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The rising incidence of cancer has heightened interest in immune cell therapy,

particularly the role of natural killer (NK) cells, which are essential components of

the immune system. Their applications in tumor treatment have expanded

significantly, especially with the incorporation of nanomaterials. This review

comprehensively examines NK cell biology, encompassing aspects such as

classification, distribution, receptor activation, and mechanisms of cytotoxicity.

It also explores various NK cell therapies, including their sources, methods of

acquisition, expansion techniques, Chimeric antigen receptor-Natural Killer cell

(CAR-NK) technology, gene editing strategies, and combination therapies.

Additionally, the review discusses the utilization of nanomaterials in NK cell

therapy, focusing on nanoparticle-assisted immune regulation and the

modulation of the tumor microenvironment. While NK cell therapy holds

promise, CAR-NK technology presents certain limitations. The integration of

nanomaterials offers potential strategies to enhance therapeutic efficacy. Future

research should prioritize the optimization of NK cell therapy, address the

limitations associated with CAR-NK technology, investigate the mechanisms of

nanomaterials, and develop more effective nanomaterials to improve

clinical outcomes.
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1 Introduction

With the rising incidence of cancer-related deaths and newly diagnosed cases, there is

renewed focus on immune cells. Natural killer (NK) cells, classified as Innate Lymphoid

Cells (ILCs) (1), play a pivotal role in the human immune system (2).They exhibit potent

anti-tumor and antiviral effects and also perform additional functions through the

production of chemokines (CCL3/CCL4) and cytokines (Interferon g, tumor necrosis

factor a) (3). Moreover, NK cells are actively involved in hypersensitivity reactions and

autoimmune diseases (4, 5).

Following promising results in hematological malignancies, there has been increased

interest in employing NK cell therapy for the treatment of solid tumors. In recent years,

research on NK cell therapy for solid tumors has gradually expanded. Additionally, the
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integration of nanomaterials into this research area has emerged as

a prominent focus, with numerous strategies exploring the

combination of NK cell therapy and nanomaterials. Bioactive

nanomaterials, which exhibit good biocompatibility and

degradability, can address the drawbacks of CAR-NK cells in

tumor treatment. Nanoparticles in this therapy assist in immune

regulation, act as carriers for enhanced efficacy, and improve NK cell

homing. They also play a role in regulating the tumormicroenvironment.

While extracellular vesicle-related nanomaterials demonstrate anti-tumor

effects, challenges remain in their production and delivery. Plant-derived

nanomaterials are emerging as a future focus. Furthermore, nanoparticle-

modified NK cells and nanomaterial-coated cell membranes can enhance

therapy, with different modifications serving distinct functions.

Here we discuss NK cell therapy and its mechanisms as well as

the role of related nanomaterials.
2 NK cell biology

2.1 Classification and distribution

Human natural killer (NK) cells are primarily distributed in

peripheral blood, liver, spleen, lungs, and lymph nodes (6). Initially,

it was believed that NK cells matured solely in the bone marrow.

However, advancing research has provided increasing evidence that

NK cells can also mature in secondary lymphoid tissues (SLT), such

as tonsils and lymph nodes (7). It is important to note that NK cells

exhibiting distinct phenotypes display different distribution

patterns. CD56dimCD16+ NK cells are more abundant and

predominant in peripheral blood; however, they do not truly

reside within tissues (8). In contrast, CD56brightCD16− NK cells

are more prevalent and widely distributed in both human tissues

and lymphoid tissues. Furthermore, functional disparities exist

between these two subsets : CD56dimCD16+ NK cells

demonstrate high cytotoxic activity even at rest and can produce

cytokines while in a quiescent state (9), whereas CD56brightCD16−

NK cells require monocyte activation, specifically through the

combined action of cytokines such as IL-2, IL-12, IL-15, and IL-

18, to acquire cytotoxic activity and produce cytokines (10).

Notably, CD56brightCD16− NK cells constitute the primary cell

population in inflammatory and cancerous tissues (11).
2.2 Receptors and activation

Natural killer (NK) cells primarily function to eliminate cells that

exhibit reduced or absent expression of major histocompatibility

complex class I (MHC I) molecules (12). The activation of NK cells is

predominantly regulated by a balance between activating and

inhibitory receptors (13). Under normal physiological conditions,

self-tissue cells typically express MHC class I molecules. In this

context, the inhibitory receptors on the surface of NK cells are

predominant, thereby suppressing the activity of activating

receptors and preventing NK cells from targeting their own healthy
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tissue (14). However, in the event of viral infection or cancerous

transformation, MHC class I molecules may be lost or downregulated

(15). (Figure 1).Concurrently, the expression of other non-MHC class

I molecules recognized by NK cells may become aberrant or

upregulated (16). This alteration can result in the inactivation of

NK cell inhibitory receptors, leading to the activation of their

activating receptors and, consequently, the activation of NK cells,

which enables them to target and kill affected cells (17). This

phenomenon is referred to as the ‘missing self’ mechanism (18).
2.3 The killing function of NK cells against
target cells

