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Integrated multiomics analysis
and machine learning refine
neutrophil extracellular trap-
related molecular subtypes and
prognostic models for acute
myeloid leukemia
Fangmin Zhong, Fangyi Yao, Zihao Wang, Jing Liu, Bo Huang*

and Xiaozhong Wang*

Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical
Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated
Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
Background: Neutrophil extracellular traps (NETs) play pivotal roles in various

pathological processes. The formation of NETs is impaired in acute myeloid

leukemia (AML), which can result in immunodeficiency and increased

susceptibility to infection.

Methods: The gene set variation analysis (GSVA) algorithm was employed for the

calculation of NET score, while the consensus clustering algorithm was utilized

to identify molecular subtypes. Weighted gene coexpression network analysis

(WGCNA) revealed potential genes and biological pathways associated with

NETs, and a total of 10 machine learning algorithms were applied to construct

the optimal prognostic model.

Results: Through the analysis of multiomics data, we identified two molecular

subtypes with high and low NET scores. The low-NET score subgroup exhibited

increased infiltration of immune effector cells. Conversely, the high-NET score

subtype presented an abundance of monocytes and M2 macrophages,

accompanied by elevated expression levels of immune checkpoint genes.

These findings suggest that a pronounced immunosuppressive effect is

associated with a significantly worse prognosis for this subtype. The optimal

risk score model was selected by employing the C-index as the criterion on the

basis of training 10 machine learning algorithms on 9 multicenter AML cohorts.

Survival analysis confirmed that patients with high-risk scores had considerably

poorer prognoses than those with lower scores. Receiver operating

characteristic (ROC) curve and Cox regression analyses further validated the

strong independent prognostic value of the risk score model. The nomogram,

which was constructed by integrating the risk score model and

clinicopathological factors, demonstrated high accuracy in predicting the

overall survival of AML patients. Moreover, patients with refractory or

chemotherapy-unresponsive AML had significantly higher risk scores. By

analyzing drug therapy data from in vitro AML cells, we identified a subset of

drugs that demonstrated increased sensitivity in the high-risk score group.
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Additionally, patients with a high risk score were also predicted to exhibit a

favorable response to anti-PD-1 therapy, suggesting that these individuals may

derive greater benefits from immunotherapy.

Conclusion: The NET-related signature, derived from a combination of diverse

machine learning algorithms, has promising potential as a valuable tool for

prognostic prediction, preventive measures, and personalized medicine in

patients with AML.
KEYWORDS

acute myeloid leukemia, neutrophil extracellular traps, molecular subtypes, machine
learning, prognosis, personalized medicine
Introduction

Acute myeloid leukemia (AML) is characterized by impaired

differentiation and uncontrolled proliferation of malignant

hematopoietic stem/progenitor cells, resulting in the suppression of

the normal hematopoietic lineage and significant impairment of blood

cell production and immune function (1). Consequently, AML patients

are highly susceptible to infectious complications, both as a

consequence of the disease itself and treatment-related factors such

as chemotherapy (2, 3). These crucial factors significantly contribute to

the unfavorable prognosis of patients with AML, underscoring the

importance of investigating relevant mechanisms and developing novel

prognostic markers for evaluating patient outcomes.

Neutrophil extracellular traps (NETs) are recently discovered

extracellular network structures that are primarily released by

neutrophils in response to various stimuli. This structure is

composed of DNA, histone proteins, and antibacterial proteins

and serves as a crucial innate immune defense mechanism against

pathogenic microorganisms such as bacteria, fungi, viruses, and

protozoa. The process of neutrophil secretion of NETs, known as

NETosis, represents a distinct form of neutrophilic death that differs

from apoptosis and necrosis. This process necessitates the activation

of neutrophils and the generation of reactive oxygen species

through NADPH oxidase.

Currently, there are two classifications of NETs: Suicidal

NETosis, where neutrophils release NETs before undergoing

membrane disintegration and subsequent cell death; and vital

NETosis, where neutrophils remain alive after releasing vesicular

forms of NETs (4). The impact of NETosis on tumorigenesis and

development is twofold (5). On the one hand, by activating the

immune system, NETs can inhibit tumor growth. Additionally,

through the release of NETs, neutrophils interact with T cells to

lower their activation threshold and directly stimulate antitumor

immune effects (6). On the other hand, tumors can induce

neutrophil-mediated NETosis and promote tumor metastasis,

thereby contributing to cancer progression (7). In patients with

AML, immature differentiation of neutrophils and inadequate

chromatin concentrations pose challenges in releasing chromatin
02
into the extracellular space to form functional NETs (8). This

directly affects AML patients’ ability to combat bacterial

infections, which are a significant cause of mortality during AML

treatment (9). Several studies have confirmed the impaired release

of NETs in AML patients (10, 11); however, the underlying

mechanisms remain incompletely understood. Therefore,

analyzing the relationships between the expression of genes

related to NET formation and prognostic features in AML is crucial.

