducing myocardial

fibrosis and improving cardiac funct ion. Combining

nanotechnology with CAR-T therapy is beneficial in enhancing

efficacy and limiting toxicity, and may play an important role in the

future development of CAR-T therapies (141). Tregs play a

protective role in all phases of MI by suppressing inflammation

and immune response. Tregs expansion may be a potential therapy

for attenuating reperfusion injury and adverse remodeling and

promoting cardiac healing (142). Researchers explored the effects

and mechanisms of systemic delivery of exogenous Tregs on cardiac

repair by constructing a mouse model of MI. They found that

increasing the number of Tregs reduced cardiomyocyte death and

promoted cardiac repair (83). Mechanistically, exogenous Tregs

directly reduce pro-inflammatory Ly6CHiCCR2+ monocytes/

macrophages by expressing nidogen-1 and IL-10, and indirectly

mediate the reduction of pro-inflammatory monocyte/macrophage

subsets by regulating the number of CD8+T cells. Zhu et al. (143)

found that intrapericardial injection of MSC-Exo could induce Foxo3

activation through PP2A/p-Akt/Foxo3 signaling pathway, which

promotes the expression and secretion of Treg-inducing cytokines

by antigen-presenting cells, and that activated Tregs mediate

inflammatory resolution and cardiac repair. Intrapericardial

injection of exosomes can be used as an immunomodulatory

method for cardiac regeneration. In addition, injection of

unrestricted somatic stem cells into the infarcted myocardium can

regulate the migration and activation of T cells, form an inflammatory

microenvironment dominated by T cells, induce cardiomyocyte

regeneration and left ventricular wall thickening, and ultimately

improve cardiac structure and function (144).
5.2.2 B cells
B cells, as important immune cells, play a crucial role in

cardiovascular disease by producing antibodies, secreting
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cytokines, and interacting with other cells. The cardioprotective

effects mediated by empagliflozin may be achieved by induction of

bone marrow-derived naïve B cells. It was found that empagliflozin

treatment increased the number of bone marrow B cells, improved

cardiac function, and prevented secondary myocardial injury in

MIRI mice (145). These cardioprotective effects were further

verified by tail vein infusion of bone marrow naïve B cells (145).

Mechanistically, MI triggers the release of glucocorticoids, induces

autophagy in NHE1-mediated bone marrow B cells, and inhibits the

proliferation and differentiation of B cell progenitors. Tan et al.

(146) demonstrated that murine neonatal cardiac B cells are

essential for cardiomyocyte proliferation and cardiac regeneration,

leading to improved cardiac function. However, in adult mice,

cardiac B cells exacerbate inflammation and deteriorate cardiac

function after myocardial injury. B-cell depletion emerges as a

potential therapy to attenuate cardiac injury in adult mice. The

potential reason may be that after cardiac injury, the proportion of

protective B-cell populations with high expression of S100a6 and

S100a4 is significantly reduced in cardiac tissues of adult mice

compared with neonatal mice. Rituximab, a monoclonal antibody

targeting B cells, selectively depletes B cells by binding specifically to

CD20, a transmembrane protein on the surface of B cells (147).

Intravenous infusion of different doses of rituximab in patients with

acute ST-segment elevation MI within 48 hours after onset of the

disease has been reported to be safe and feasible, effectively

depleting circulating mature B cells and limiting the

inflammatory response (148). Furthermore, targeting B-cell

receptor signaling, B-cell survival, and B-cell and T-cell co-

stimulation may be potential therapeutic strategies for

cardiovascular disease, and further studies are needed for clinical

translation (149). Additionally, vaccination to stimulate the

production of protective antibodies by B cells offers a promising

alternative approach that may be employed in the prevention and

treatment of cardiovascular diseases in the future (149, 150).
6 Summary and discussion

MicroRNAs (miRNAs) are highly conserved single-stranded non-

coding RNA molecules that play an integral role in the regulation of

immune homeostasis as well as in the pathogenesis of MIRI. MiRNAs

are involved in the regulation of cardiomyocyte apoptosis,

inflammatory response, ventricular remodeling, and other

pathological processes (151). MiR-146b-5p is up-regulated in the

serum of infarcted mice, the application of antagomir to inhibit it

significantly reduces cardiomyocyte apoptosis and cardiac fibrosis,

promotes angiogenesis, and increases the number of reparative

macrophages (152). Subsequently, this finding is further validated in

a pig MI model, indicating that targeting immunomodulatory

miRNAs may be a novel therapeutic strategy for ischemic heart

disease (152). Exosomes, with their membrane structure, are natural

carriers of miRNAs, protecting miRNAs from hydrolytic enzymes and

ensuring their stable existence in the circulation. Exosomes of different

cellular origins and the miRNAs they carry can mediate immune

responses, inflammatory responses, cell migration, and intercellular
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communication, and participate in the repair process of ischemic

injury by promoting angiogenesis, inhibiting cardiomyocyte apoptosis

andmyocardial fibrosis (153). Dai et al. (154) explored the mechanism

of action of M2 macrophage-derived exosomes on MIRI. These

exosomes carried miR-148a to the injury region after reperfusion

and attenuated pyroptosis and myocardial injury by inhibiting the

TLR4/NF-kB/NLRP3 inflammatory pathway. Researchers collected

exosomes isolated from the serum of MI patients to determine their

role in angiogenesis (155). They found that these exosomes may be

released by cardiomyocytes and promote angiogenesis by down-

regulating miRNA-143 to activate IGF-IR/NO signaling, thereby

suggesting an anti-angiogenic effect of miRNA-143 (155). Gu et al.