To evade the cytotoxic activity of CD8+ T cells, infected or

cancerous cells downregulate the expression of MHC class I

molecules (19). NK cells lyse target cells by two primary

mechanisms (20): Firstly, they utilize perforin, a membrane-

disrupting protein, and granzyme, a proteolytic enzyme, for

specific lysis target cells. Upon recognizing the target cells, NK

cells become activated, leading to the degranulation and release of

perforin and granzyme through the immune synapse between them

(21). Perforin creates pores in the cell membrane of the target cells,

granzyme to enter and induce apoptosis (22); Secondly, NK cells

can also induce death in target cells by modulating cytokines such as

tumor necrosis factors, FAS- FASLG (FAS ligand), and TNF-TRAIL

(TNF-related apoptosis-inducing ligand). Activated NK cells

express corresponding ligands that bind to death receptors on the

surfaces of target cells, triggering caspase-mediated enzymatic

cascade reactions that result in apoptosis (23) (Figure 2).
3 NK cell therapy

3.1 Origin of NK cells

In the realm of NK cell therapy research, the source of NK cells

is of paramount importance, encompassing peripheral blood, bone

marrow, umbilical cord blood, and induced pluripotent stem

cells (iPSCs).

Peripheral blood NK cells are frequently utilized in cell therapy due

to their ease of collection and capacity for expansion (24). These NK

cells primarily originate from the bone marrow and exhibit high

cytotoxicity along with rapid responsiveness. Through in vitro

culture and stimulation with cytokines such as IL-2 and IL-15, NK

cells can be expanded on a large scale for clinical applications (25).

Bone marrow serves as the primary site for NK cell production. NK

cells derived from umbilical cord blood share similar characteristics

with those derived from bone marrow stromal cells or hematopoietic

stem cells (26), and they have the capability to induce mature NK cells

in vitro (27). Furthermore, NK cells from this source demonstrate

robust proliferation and cytotoxic activity, making them suitable

candidates for cell therapy (28). iPSCs, with their capacity for

unlimited proliferation, can differentiate into various cell lineages,
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including NK cells, in vitro (29). Advances in gene editing technology

hold promise for enhancing the anti-tumor activity of NK cells derived

from iPSCs (30). These NK cells not only provide an abundant source

but also present opportunities to improve therapeutic efficacy against

specific tumors through genetic modifications (31).

In summary, the source of NK cells significantly influences their

functionality and therapeutic effectiveness. The success of NK cell

therapy relies on the judicious selection of the appropriate NK cell

source and the optimization of their amplification and activation

conditions (32). Future research is anticipated to explore the

characteristics of NK cells from diverse sources and their

potential applications in tumor immunotherapy.
3.2 Acquisition and expansion of NK cells

The expansion of natural killer (NK) cells is pivotal in clinical

treatment, particularly within the realm of cancer immunotherapy.

An effective strategy for NK cell expansion not only increases the

overall cell count but also enhances their functional capabilities and

specificity, thereby improving the efficacy of immunotherapeutic

interventions (33). Current methodologies for NK cell expansion

encompass cytokine stimulation, co-culture techniques, and the

application of small molecule compounds.

Cytokine stimulation strategies for NK cell expansion typically

emphasize interleukin-2 (IL-2) and interleukin-15 (IL-15) as
Frontiers in Immunology 03
traditional options. IL-2 is widely recognized for its capacity to

promote the proliferation and activation of NK cells (34).

Furthermore, IL-15 not only improves the survival and functional

capacity of NK cells (35) but also significantly enhances their anti-

tumor activity (36). Co-culturing NK cells with tumor cells or other

immune cells (37), such as dendritic cells, can bolster the

proliferation and anti-tumor activity of NK cells through

beneficial cell-cell interactions (38). Additionally, certain small

molecule compounds, including histone deacetylase (HDAC)

inhibitors and transforming growth factor-beta (TGF-b)
inhibitors, can also augment the function and proliferation of NK

cells by modulating cell signaling pathways (39, 40).
3.3 CAR-NK

3.3.1 What is CAR-NK
Chimeric Antigen Receptor Natural Killer (CAR-NK) cell

therapy involves the genetic modification of natural killer (NK)

cells using chimeric antigen receptors. This modification enhances

the tumor specificity of NK cells and extends their duration of

action within the tumor microenvironment (41). Furthermore,

CAR-NK engineering can optimize lymphocyte activation signals

and utilize specific intracellular signaling molecules to amplify the

functions of NK cells, thereby improving their therapeutic

efficacy (42).
FIGURE 1

NK cell activity regulation mechanism schematic. (A) Inhibition Mechanism of NK Cells: NK cells possess inhibitory receptors for MHC class I
molecules on their surface. When these receptors bind to the normal cell surface MHC class I molecules, they transmit inhibitory signals that prevent
NK cell activation. As a result, NK cells do not exert cytotoxic effects on normal cells. (B) Activation Mechanism of NK Cells: The activation of NK
cells occurs when the expression of MHC class I molecules on the surface of tumor cells or virus-infected cells is reduced or absent. In this
scenario, the inhibitory receptors on NK cells are not engaged, while the expression of ligands for activating receptors, such as NKG2D and NCR, is
upregulated on the surface of these target cells. This leads to the activation of NK cells, which then kill target cells through ITAM signaling,
costimulatory molecular assistance, and cytokine-mediated pathways.
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3.3.2 CAR structure
A chimeric antigen receptor (CAR) typically comprises four