In this study, we computed the NET score on the basis of NET-

related genes (NRGs) and assessed its correlation with prognosis,

immune characteristics, and cancer-promoting pathways in

patients with AML. Additionally, we identified two distinct

molecular subtypes related to NETs that exhibited significant

disparities in the tumor microenvironment (TME). We

subsequently employed ten machine learning algorithms to

construct an optimal prognostic risk score model via NRG

expression. The accuracy of our model’s prognostic predictions

was validated across nine AML cohorts. Finally, we investigated

differences in sensitivity to different chemotherapy agents and

immunotherapy responsiveness between the high-risk and low-

risk groups while also validating the expression of model genes

through clinical sample collection.
Materials and methods

Data collection and preprocessing

A total of 9 cohorts consisting of AML samples were utilized in

this study, encompassing a total of 2061 AML samples whose

clinical information was available. These cohorts comprised 8

Gene Expression Omnibus (GEO) datasets, namely, GSE10358-

GPL570, GSE12417-GPL96, GSE12417-GPL570, GSE37642-

GPL96, GSE37642-GPL570, GSE71014-GPL10558, GSE14688-

GPL570 and Beat AML (12). Additionally, we obtained 173 AML

samples from the TCGA-LAML cohort and 337 normal blood

samples from the GTEx cohort from the UCSC Xena database

(https://xena.ucsc.edu/). To ensure consistency across platforms for
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GEO cohorts on the GPL570 chip platform, we acquired the

original “CEL” file and performed data normalization via the

robust multiarray averaging (RMA) method. For other GEO

cohorts on different platforms, standardized data files were

downloaded. RNA sequencing data from the TCGA-LAML,

GTEx, and Beat AML cohorts were converted into transcripts per

million (TPM) values. Somatic mutation data and gene copy

numbers were retrieved from the TCGA database (https://

portal.gdc.cancer.gov/). A total of 69 NRGs were obtained from a

previous study (13, 14) (Supplementary Table S1).
Analysis of functional enrichment and
evaluation of immune cell infiltration

The software package ‘clusterProfiler’ was utilized for

performing Gene Ontology (GO) annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis (15). The pathway score was calculated via the gene set

variation analysis (GSVA) algorithm to quantify the activity level of

each pathway (16). The GSVA algorithm initially ranks the

expression levels of all genes within a single sample in descending

order, followed by an analysis of the positioning of target gene sets

within this ranking. If these genes exhibit high expression levels,

they will be ranked higher, indicating elevated activity of the

corresponding gene set or pathway. In this study, we assessed the

scores of the NET gene set as a representation of NET activity

within each sample. To estimate the proportions of 22 infiltrating

immune cell types, we employed the CIBERSORT algorithm (17).

Additionally, the ESTIMATE algorithm was applied to assess both

the immune score and matrix score for the entire sample (18).
Identification of molecular subtypes

The “ConsensusClusterPlus” package was utilized for

unsupervised clustering of AML samples, and 1000 resampling

iterations were performed to ensure the robustness of the cluster

analysis results.
Weighted gene coexpression
network analysis

WGCNA is a systematic biological approach used to identify

highly correlated gene sets and characterize patterns of gene

associations across different samples. In our study, we utilized the

“WGCNA” package to conduct WGCNA (19). Initially, we

calculate an appropriate soft threshold b to ensure the

construction of a scale-free network. We subsequently

transformed the weighted adjacency matrix into a topological

overlap matrix (TOM) and computed dissimilarity (dissTOM).

To cluster genes and identify modules, we employed the dynamic

tree-cutting method. Ultimately, we identified modules that

exhibited the strongest correlation with phenotype for

further analysis.
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Development of a prognostic model
through the integration of machine
learning approaches

We utilized genes from modules associated with NET scores

and subtypes identified by WGCNA to construct prognostic

models. Initially, we employed univariate Cox regression analysis

to screen for genes significantly associated with prognosis (P<0.05)

in at least five of the nine AML cohorts while maintaining a

consistent hazard ratio (HR) orientation. The TCGA-LAML

dataset was designated the analysis cohort, while the remaining

datasets served as the validation cohort. By incorporating 10

machine learning algorithms, including CoxBoost, stepwise Cox,

Lasso, Ridge, elastic net (Enet), survival support vector machines

(survival-SVMs), generalized boosted regression models (GBMs),

supervised principal components (SuperPC), partial least Cox

(plsRcox) and RSF, we performed 117 combinations of these

algorithms in the TCGA-LAML training cohort for variable

selection and model construction on the basis of a 10-fold cross-

validation framework (20, 21). All the constructed models were

evaluated in both the validation and analysis cohorts. For each

model, its C-index was calculated in both the training and

validation cohorts. We subsequently ranked the predictive

performance of each model on the basis of its average C-index

within the validation cohort. Finally, a combination of algorithms

demonstrating robust performance and clinical translational

significance was selected to develop a risk score model capable of

predicting AML patient prognosis. In this study, the ridge algorithm

was used to construct the risk scoring model.