(156) devised engineered exosomes targeting cardiomyocytes and

loaded miR302 into them, subsequently assessed their impact on

MIRI in vivo and in vitro. The results demonstrated that these

exosomes significantly attenuated cardiomyocyte apoptosis and

inflammatory responses, leading to an improvement in cardiac

function. It can be seen that miRNAs-related therapies have

significant potential for the treatment of MIRI. Therefore, it is

necessary to explore effective delivery systems that can prevent

miRNAs from being degraded and accurately target and stably

retain them at the infarction site, in order to facilitate miRNAs-

mediated tissue repair.

Currently, various biomaterials such as nanoparticles,

hydrogels, and bioengineered scaffolds are being applied alone or

in combination with other bioactive molecules to modulate the

immune microenvironment by acting on immune cells, cytokines,

and chemokines, which in turn are used for tissue repair and

regeneration (157). Nanosystems targeting multiple immune cells

have created new opportunities for the treatment of cardiovascular

diseases such as MI. The combination of nanotechnology with

immunotherapy enables controlled and long-lasting immune

modulation with the advantages of precise regulation and fewer

side effects (158). A study evaluated the therapeutic effects of

bilirubin nanoparticles on MIRI in mice and found that their

cardioprotective effects were associated with attenuation of

oxidative stress, apoptosis, and inflammation (159). Hao et al.

(160) developed a novel injectable hydrogel with dual functions of

ROS scavenging and NO release, which can regulate the ROS/NO

imbalance after MIRI and attenuate cardiac injury and adverse

remodeling, promote cardiac repair, and improve cardiac function.

Some researchers have designed an injectable mitochondria-

targeted nanodrug loaded-hydrogel (161). When injected into the

MIRI myocardium, the hydrogel reduces the ROS level in the

cardiac microenvironment, reduces cardiomyocyte apoptosis, and

effectively recovers the mitochondrial and cardiac function, which

can be used to attenuate reperfusion injury (161). Bioengineered

scaffolds can be used for local cardiac biotherapeutics delivery.

Decellularized scaffolds were applied to effectively deliver

extracellular vesicles (EVs) derived from MSCs to the infarcted

myocardium in a porcine model of MI. EVs were slowly released

inside the scaffold, ensuring a locally effective dose, and exerting

anti-inflammatory and immunomodulatory effects by promoting

angiogenesis in vivo, reducing macrophage and T-cell infiltration,

thereby promoting cardiac healing and improving cardiac function
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(162). Additionally, epicardial affixed devices, such as myocardial

wraps and patches, mechanically stabilize the infarct site and can

simultaneously provide a therapeutic effect or be applied in

combination with bioactive materials for immunomodulation,

providing a favorable environment for cardiac repair (163, 164).

Stem cell therapy has demonstrated great potential in treating

MIRI by modulating the immune microenvironment of the infarcted

heart through the paracrine secretome and cell membrane receptors,

altering the recruitment and function of immune cells during cardiac

repair (165). MSCs have emerged as an ideal stem cell type for the

treatment of ischemic injury, and MSC-derived small EVs can

modulate multiple pathological pathways in MIRI and show

therapeutic advantages (166, 167). As immunosuppressants for

myocardial repair, MSCs help reduce inflammation, oxidative

stress, and myocardial fibrosis, but face the challenge of low cell

survival rates for application (168). Systemic intravenous

administration of human induced pluripotent stem cell-derived

MSCs before transplantation has been reported to increase Tregs

activation, reduce macrophage infiltration and apoptosis in infarcted

areas, and improve the survival of transplanted cells in the

myocardium after MI, promote neoangiogenesis and further

improving left ventricular function (169). Recently, a functional

biomaterial coating was used to encapsulate MSC spheroids (170).

This coating protects MSCs from being cleared by the host immune

system while providing ROS scavenging, stimulating pro-healing

paracrine secretion of MSCs, and altering the pathological

microenvironment through immune modulation, ultimately

facilitating the repair of damaged myocardial tissue (170). Some

researchers constructed a porcine MIRI model to investigate the

effects of allograft MSCs delivered intravenously on reperfusion

injury (171). The results demonstrated that intravenous injection of

MSCs immediately after MIRI significantly attenuates microvascular

obstruction and mitigates undesirable remodeling and inflammation

by regulating immune cells (171). The safety and efficacy of MSC-

based treatments for ischemic heart disease have been demonstrated

in animal models, making them promising therapies for mediating

cardiac repair and regeneration. However, there are discrepancies in

the results of clinical trials, and the lack of standardized consensus

and practical methods have limited their routine use in the

clinic (172).

In summary, immune cells and various cytokines are involved in

cardiac tissue repair and regeneration, which play pivotal roles in the

pathological process of MIRI. Targeting the immune system can

attenuate cardiac injury and promote damage repair. Currently,

numerous animal studies have demonstrated the importance of

immunotherapy in the treatment of ischemic heart disease by

modulating the immune microenvironment. However, clinical trials

have not achieved satisfactory results, and there are still challenges in

translating basic experiments into clinical applications. Therefore,

MIRI-related immunotherapies are still in an immature stage. In the
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future, preclinical experiments should be conducted using animal

models with higher similarity to humans. Additionally, precise and

effective drug-targeting delivery vectors need to be developed, and

rigorously designed, high-quality clinical trials should be conducted

to ultimately promote the clinical translation of immunotherapies.
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