structural domains: the extracellular antigen-binding domain, the

spacer or hinge region, the transmembrane domain, and the

intracellular signaling domain (43). The extracellular antigen-

binding domain consists of a single-chain variable fragment

(scFv), which is formed by linking the variable heavy chain (VH)

and variable light chain (VL) of an antibody through a flexible

linker. This domain is crucial for determining the specificity of

antigen binding. The spacer region, also referred to as the hinge

region, facilitates the exposure of the antigen-binding domain on

the surface of CAR-engineered immune cells and serves as an

intercellular space between target cells and their antigens. The

transmembrane domain anchors the CAR to the cell membrane

of immune cells, influencing CAR expression, stability,

dimerization, and signal transduction. Finally, the intracellular

signaling domain is essential for transmitting signals that activate

immune cells to attack target cells (43–45) (Figure 3).

3.3.3 Advantages of CAR-NK
Chimeric antigen receptor (CAR) technology initially

demonstrated efficacy in T cells and has been employed in the

treatment of relapsed/refractory (R/R) B-cell acute lymphocytic
Frontiers in Immunology 04
leukemia (B-ALL), non-Hodgkin lymphoma (NHL), and multiple

myeloma (MM) (46, 47). The application of CAR technology to

natural killer (NK) cells holds promise for effectively alleviating the

side effects associated with Chimeric Antigen Receptor T-cell

(CAR-T) treatment (Table 1).

First, NK cells can target and eliminate cells that downregulate

MHC I molecules, which are not recognized by T cells (48). Second,

CAR-NK cells are activated independently of the MHC pathway,

thereby circumventing the risk of graft-versus-host disease (GVHD)

(49) that can arise from allogeneic CAR-T therapies (50). This

characteristic enables CAR-NK cells to address the challenges posed

by prolonged culture times commonly associated with autologous cell

therapies through the use of NK cell lines and induced pluripotent stem

cells (iPSCs) (51, 52). Thirdly, T cell activation results in the production

of substantial amounts of inflammatory cytokines, including tumor

necrosis factor-alpha (TNF-a), interleukin-1 beta (IL-1b), interleukin-2
(IL-2), and interleukin-6 (IL-6). This cascade of cytokine release can

lead to cytokine release syndrome (CRS) and neurotoxicity. In contrast,

while NK cell activation also produces pro-inflammatory cytokines

such as interferon-gamma (IFN-g), interleukin-3 (IL-3), and TNF-a,
the quantities generated are relatively small, which helps to mitigate

toxicity. Additionally, the absence of the critical cytokine IL-6 makes it

less likely for CRS to occur (53). Finally, CAR-NK cells employ a
FIGURE 2

Natural killer (NK) cells eliminate target cells through various mechanisms. First, they can engage in antibody-dependent cellular cytotoxicity (ADCC)
by recognizing and binding to the Fc segment of antibodies via CD16 present on their surfaces. Second, NK cells release perforin and granzymes,
which induce programmed cell death in target cells. This process activates the caspase cascade, ultimately leading to DNA degradation. Third, FAS
ligand (FAS-L) on the surface of NK cells binds to FAS on target cells, while the release of TRAIL binds to TRAIL receptors (TRAILR) on target cells,
both of which can induce apoptosis. Collectively, these mechanisms illustrate the effectiveness and diversity of NK cells in targeting and eliminating
cells during immune defense. Additionally, NK cells further modulate the immune response by influencing other immune cells, such as macrophages
and dendritic cells, as well as regulating cytokine production.
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variety of mechanisms to eliminate target cells, including activating and

inhibitory receptors, as well as CD16-mediated antibody-dependent

cell cytotoxicity (ADCC) (54, 55).

3.3.4 Limitations of CAR-NK
The selection of target antigens presents significant challenges.

Ideal antigens are those that are tumor-specific, rather than those

expressed in normal cells; however, most solid tumors lack traditional

tumor-specific antigens, complicating target selection (56). Currently,

only EGFR III and tumor neoantigens satisfy these criteria (57).

Alternatively, when side effects are manageable-such as with CD19 (a

B-cell surface marker) and BCMA (a plasma-cell surface marker),

which are also expressed in normal tissues-CAR-T therapy can target

these antigens, leading to B-cell deficiency or depletion, which can be

mitigated through clinical management, such as immunoglobulin

replacement therapy. Furthermore, the use of CAR-NK cells in blood

cancers benefits from the characteristics of the blood system, allowing
Frontiers in Immunology 05
for tolerance of on-target, off-tumor toxicity (OTOT) (58). However,

solid organ tumor therapies do not enjoy such advantages (59, 60). In

the presence of OTOT, non-renewable or difficult-to-regenerate solid

organ cells may experience pronounced side effects (61).Killer-cell

immunoglobulin-like receptors (KIRs) can limit the ability of NK

cells to attack tumor cells that exhibit high levels of MHC class I (62).