Risk   score =  oi
1(Coefi ∗ ExpGenei)  ,

where i is the model gene, and the regression coefficient and

expression value are represented by ‘Coef’ and ‘ExpGene’,

respectively (Supplementary Table S3). Using an optimal cutoff

value, all the AML cohorts were stratified into high- and low-risk

score groups for further analysis.
Forecasting the efficacy of immunotherapy
and predicting susceptibility
to chemotherapy

The SubMap algorithm (https://cloud.genepattern.org/gp) was

employed to predict the response of diverse risk score groups to

immunotherapy involving anti-PD-1 and anti-CTLA4. Within the

Beat AML cohort, we examined potential therapeutic agents

suitable for various risk score groups by analyzing drug sensitivity

data pertaining to in vivo AML cells.
Transcriptome sequencing of clinical
samples from patients with AML

This research was granted approval by the Ethics Committee at

the Second Affiliated Hospital of Nanchang University (No. review.
frontiersin.org
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[2018] No. (092)). In accordance with the World Health

Organization’s classification of tumors in hematopoietic and

lymphoid tissues, we obtained 5 newly diagnosed AML samples that

had not undergone any prior treatment, as well as 5 normal samples,

following established guidelines. All the samples remained after the

participants underwent relevant examinations. The procedures and

protocols for sample collection, transcriptome sequencing, and

processing were described in detail in our previous publication (22).
Statistical analysis

R software was utilized for conducting the statistical analysis.

The Wilcoxon test was used to assess differences between two

groups, whereas the Kruskal−Wallis test was used to compare
Frontiers in Immunology 04
differences among multiple groups. A significance level of P<0.05

was considered (* P<0.05, ** P<0.01, *** P<0.001).
Results

Development of a NET scoring system to
investigate the potential associations
between NETs and the TME

First, the GSVA algorithm was used to calculate NET scores for

both AML samples and normal samples to characterize NET

activity. Correlation analysis revealed a significant positive

correlation between the NET score and the neutrophil ratio

(R=0.91, P<2.2e-16) (Figure 1A), confirming the reliability of the
FIGURE 1

Construction of the NET scoring system and correlation analysis with the TME. (A) Association between the NET score and the presence of
neutrophils in the TCGA-LAML and GTEx normal blood samples cohorts. (B) Comparison of NET scores in samples from patients with AML and
healthy individuals. (C) Comparison of NRG expression in samples from patients with AML and healthy individuals. (D-H) Correlations between the
NET score and the activity of cancer signature pathways (D), immune response scores (E), stromal scores (F), infiltration of immune cells (G), and
expression of immune checkpoint molecules (The number represents the R-value of the correlation) (H) in the TCGA-LAML cohort. (I) Survival
analysis between different NET score groups in the TCGA-LAML cohort. * P<0.05, ** P<0.01, *** P<0.001.
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NET score calculation method. Notably, compared with normal

samples, AML samples presented significantly lower NET scores

(Figure 1B), which can be attributed to the immature neutrophil

differentiation observed in AML samples. Heatmap analysis

revealed that most NRG genes were downregulated in AML

samples (Figure 1C). Furthermore, there was a significant positive

correlation between the NET score and the activity of various

cancer signature pathways, particularly immune-related pathways

such as the complement, IL6-JAK-STAT3 signaling, and

inflammatory response pathways (Figure 1D), indicating an

interconnected relationship between NETs and the immune

microenvironment. Subsequent analysis confirmed a significant

positive correlation between the NET score and the immune

score (R=0.77, P<2.2e-16) as well as the matrix score (R=0.73,

P<2.e-16) (Figures 1E, F), thus supporting our initial hypothesis.

Immune infiltration analysis revealed a significant positive

correlation between the NET score and the proportion of

infiltrating monocytes and neutrophils, whereas a significant

negative correlation was observed with immune effector cells such

as plasma cells, CD4+ T cells, B cells, CD8+ T cells, NK cells, mast

cells, and dendritic cells (Figure 1G). However, high NET scores

were associated with increased expression of immune checkpoints

such as HAVCR2, PD-L2, CD86, and TNFRSF9 (Figure 1H). These

findings suggest that the formation and release of NETs may also be

involved in the immune evasion of tumor cells (23, 24). Survival

analysis demonstrated that patients with high NET scores had

significantly worse prognoses (Figure 1I).
The landscape of NRG expression

We further analyzed the expression characteristics of NRG in

AML. Univariate Cox regression analysis revealed a significant

correlation between the expression of 15 NRGs and the prognosis

of AML patients (P<0.05) (Figure 2A). Among these genes, CSF3R,

ELANE, and MPO were identified as protective factors for AML

patient prognosis, with high expression indicating a better

prognosis. Conversely, the remaining 12 NRGs were identified as

risk factors for AML and were associated with poor prognosis in

patients. Copy number variation analysis of these 15 NRGs revealed

a relatively high acquisition frequency for KCNJ15 and ITGB2,

whereas MAPK3 and ITGAM presented relatively high copy

number loss frequencies (Figure 2B). Somatic mutation analysis

revealed only one AML sample with a missense mutation in LILRB2

(Figure 2C). Expression correlation analysis revealed a significant

positive correlation between CSF3R, ELANE, and MPO expression,

as well as positive correlations among other NRGs, suggesting

potential synergistic effects between these genes (Figure 2D). To

validate the bioinformatics analysis results, we conducted

expression verification for the prognostic NRG identified above.

Differential analysis between TCGA-LAML and GTEX-normal

samples revealed that, in AML samples, the expression of CREB5,

CSF3R, FPR1, CXCR2, KCNJ15, LILRB2, ITGAM, ITGB2, MAPK1,

MAPK3, RIPK3 and SELPL was significantly downregulated

compared with that in normal samples (Figure 2E). Additionally,

the expression of AKT1 and MPO was significantly downregulated.
Frontiers in Immunology 05
Consistent with the public cohort findings (Figure 2F), our clinical

cohort also exhibited a similar expression trend, which further

enhances the reliability of our data analysis.
Identification of NET-related molecular
subtypes in AML

To better assess the molecular characteristics of the NRG in

AML patients, we employed a consensus clustering algorithm to

categorize them into two subgroups, namely, Cluster C1 and

Cluster C2, on the basis of the distinct expression patterns of the

15 prognostic NRGs (Figure 2G). The reliability of the molecular

subtypes was confirmed via the PCA algorithm (Figure 2H). The

survival analysis revealed a significantly superior prognosis for

patients with the C1 subtype compared to those with the C2

subtype (Figure 2I). Interestingly, the C1 subtype presented

significantly elevated expression levels of CSF3R, ELANE, and

MPO, whereas the remaining NRGs presented higher expression

levels in the C2 subtype (Figure 2J). Moreover, the C2 subtype

displayed higher NET scores as well as immune and stromal scores

(Figures 2K, L), potentially related to its increased monocyte

infiltration proportion (Figure 2M). We also observed the

upregulation of immune checkpoints such as PD-1, PD-L1, and

CTLA4 in the C2 subtype (Figure 2N). Pathways associated with

cell growth and proliferation, such as the biosynthesis of cofactors,

the cell cycle, DNA replication, and ribosome and ribosome

biogenesis in eukaryotes, demonstrated increased enrichment

scores in the C1 subtype (Figure 2O), whereas the activity scores

of immune-related signaling pathways, including chemokine

signaling pathway, FcgR-mediated phagocytosis, NOD-like

receptor signaling pathway and Th17 cell differentiation were

higher in the C2 subtype (Figure 2P).
Validating the NET-related molecular
subtypes and analyzing the biological
differences between the
molecular subtypes

To further validate the existence of the two NET-related

molecular subtypes, we conducted differential expression analysis

of the C1 and C2 subtypes, resulting in the identification of a total of

286 DEGs (Supplementary Table S2). The biological functions

associated with these DEGs involved signaling pathways such as

positive regulation of cytokine production, phagocytosis, and

secretory granule membranes, all of which are closely linked to

NET release and function (Figure 3A). By utilizing the expression

profiles of prognosis-related DEGs, we performed consensus cluster

analysis and successfully classified patients into two distinct gene

clusters: geneClusters A and B (Figure 3B). Notably, patients

belonging to geneCluster B presented significantly worse

outcomes than did those in geneCluster A (Figure 3C). Alluvial

maps revealed that the majority of C1 subtype patients were

predominantly assigned to geneCluster A, whereas most C2

subtype patients were predominantly assigned to geneCluster B;
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FIGURE 2

Genetic characteristics of NRG and identification and differential analysis of NET-related molecular subtypes in the TCGA-LAML cohort.
(A) Univariate Cox regression analysis was conducted to examine the relationship between NRG levels and prognosis in AML patients in the TCGA-
LAML cohort. (B, C) The frequencies of copy number variations (CNVs) and somatic mutations in the prognostic NRG gene were analyzed in the
TCGA-LAML cohort. (D) Correlation analysis of prognostic NRG expression. (E, F) Variations in prognostic NRG expression between normal samples
and AML samples were assessed in both the combined TCGA-LAML cohort and the GTEx-normal cohort (E), as well as the clinical cohort (F).
(G) The consensus clustering algorithm identified two distinct molecular subtypes. (H) The reliability of the clustering was validated via the PCA
algorithm. (I) Survival analysis revealed significant differences between the two subtypes. (J) Differences in the expression characteristics of NRG
between the two subtypes were visualized via a heatmap. (K-N) Differences in the NET score (K), TME score (L), immune cell infiltration (M), and
immune checkpoint expression (N) were observed between subtypes. (O, P) GSEA identified signaling pathways with significant enrichment
differences between molecular subtypes. * P<0.05, ** P<0.01, *** P<0.001. ns, no significance.
Frontiers in Immunology frontiersin.org06
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moreover, a greater proportion of deceased patients were present in

geneCluster B (Figure 3D). Furthermore, the NET score within

geneCluster B was significantly higher than that within geneCluster

A (Figure 3E). This difference was even more pronounced than the

disparity between subtypes C1 and C2, suggesting that these two

specific genetic subtypes may better discern variations in the tumor

microenvironment among individuals with differing levels of NET

activity. In terms of clinical characteristics, the C2 subtype

encompassed a greater number of elderly patients with adverse

cytogenetic risk factors (Figure 3F). Immune infiltration analysis

revealed that geneCluster A had an increased proportion of naive B

cells, plasma cells, CD8+ T cells, resting CD4+ memory T cells,

follicular helper T cells, resting mast cells, and eosinophils, whereas
Frontiers in Immunology 07
monocytes and M2 macrophages constituted a greater fraction

within geneCluster B (Figure 3G). Additionally, the expression of

immune checkpoint genes such as PD-L1, CTLA4, and IDO1 was

significantly upregulated in gene Cluster B (Figure 3H). Numerous

studies have demonstrated that monocytes are involved in chronic

inflammation, whereas M2 macrophages hinder the functionality of

immune cells through the release of immunosuppressive chemicals.