Additionally, the immunosuppressive tumor microenvironment

(TME) can impair the function of CAR-NK cells (63, 64). Lastly,

due to the brief lifespan of CAR-NK cells, repeated infusions are

necessary to maintain remission. CAR-NK cells expressing IL-12, IL-

15, and IL-18 can extend their survival (65).
3.4 NK cell gene editing technology

Five key considerations in cytokine gene editing for enhancing

NK cell therapy include: cytokine gene editing, activation of
FIGURE 3

Chimeric Antigen Receptor Domain. (A) The CAR domain comprises an extracellular antigen-binding domain (including both heavy and light chains),
a hinge region, a transmembrane domain, and an intracellular region, exhibiting high specificity, affinity, and diversity. Additionally, a variety of
costimulatory molecules, such as CD28, play crucial roles in interactions between immune cells and can activate associated signaling pathways.
(B) The CAR molecules present on NK cells consist of scFv that specifically recognize tumor antigens, transmembrane domains (such as CD8a), and
intracellular signaling domains (including ITAM). The scFv is characterized by high specificity and diversity, allowing for the accurate recognition of
various tumor antigens. The transmembrane domain serves to connect the extracellular environment to the intracellular space, with its component
characteristics influencing the localization and function of CAR molecules on the cell membrane. The ITAM structure within the intracellular
signaling domain is crucial for signaling processes. By interacting with other molecules, it activates the cytotoxic functions of NK cells, enabling them
to identify and eliminate tumor cells. (C) The CAR molecules of T cells also incorporate scFv for antigen recognition. The components of the
transmembrane domain may differ from those found in NK cells, resulting in distinct molecular compositions that influence their interactions with
other cells. When the intracellular signaling domain activates relevant signaling pathways, such as PI3K/Akt, it is linked to the specific functions of T
cells. For instance, during the immune response, the activation, proliferation, and differentiation of T cells are intricately regulated by CAR molecular
signaling. This process differs from the signaling mechanisms of CAR molecules in NK cells, highlighting the distinct impact on cell function. (D) The
scFv component of the CAR molecular structure in macrophages facilitates the specific recognition of tumor antigens. The transmembrane domain
may contain macrophage-specific molecular elements that influence the stability of CAR molecules and their interactions with other cell surface
proteins. The intracellular region, in conjunction with costimulatory molecules such as CD40 and CSF-1R, primarily regulates the phagocytic
function of macrophages, enhancing their ability to engulf tumor cells. This regulatory mechanism is notably distinct from the functional modulation
of CAR molecules observed in NK cells and T cells.
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receptor expression, knockout of inhibitory receptors, regulation of

immune checkpoints, and anti-apoptotic gene editing.

Cytokine transfection is a technique that utilizes gene editing to

introduce or amplify specific cytokines, such as IL-15 and IL-2, to

enhance NK cell survival, proliferation, and function, thereby

augmenting their anti-tumor effects (64). Upregulating or

introducing activating receptors can strengthen activation signals,

enhancing NK cell recognition and destruction of tumor cells (65).

Gene editing methods, including CRISPR, can be employed to

knock out inhibitory receptors, such as NKG2A and PD-1,

thereby reducing inhibitory signals and enhancing NK cell

activity and anti-tumor potential (66). Additionally, gene editing

technology can be utilized to regulate the expression of immune

checkpoint molecules, diminishing NK cell inhibition and further

amplifying their immune response to tumors (67, 68).

In summary, gene editing technology has opened new avenues

for enhancing NK cell function, improving their anti-tumor

activity, and developing innovative therapeutic strategies. As

research progresses, the clinical translation of engineered NK cells

is anticipated to provide significant benefits in the treatment of

various cancers and other diseases.
3.5 NK cell combination therapy

Research on the integration of NK cells with other

immunotherapies, radiotherapy, and chemotherapy is steadily

increasing, demonstrating promising clinical application

prospects. The combination of NK cells with immune checkpoint
Frontiers in Immunology 06
inhibitors has been shown to enhance the immune response within

the tumor microenvironment and to counteract the mechanisms by

which tumor cells evade the immune system (69). The combination

of anti-PD-1/PD-L1 antibodies with NK-cell therapy enhances the

inhibition of signaling pathways by blocking PD-1/PD-L1

interactions in NK cells. This strategy also amplifies the antibody-

dependent cellular cytotoxicity (ADCC) effect of NK cells, thereby

significantly improving outcomes in MHC-deficient tumors

characterized by low antigenicity or resistance to T cell

recognition and lysis. The results were evident, with a doubling of

NK cell counts, a substantial increase in cytokine levels such as IL-2,

TNF-b, and IFN-g, and a marked decrease in various tumor

markers, including circulating tumor cells (CTC). Patients

receiving the combination therapy exhibited a significantly higher

overall response rate (36.5% vs. 18.5%) and improved survival

outcomes (overall survival: 15.5 months vs. 13.3 months;

progression-free survival: 6.5 months vs. 4.3 months; all p< 0.05)

compared to those treated with anti-PD-1 antibodies alone (70).

Regarding radiotherapy, it can induce tumor cells to release various

immunogenic substances, thereby enhancing NK cell activity and

increasing tumor cell sensitivity (71, 72). Kim et al. demonstrated

that the long-term migration and infiltration of natural killer (NK)

cells to the primary tumor site were significantly enhanced

following the combination of local tumor radiotherapy (RT) and

NK cell therapy. This combination notably inhibited metastasis to

the axillary lymph nodes, liver, and lungs (axillary metastases in the

RT group, NK group, and RT + NK group were 85%, 20%, and 0%).

Furthermore, the long-term survival rate of the RT + NK group was

significantly higher than that of either the RT or NK group alone,
TABLE 1 The difference between CAR-NK, CAR-T and CAR-M.

CAR-NK CAR-T CAR-M

Source
Obtained from multiple sources: PBMCs; NK

cell line; UCB; iPSC.

Extract from the patient’s own blood, then
perform genetic modification

and amplification

Induced differentiation of peripheral blood
mononuclear cells

Cellular
characteristics

Innate immunity, no need for sensitization,
not restricted by MHC

Specific immunity, strong specificity and
memory, restricted by MHC

Diverse immune functions include phagocytosis and
presentation, polarization being influenced by

the microenvironment.

Preparation
difficulty

Preparation of the product is relatively simple
and can be made into “ready-made” products

without patient cell preparation.

Personalized treatment adds complexity and
uncertainty to preparation, with a long
preparation cycle of several weeks.

Gene editing and transduction have low efficiency
and in vitro culture can change functions, making

precise control of conditions necessary.

Immunogenicity
NK cells maintain low immunogenicity post-

genetic modification due to their
inherent characteristics.

Non-self CAR proteins expressed from
externally introduced genes can lead

to GVHD.

The immunogenicity was low, but it was greatly
affected by the tumor microenvironment

Duration
of existence

Can exist for several days to weeks
Surviving long in the body and exerting
anti-tumor effects continuously provide

long-term immune protection.
Can exist for several days to weeks

Off-target effects
Adverse reactions are mild and immune
response is usually limited even with off-

target occurrences.

May cause severe immune reactions, worsen
symptoms, and endanger lives.

There is a risk of off-target effects, which are mainly
related to antigen recognition specificity and

tumor microenvironment.

Adverse
reactions

Serious adverse reactions like CRS and
neurotoxicity are relatively low.

CRS and neurotoxicity are prone to occur
during the process of killing tumor cells

Safer, polarization affected by microenvironment

Clinical
application

status

Potential application advantages in the
treatment of solid tumors.

Hematological tumors treated with
significant therapeutic effects achieved.

Preclinical and early clinical trials have potential for
solid tumors
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with an 80-day survival rate of 0% for the RT group, 40% for the NK

group, and 80% for the RT + NK group. This finding is supported

by Nguyen et al., whose mouse experiments demonstrated that the

combination of natural killer (NK) cells and radiotherapy resulted

in increased survival rates and reduced tumor metastasis(p<0.0001

and p=0.0287) (73, 74). Additionally, the strategy of combining

chemotherapy with NK cells has garnered considerable attention.

Certain chemotherapy agents can bolster NK cell effectiveness by

directly inducing apoptosis in tumor cells or by downregulating the

expression of inhibitory molecules. Chemotherapy not only reduces

tumor burden but may also enhance treatment efficacy by creating a

more favorable tumor microenvironment for NK cell infiltration

and functional expression (74).

In summary, the strategy of combining NK cells with other

immunotherapies, radiotherapy, and chemotherapy offers a novel

approach to tumor treatment. Future research should further

investigate the underlying mechanisms and optimization

strategies to achieve enhanced clinical efficacy.
4 Application of nanomaterials in NK
therapy

While CAR-NK therapy has demonstrated considerable

advantages in tumor treatment, it also presents certain limitations,

as previously discussed (75). Bioactive nanomaterials, known for their

excellent biocompatibility and degradability, serve to complement

CAR-NK therapy in the treatment of tumors (76). This synergy not

only enhances the efficacy of cancer treatment but also improves its

safety profile (77). In the subsequent sections, we will provide a

comprehensive discussion on nanoparticle-assisted NK cell therapy

from various perspectives, including nanoparticle-assisted immune

regulation, the regulation of the tumor microenvironment by

nanoparticles, exosome-related nanomaterials, nanoparticle-modified

NK cells, and the enhancement of therapeutic efficacy through cell

membrane-coated nanomaterials.
4.1 Nanoparticles assisted immune
regulation

The role of nanoparticles in immune regulation is primarily evident

in two key areas. Firstly, they function as carriers for immune

modulators, thereby enhancing therapeutic efficacy (78). Due to their

extensive delivery range and high efficiency, nanoparticles are capable of

encapsulating anticancer drugs, chemokines, and cytokines, facilitating

their transport to tumor sites and thereby augmenting the effectiveness

of cancer therapies (75, 79). For example, lipid-based nanoparticles

loaded with immunomodulatory agents such as TGF-b and IL-2 can

enhance immune cell infiltration at tumor locations (80, 81);