This phenomenon facilitates immune evasion by tumor cells,

thereby promoting tumor resistance and progression. Taken

together, these findings indicate that there are two distinct NET-

related molecular subtypes in patients with AML, which

significantly differ in terms of prognosis, clinical characteristics,

and the TME.
FIGURE 3

Validation of molecular subtypes in the TCGA-LAML cohort. (A) Functional annotation was conducted on genes that were differentially expressed
between molecular subtypes. (B) Consensus clustering was performed on the basis of the expression of these DEGs. (C) Survival analysis was carried out
to compare the two gene subtypes. (D) The distribution patterns of patients across NRG molecular subtypes and gene subtypes were examined.
(E, F) Discrepancies in the NET score (E), DEG expression, and clinicopathologic factors (F) were observed between the gene subtypes. (G) Differences in
immune cell infiltration were identified between the gene subtypes. (H) Variations in immune checkpoint gene expression were found between the
different gene subtypes. * P<0.05, ** P<0.01, *** P<0.001.
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Development and prognostic value analysis
of the NET-related signature

To better elucidate potential NRGs and biological pathways, we

employed the WGCNA algorithm to identify coexpressed gene

modules associated with NET scores, Cluster C1/C2, and

geneClusters A/B (Figure 4A). The turquoise module exhibited

the strongest correlation with all three phenotypes (NET score:

R=0.81, P=9e-42; Cluster C1/C2: R=0.42, P=1e-08; geneCluster A/

B: R=0.78, P=6e-37), thus warranting our focus on this module

(Figure 4B). This module encompasses 1385 genes that are enriched

primarily in immune-related pathways such as the cytokine

−cytokine receptor interaction, tuberculosis, phagosome, and

NOD-like receptor signaling pathways (Figure 4C). We then

utilized these genes to construct NET-related signatures and
Frontiers in Immunology 08
elucidate their prognostic value and therapeutic value. Univariate

Cox regression analysis was employed to identify 22 prognostic

genes, followed by the construction of prognostic risk score models

on the basis of 117 combinations of 10 machine learning

algorithms. The predictive power of all the models was assessed

by calculating the C-index for each model in all the cohorts. Among

the validation cohorts, we selected the model combination with the

highest average C-index, an algorithm composed of StepCox

(forward) and Ridge (Figure 4D). The StepCox algorithm

identified the most valuable genes, whereas the ridge algorithm

further constructed a highly valuable model consisting of 22 genes

(Figures 5A, B). We subsequently calculated the risk score for each

sample across all cohorts. Patients with high risk scores exhibited

poor clinical outcomes in all nine AML cohorts examined

(Figures 5C–K). Further univariate Cox regression analysis
FIGURE 4

Relevant NRGs were identified via WGCNA and machine learning-based integrators to construct and validate a risk score model. (A) Clustering based
on different measures (1-TOM) is represented in the dendrogram in the TCGA-LAML cohort. (B) Heatmap illustrating the correlations between
modules and various phenotypes. (C) KEGG enrichment analysis reveals the functional role of genes in the turquoise module. (D) A comprehensive
computational framework generated a combination of 117 machine learning algorithms, with each model’s C-index calculated across 9 cohorts and
sorted on the basis of the average C-index from the validation set evaluation.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1558496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2025.1558496
confirmed a significant correlation between the risk score model

and prognosis among AML patients (P<0.05) (Figure 5L). ROC

curve analysis revealed that in the TCGA-LAML cohort, the area

under the curve (AUC) values for predicting 1-year, 3-year, and 5-

year survival rates among AML patients were 0.819, 0.829, and

0.899, respectively; similar results were observed in other cohorts

where the AUC values exceeded 0.6, thus fully validating the

accuracy of our risk score model’s prognostic predictions

(Figure 6A). The three AML cohorts, TCGA-LAML, GSE14468,

and Beat AML, contained additional clinical information that

allowed us to perform independent prognostic analyses, revealing

significant independent prognostic value associated with our risk

score model through both univariate and multivariate Cox analyses

(P<0.05) (Figures 6B, C).
Frontiers in Immunology 09
Comparison of prognostic signatures
in AML

Next, we integrated the risk scoring model with gene expression

analyses derived from large-scale in vitro and in vivo CRISPR-Cas9

knockout screening (AFG16) (25), stem cell subpopulation-defined

phenotypes (LSC17) (26), multiple paired comparisons between AML

subgroups and healthy controls (CODEG22) (27), or capturing

intratumoral heterogeneity in AML (GENE4) (28) to generate a

comprehensive comparison of robust prognostic signatures. In the

three cohorts with extensive clinical annotations, namely, TCGA,

GSE14468, and Beat AML, the risk scores exhibited a slightly higher

C-index than did the other signatures on the basis of gene expression

analysis (Figure 7A). However, their values were lower than those
FIGURE 5

Construction of the risk score model. (A) The penalty coefficient was computed for the minimum 10-fold cross-validation error point to identify the
corresponding model gene. (B) Estimation of the coefficients for the model genes. Each line corresponds to a model gene. (C-K) Utilizing an optimal
cutoff value, patients in the AML cohort were stratified into high- and low-risk score groups for survival analysis. (L) Univariate Cox regression
analysis demonstrated the predictive ability of the risk score across 9 AML cohorts.
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obtained from AFG16 and LSC17 within the GSE14468 cohort.