Alternatively, a dual pH-responsive hydrogel, which contains a tumor

acidic neutralizer and neutrophil extracellular trap (NETs) lyase (DNase

I), when combined with NK cell infusion, may effectively prevent

hepatocellular carcinoma (HCC) recurrence following surgical
Frontiers in Immunology 07
resection (82). Furthermore, a nanoemulsion system (SSBNMs)

designed for the co-delivery of a TGF-b inhibitor and selenocysteine,

when co-infused with NK cells, has been shown to improve anti-tumor

efficacy. This process relies on the signal transduction of natural killer

group 2, member D (NKG2D)/NKG2D ligands (NKG2DLs) and

participates in the DNA damage response. Moreover, by inhibiting

the TGF-b/TGF-b RI/Smad2/3 signaling pathway, it enhances the

expression of NKG2DL on tumor cells, stimulates the surface

expression of NKG2D on NK92 cells, and strengthens the immune

response (83, 84).

Secondly, nanoparticles significantly enhance the homing of

natural killer (NK) cells. The homing process of immune cells is

mediated by the release of cytokines and chemokines from tumor

cells, which induces inflammation and activates cytotoxic

immunity. This dynamic process continuously recruits immune

cells into the tumor microenvironment, ultimately leading to the

destruction of cancer cells (82). The incorporation of magnetic

nanomaterials onto the surface of NK cells facilitates the targeted

attraction of these cells to tumor sites, guided by an external

magnetic field (85, 86). Magnetic nanomaterials can be

categorized into three distinct types (87): firstly, magnetic pure

metals (Fe, Co, Ni), which offer the advantage of easy synthesis but

are prone to oxidation and combustion in air; secondly, magnetic

metal oxides (Fe2O3, Fe3O4) or ferrites (MeFe2O4, me=Fe, Co, Zn)

possess excellent magnetic properties and low toxicity (88, 89); and

third, multicomponent magnetic nanoparticles, such as core/shell

magnetic nanoparticles (MNPs) or magnetic nanoclusters, which

overcome the limitations of single-component materials and

introduce novel functionalities (90). In a separate study, a

therapeutic ‘biohybrid’ (NK: IONP) was developed by conjugating

iron oxide nanoparticles (IONPs) to umbilical cord blood-derived

NK cells using advanced biological coupling technology, thereby

imparting enhanced magnetic guidance capabilities to NK cells

(91). Additionally, magnetic nanoparticles not only do not impair

NK cell function but also exhibit an activating effect on these cells. A

magnetic nanocomposite: hyaluronic acid-protamine-ferumoxytol

(HAPF) composed of hyaluronic acid (HA), protamine (P), and

ferumoxytol (F) has been formulated, which effectively activates NK

cells under the application of an external magnetic field, promotes

the secretion of perforin and granzyme, and enhances the efficacy of

tumor cell killing (92) (Figure 4).
4.2 Nanoparticles regulate tumor
microenvironment

As previously mentioned, the accumulation of lactate and

adenosine in the tumor microenvironment, along with hypoxia,

can create an immunosuppressive milieu that impairs the cytotoxic

function of NK cells (93). Therefore, reversing immune suppression

within the tumor microenvironment is crucial for the efficacy of NK

cell therapy (94). In comparison to conventional treatment

modal i t ies such as radiotherapy, chemotherapy, and

immunotherapy, nanomaterials present distinct advantages.
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Research has shown that poly(lactic acid glycolic acid) copolymer

(PLGA) - MnO2 nanoparticles alleviate hypoxia and reduce the

levels of potent immunosuppressive metabolites like lactate and

adenosine upon penetrating cancer spheroids (95); Moreover,

vesicular cationic lipid-assisted nanoparticles (CLAN) inhibit the

function of the CD47 molecule (96), effectively activate dendritic

cells (97), decrease lactate secretion, normalize tumor acidity,

enhance immune cell infiltration, and restore the anti-tumor

response of T cells and NK cells (98). Additionally, drugs

delivered via nanomaterials can also hinder the activation of

tumor fibroblasts, reduce extracellular matrix accumulation, and

improve the tumor microenvironment (99).

Furthermore, the enhancement of NK cell infiltration at the tumor

site can be facilitated by increased release of cytokines and chemokines

(100). For instance, These nanowire antibody substrates were able to

locate endogenous IL-2 in the skin, increase endogenous IL-2 levels,

and activate targeted natural killer cells, enabling tissue-specific and

cell-specific immune activation (101).
4.3 Exosome related nanomaterials

Exosomes are spherical nano-vesicles secreted by cells,

composed of lipid membranes (102). These subcellular vesicles

are encapsulated by a phospholipid bilayer membrane and
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contain a variety of carriers, including miRNA, mRNA, DNA,

and proteins, which play significant roles in the physiological and

pathological processes of the body (103). Exosomes exhibit certain

anti-tumor activities (104). For instance, NK cell-derived exosomes

(NDEs) can clear tumor cells and stimulate adaptive immunity by

secreting chemokines and pro-inflammatory cytokines (105, 106);

DC cell-derived exosomes (DEXs) can serve as tumor vaccines that

kill tumors through T cell-dependent and MHC-restrictive

mechanisms (107, 108). Additionally, they can capture tumor-

associated antigens (TAAs) and promote immune cell-dependent

tumor rejection (109). Intriguingly, tumor cell-derived exosomes

(TDES) not only exert immunosuppressive effects and induce M2

polarization of macrophages (110) but also participate in cytotoxic

immune responses via antigen presentation or direct activation of

NK cells, leading to the elimination of tumor cells (111).

Nucleic acids carried in exosomes can also enhance the efficacy

of tumor therapy (112, 113). RNA derivatives such as siRNA,

miRNA, and shRNA can silence specific genes, thereby enhancing

NK cell activity (114). This approach falls under RNA interference

(RNAi)-mediated immunotherapy (115). For example, the in vivo

and intracellular transportation of siRNA requires superior carriers

to overcome its short half-life and prevent degradation (116). With

advancements in technology, lonizable cationic lipid nanoparticles

can effectively combine with negatively charged siRNA, resulting in

siRNA-lipid nanoparticle (siRNA-LNP) complexes that exhibit
FIGURE 4

The function and composition of HAPF nanocomplex. The HAPF nanocomplex, composed of hyaluronic acid, protamine, and iron oxide, effectively
attaches to natural killer (NK) cells (referred to as HAPF-NK). The application of exogenous magnetic fields facilitates the magnetic activation of NK
cells, enhancing the production and secretion of perforin and granzyme within these cells, thereby achieving a cytotoxic effect on target cells.
Additionally, magnetically activated HAPF-NK cells enable magnetic resonance (MR) image-guided NK cell therapy for the treatment of solid tumors.
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remarkable stability, making them the preferred carriers at present

(117). Furthermore, NK cell-derived exosomes can be combined

with miRNA-loaded biomimetic core-shell nanoparticles (NN) for

targeted therapy, which demonstrates a dual inhibitory effect on

tumor growth (118).
Frontiers in Immunology 09
Exosomes face limitations in large-scale production and are

readily captured by the liver in vivo, which significantly diminishes

their delivery efficiency (119). Consequently, researchers are

exploring alternative approaches, such as Plant-Derived

Exosomes-Like Nanoparticles (PELNs), which have shown
TABLE 2 The Functions and Applications of Nanomaterials.

Nanomaterials Functions and Applications References

Nanoparticles carrying immune modulators
Enhance cancer therapy efficacy by encapsulating drugs or chemokines and
cytokines to transport them to the tumor site.

(78)

Lipid nanoparticles
Loaded with immune modulators such as TGF-b and IL-2 and Promote immune
cell infiltration at tumor sites.

(80, 81)

Dual pH-responsive hydrogel
Featuring a potent acidic tumor neutralizer and NET lyase, the treatment is
designed to reduce the likelihood of Hepatocellular Carcinoma recurring post-
resection, utilizing the additional support of NK cell infusion.

(82)

Nanoemulsion system (SSBNMs)
Used for synergistic co-delivery of TGF-b inhibitors and selenocysteine, co-
infused with NK cells to amplify anti-tumor effects.

(83, 84)

Magnetic pure metals
(Fe, Co, Ni)

In combination with magnetic field guidance, this nanomaterial can be employed
to alter NK cells in order to attract them to tumor sites for targeted therapy.

(87)

Magnetic metal oxides (Fe2O3, Fe3O4)
or ferrites (MeFe2O4, me = Fe, Co, Zn)

Exhibit superior magnetic properties and low toxicity, whilst also being able to
partner with NK cells and magnetic field guidance for precise cancer treatment.
Additionally, they have the capability to enhance NK cell functionality.

(88, 89)

Multicomponent magnetic nanoparticles
(such as core/shell MNPs or magnetic nanoclusters)

Enhanced the performance of single-component materials by compensating for
their limitations and providing novel functionalities.

(90)

NK: INOP Provides additional magnetic guidance capabilities. (91)

Nanocomposite (HAPF) consisting of hyaluronic acid (HA),
protamine (P), and ferumoxytol(F)

Effectively activate NK cells, promote the secretion of perforin and granulozyme,
and enhance the killing effect of tumor cells.

(92)

Poly(lactic acid glycolic acid) copolymer (PLGA)
-MnO2 nanoparticles

To lessen the levels of hypoxia and potent immunosuppressive metabolites such
as lactate and adenosine within the tumor microenvironment.

(95)

Vesicular cationic lipid-assisted nanoparticles
(CLAN)

Decreased the function of the CD47 molecule, thereby stimulating the activation
of dendritic cells, reducing lactate production, normalizing tumor acidity,
promoting the infiltration of immune cells, and ultimately restoring the anti-
tumor response of T cells and NK cells.

(96, 97)

Nanowires
Conjugate with an anti-IL-2 antibody, augment endogenous IL-2 concentrations,
and leverage these alterations to induce the recruitment and activation of natural
killer cells.

(101)

Plant-Derived Exosomes-Like Nanoparticles
(PELNs)

Play an important role in immune regulation and are currently employed in the
treatment of inflammatory diseases.

(120)

multifunctional nanoparticles (MF-NPs)
EGFR expression is induced on the surface of NK cells targeting chimeric
antigen receptors (EGFR-CARS)

(123)

The core-shell membrane-fusogenic liposome (MFL)
Membrane fusion increased the level of free oligosaccharides activated by NK
cells and inhibited immunosuppressive glycans on the surface of tumor cells.