Overall, these findings demonstrate that risk scores are independent

of previously published signatures relying on gene expression analysis

and can serve as reliable prognostic predictors for patients with AML.

Finally, we incorporated clinicopathological factors significantly

associated with AML prognosis identified through univariate Cox

analysis into a nomogram for predicting overall survival (OS) in AML

patients (Figure 7B). The calibration curves of the TCGA, GSE14468,

and Beat AML datasets confirmed the accuracy of our nomogram

predictions (Figure 7C).
Analysis of variations in chemotherapy
sensitivity and immunotherapy response
between risk score groups

To comprehensively evaluate the role of risk scores in

chemotherapy and immunotherapy for AML, we conducted a
Frontiers in Immunology 10
systematic analysis. Compared with responders, patients who did

not respond to chemotherapy in the GSE14468 and Beat AML

datasets presented significantly elevated risk scores, with a greater

proportion of patients in the high-risk group failing to respond to

chemotherapy (Figures 8A, B). The Beat AML cohort included drug

sensitivity data, specifically for isolated AML cells. On the basis of a

significance level of P<0.001, we identified a set of drugs exhibiting

significant sensitivity differences between the high- and low-risk

groups, with the low-risk group displaying greater sensitivity

toward GSK-1838705A. In the high-risk group, 17-AAG

(tanespimycin), bosutinib (SKI-606), CI-1040 (PD184352),

crenolanib, dovitinib (CHER-258), foretinib (XL880), linifanib

(ABT-869) , s e lumet in ib (AZD6244) and tramet in ib

(GSK1120212) were more sensitive (Figure 8C). With respect to

the prediction of the immunotherapy response, all three cohorts

indicated that the high-risk group exhibited an improved

therapeutic response to PD-1 therapy after correction for multiple

testing at p<0.05 (Figure 8D).
FIGURE 6

Validation of the prognostic predictions of the risk score models. (A) The risk scores of the 9 cohorts were analyzed via receiver operating
characteristic (ROC) curve analysis. (B, C) The TCGA-LAML, GSE14468, and Beat AML cohorts were subjected to univariate (B) and multivariate
(C) Cox regression analyses of clinicopathologic factors and risk scores.
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Discussion

AML patients with aberrant myeloid hematopoiesis,

particularly disordered neutrophil differentiation, exhibit impaired

immune function and frequently experience complications such as

severe infections (29). NETs play a crucial role in combating

infections (13). Previous studies have demonstrated that the

formation and release of NETs are compromised in AML (10),

potentially serving as a significant mechanism contributing to the

unfavorable prognosis observed in AML patients. This study aimed

to analyze the comprehensive expression profile of NRG to

elucidate the underlying mechanism of NETs in AML.

The NET score was initially quantified to assess the activity of

NETs, which was further validated via the GSVA algorithm and

correlation analysis. AML patients presented a significant reduction

in NET scores, which correlated with the downregulation of overall

NRG gene expression. However, a high NET score in AML patients

indicates increased activity of the cancer signature pathway and
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predicts poor prognosis. This was accompanied by reduced

infiltration of immune effector cells and an increased ratio of

monocytes to neutrophils. Additionally, there was a positive

correlation between the NET score and immune checkpoint

expression. Subsequent cluster analyses confirmed distinct

molecular subtypes with significantly different NET scores in AML

patients. Notably, the low-NET score subtypes (Cluster C1 and

geneCluster A) presented increased proportions of CD4+ and CD8

+ T cells as well as B cells, whereas the high-NET score subtypes

(Cluster C2 and geneCluster B) presented increased numbers of

monocytes and M2 macrophages along with elevated levels of

immune checkpoints such as PD-1, PD-L1, and CTLA4. On the

basis of these findings, it can be speculated that a high NET score has

pronounced immunosuppressive effects, whereas increased

infiltration of mononuclear macrophages is associated with chronic

inflammation (30). Moreover, M2 macrophages play a crucial role in

chronic inflammation by inhibiting tumor immune cell activity

through the secretion of various cytokines and surface molecules,
FIGURE 7

Model comparison and construction of the nomogram. (A) The performance of the risk score model was evaluated against the C index of previously
published signatures in the TCGA-LAML, GSE14468, and Beat AML cohorts. (B) A nomogram incorporating both clinicopathological factors and the
risk score was developed to predict overall survival (OS) in patients with AML. The following three scales indicate the likelihood of survival exceeding
the respective time periods. (C) A calibration curve was used to assess the precision of the nomogram for predicting OS.
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leading to immune evasion (31). Chronic inflammation has also been

implicated as an additional factor contributing to the development of

AML (32). In light of these adverse factors, immunity is

compromised in AML patients, resulting in reduced anti-infection

capabilities. Although a higher NET score may indicate attempts by

neutrophils to increase the body’s anti-infection ability through

improved formation and release of NETs, this seems ineffective in

preventing infection. Of course, these bioinformatics findings

presented herein suggest several potential phenomena and

biological associations, and further experimental validation is

required to substantiate these observations. Furthermore, our

observations indicate that patients with the low-NET score subtype,

who exhibited a more favorable prognosis, demonstrated heightened

activity in cell cycle and DNA replication pathways. Typically, AML

treatment predominantly relies on chemotherapy, particularly drugs

targeting the cell cycle. Cancer cells with elevated cell cycle and DNA

replication activities are more susceptible to these agents, thereby
Frontiers in Immunology 12
enhancing the efficacy of chemotherapy. Moreover, highly active

cancer cells depend on continuous proliferation signals; inhibiting

these signals can induce cell death. Active DNA replication can also

result in genomic instability, which, although it may potentially

promote cancer progression, can also render cancer cells more

vulnerable to defects in DNA damage repair mechanisms,

increasing their sensitivity to therapeutic interventions.

Additionally, rapidly proliferating cancer cells may express a

greater number of neoantigens, making them more readily

recognized and targeted by the immune system, thus augmenting

the effectiveness of immunotherapy.

Second, we conducted WGNCA analysis and identified a set of

genes that exhibited significant associations with the NET score and

molecular subtypes. These genes are enriched in pathways such as

the cytokine−cytokine receptor interaction, tuberculosis,

phagosome, and NOD−like receptor signaling pathways, which

are closely related to NET regulation (33). We subsequently
FIGURE 8

Distinguishing the responsiveness to chemotherapy and immunotherapy between the high- and low-risk score groups. (A) Variations in risk scores were
observed among patients who exhibited a positive response to chemotherapy compared with those who did not, within the GSE14468 cohort.
(B) Distinctions in risk scores were identified between patients responsive or resistant to chemotherapy within the Beat AML cohort.
(C) Chemotherapeutic agents displaying varying degrees of sensitivity across different risk score groups within the Beat AML cohort. (D) Anticipating the
efficacy of anti-PD-1 and anti-CTAL4 immunotherapy on the basis of diverse risk score categories across the TCGA-LAML, GSE14468, and Beat AML
cohorts. The P-value indicates the potential efficacy of the corresponding immunotherapy; a smaller P-value suggests a higher level of benefit.
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comprehensively analyzed the prognostic value of these potentially

related NRGs. Machine learning algorithms have been employed for

analyzing multiple types of omics data effectively (34). In this study,

we included 9 multicenter cohorts of AML patients and selected the

best combination of machine learning algorithms out of 117 options

to overcome algorithm selection limitations. To prevent overfitting

during the construction of the risk score model, that is, good

predictive performance on training data can be generalized to

other validation datasets, we used the average C-index from

multiple validation datasets as our selection criterion. Then,

StepCox (forward) and Ridge were utilized for training purposes.

The risk score model demonstrated excellent performance on both

the training and validation datasets. In all 9 AML cohorts examined,

patients with high risk scores had a significantly worse prognosis.

Univariate and multivariate Cox regression analyses confirmed that

the risk score model was an independent predictor of AML

prognosis. This finding was further supported by ROC curve

analysis, which validated its prognostic value. The nomogram

constructed by integrating the risk score model with age and

cytogenetic risk demonstrated remarkable accuracy in predicting

the OS of patients with AML. Consequently, our study presents an

independent and reliable prognostic assessment tool for evaluating

AML prognosis.

Finally, our analysis revealed that patients with refractory or

chemotherapy-unresponsive AML presented significantly elevated

risk scores, indicating the potential of the risk score model in

predicting chemotherapy sensitivity among AML patients. By

utilizing data on drug treatment in ex vivo AML cells from patients,

we identified a cluster of drugs displaying increased sensitivity within

the high-risk score group, thereby providing valuable insights into

treatment strategies for these individuals. Furthermore, patients with a

high risk score were also predicted to be responsive to anti-PD-1

therapy, suggesting that those with an elevated risk score may derive

greater benefits from immunotherapy. Our findings underscore the

importance of the risk score model as a valuable biomarker for guiding

precision therapy in AML patients and potentially improving patient

outcomes while reducing unnecessary treatment costs. Overall, this

risk score model holds promise as a clinical tool enabling physicians to

make personalized treatment decisions. However, it is important to

acknowledge certain limitations of this study. For example, although

we conducted analyses and validated NET-related signatures across

nine AML cohorts, further confirmation through larger-scale

multicenter real-world cohorts is still warranted. Additionally, more

extensive in vitro and in vivo experiments are needed to elucidate the

biological function of NRG in relation to AML. Moreover, despite our

predictions regarding the sensitivity of different risk score subgroups

to small-molecule agents and immunotherapy interventions,

validation through in vitro drug assays and clinical trials is necessary.
Conclusion

The present study comprehensively analyzed the molecular

characteristics of NETs in AML and elucidated their associations
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with the TME and prognosis in AML patients, thereby providing

novel insights into the molecular mechanisms underlying AML

progression. NET-related signatures, which are constructed via

diverse machine learning algorithms, hold great promise as

valuable tools for prognostic prediction, prevention, and

personalized medicine in AML patients.
Data availability statement

The data presented in the study are deposited in the GEO

repository, accession number GSE10358, GSE12417, GSE37642,

GSE71014, GSE14688.
Ethics statement

The studies involving humans were approved by Ethics

Committee at the Second Affiliated Hospital of Nanchang

University. The studies were conducted in accordance with the

local legislation and institutional requirements. Written informed

consent for participation in this study was provided by the

participants’ legal guardians/next of kin.
Author contributions

FZ: Data curation, Formal analysis, Funding acquisition,

Methodology, Resources, Software, Validation, Visualization,

Writing – original draft. FY: Funding acquisition, Validation,

Visualization, Writing – original draft. ZW: Validation,

Visualization, Writing – original draft. JL: Funding acquisition,

Validation, Visualization, Writing – original draft. BH:

Conceptualization, Funding acquisition, Project administration,

Supervision, Writing – review & editing. XW: Conceptualization,

Funding acquisition, Project administration, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The study was

funded by the National Natural Science Foundation of China

(82160405, 82160038, 82260035, 82460036), the Natural Science

Foundation of Jiangxi Province (20232BAB216037, 20224BAB216037).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1558496
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2025.1558496
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,
Frontiers in Immunology 14
or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1558496/

full#supplementary-material
References
1. Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on
diagnosis, risk-stratification, and management. Am J Hematol. (2023) 98:502–26.
doi: 10.1002/ajh.26822

2. Hansen BA, Wendelbo Ø, Bruserud Ø, Hemsing AL, Mosevoll KA, Reikvam H.
Febrile neutropenia in acute leukemia. Epidemiology, etiology, pathophysiology and
treatment. Mediterr J Hematol Infect Dis. (2020) 12:e2020009. doi: 10.4084/
MJHID.2020.009

3. Logan C, Koura D, Taplitz R. Updates in infection risk and management in acute
leukemia. Hematol Am Soc Hematol Educ Program. (2020) 2020:135–9. doi: 10.1182/
hematology.2020000098

4. Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al.
NETosis markers: Quest for specific, objective, and quantitative markers. Clinica
chimica acta; Int J Clin Chem. (2016) 459:89–93. doi: 10.1016/j.cca.2016.05.029

5. Shaul ME, Fridlender ZG. The dual role of neutrophils in cancer. Semin Immunol.
(2021) 57:101582. doi: 10.1016/j.smim.2021.101582

6. Jaboury S, Wang K, O’Sullivan KM, Ooi JD, Ho GY. NETosis as an oncologic
therapeutic target: a mini review. Front Immunol. (2023) 14:1170603. doi: 10.3389/
fimmu.2023.1170603

7. Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of
neutrophil extracellular traps (NETs) in tumor progression and metastasis. Front
Immunol. (2020) 11:1749. doi: 10.3389/fimmu.2020.01749
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

20. Chu G, Ji X, Wang Y, Niu H. Integrated multiomics analysis and machine
learning refine molecular subtypes and prognosis for muscle-invasive urothelial cancer.
Mol Ther Nucleic Acids. (2023) 33:110–26. doi: 10.1016/j.omtn.2023.06.001

21. Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-
related signature for clear cell renal cell carcinoma in the context of 3P medicine and
based on a 101-combination machine learning computational framework. EPMA J.
(2023) 14:275–305. doi: 10.1007/s13167-023-00327-3

22. Li SQ, Liu J, Zhang J, Wang XL, Chen D, Wang Y, et al. Transcriptome profiling
reveals the high incidence of hnRNPA1 exon 8 inclusion in chronic myeloid leukemia. J
advanced Res. (2020) 24:301–10. doi: 10.1016/j.jare.2020.04.016

23. Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S.
Neutrophil extracellular traps promote T cell exhaustion in the tumor microenvironment.
Front Immunol. (2021) 12:785222. doi: 10.3389/fimmu.2021.785222

24. Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no
TIME: Crosstalk between neutrophil extracellular traps and the tumor immune
microenvironment. Front Immunol. (2022) 13:1075260. doi: 10.3389/fimmu.2022.1075260

25. Jin P, Jin Q, Wang X, Zhao M, Dong F, Jiang G, et al. Large-scale in vitro and in
vivo CRISPR-cas9 knockout screens identify a 16-gene fitness score for improved risk
assessment in acute myeloid leukemia. Clin Cancer Res. (2022) 28:4033–44.
doi: 10.1158/1078-0432.CCR-22-1618

26. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A
17-gene stemness score for rapid determination of risk in acute leukaemia. Nature.
(2016) 540:433–7. doi: 10.1038/nature20598

27. Nehme A, Dakik H, Picou F, Cheok M, Preudhomme C, Dombret H, et al.
Horizontal meta-analysis identifies common deregulated genes across AML subgroups
providing a robust prognostic signature. Blood Adv. (2020) 4:5322–35. doi: 10.1182/
bloodadvances.2020002042

28. Chen Z, Song J, Wang W, Bai J, Zhang Y, Shi J, et al. A novel 4-mRNA signature
predicts the overall survival in acute myeloid leukemia. Am J Hematol. (2021) 96:1385–
95. doi: 10.1002/ajh.v96.11

29. Løhmann DJA, Asdahl PH, Abrahamsson J, Ha SY, Jónsson ÓG, Kaspers GJL,
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