(125)

The nanobody is coupled with NK cells to form 7D12-NK92MI Specifically target and eliminate solid tumor cells with EGFR overexpression (126)

Ionizable cationic lipid nanoparticles
Efficiently combines with negatively charged siRNA to generate a product
named siRNA-LNP. Furthermore, due to its exceptional stability, the siRNA-
LNP has become a preeminent carrier for RNAi-mediated immunotherapy.

(117)

Cell membrane coated
nanomaterial (CNP)

CNP with macrophage or
neutrophil cell

membrane coating
Interact with tumor tissue to inhibit cancer progression and metastasis. (129)

CNP with red blood cell
membrane coating

Have a prolonged half-life and are less likely to be identified and eliminated by
the immune system, thereby increasing their effectiveness.

(130)

CNP with NK cell
membrane coating

Provide improved targeting capabilities and have the potential to overcome
multidrug resistance.

(131, 132)
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considerable promise in immune regulation (120), PELNs offer

unique advantages, including evasion from immune detection,

enhanced bioavailability, and reduced side effects (117).

Currently, this technology has demonstrated substantial efficacy

in the treatment of inflammatory diseases; however, research in this

area remains insufficient, and many underlying mechanisms are not

yet fully understood. This represents a promising avenue for future

research on nanoparticles in tumor treatment (121).
4.4 Nanoparticle modified NK cells

Nanoparticles can significantly enhance the efficacy of

immunotherapy by modifying natural killer (NK) cells. These

nanomaterials are capable of delivering chimeric antigen receptor

genes to patient-derived NK cells, thereby potentiating the

advancement of CAR-NK cell therapy (122). For instance, the

multifunctional nanoparticles (MF-NPs) effectively deliver genetic

material to immune cells, induce the expression of targeted

chimeric antigen receptors (EGFR-CARs) on the surface of NK

cells, and improve the anticancer cytotoxicity of the cells in vitro

and in vivo (123). Furthermore, nanoparticles serve as a crucial tool

for engineering the surface of NK cells (124). Recently, there has

been an increasing focus in this area: the core-shell membrane-

fusogenic liposome (MFL) can enhance the levels of NK-activated

free oligosaccharides while suppressing the immunosuppressive

glycans on the surface of tumor cells through membrane fusion

(125). Nanobody 7D12, characterized by its high affinity for

antigens, low immunogenicity, and improved penetration into

tumors, is conjugated with NK cells via orthogonal click

chemistry. The resulting 7D12-NK92MI constructs can

specifically target and eliminate solid tumor cells that overexpress

EGFR (126). In conclusion, the potential of nanomaterial-mediated

NK cell modification represents a promising research trajectory in

NK cell therapy.
4.5 Cell membrane coated nanomaterials
enhance therapeutic efficacy

Cell membrane-coated nanomaterials (CNPs) consist of a

synthetic nanoparticle core that is camouflaged by a natural cell

membrane. These materials are adept at functioning within

complex biological environments and can significantly enhance

the efficacy of nanomaterials (127). Nanomaterials enveloped in

natural cell membranes exhibit the advantageous properties of both

cell membranes and nanomaterials, including improved

biocompatibil i ty and targeted cellular delivery (128).

Furthermore, the functions derived from membranes of different

cellular origins possess unique characteristics. For example,

macrophage- or neutrophil-coated nanomaterials can interact

with tumor tissue to inhibit cancer progression and metastasis

(129). In contrast, nanoparticles modified with red blood cell

membranes have a longer half-life and are less likely to be

recognized and eliminated by the immune system (130).
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Additionally, NK cell membrane-coated nanomaterials can greatly

enhance targeting capabilities (131),while biomimetic NK cell

nanomaterials (DMLN) can overcome multidrug resistance (132).

Depending on specific therapeutic needs, various cell membrane

modifications can be selected to augment the effects of NK cell

therapy, and hybrid cell membrane modifications can also be

employed to achieve a range of functions (130).
5 Conclusion and perspectives

NK cell therapy has demonstrated potential in tumor treatment,

yet its clinical translation remains challenging. While CAR-NK

technology avoids the side effects of CAR-T (e.g., GVHD and CRS),

critical issues such as target antigen selection, off-target toxicity in

solid tumors, immunosuppressive microenvironments, and short

cell lifespan urgently require resolution. Gene editing technologies

(e.g., CRISPR) and combination therapies (immune checkpoint

inhibitors, chemoradiotherapy) offer new directions for

optimizing NK cell function.

The application of nanomaterials has significantly enhanced the

efficacy of NK therapy. Nanoparticles can improve treatment by

delivering immunomodulators (e.g., TGF-b inhibitors), enhancing NK

cell homing (via magnetic nanomaterials), and modulating the tumor

microenvironment (e.g., neutralizing lactate/adenosine). Exosome-

related nanomaterials exhibit anti-tumor activity, but breakthroughs

are still needed in their large-scale production and targeted delivery.

Plant-derived nanomaterials (e.g., PELNs), with their low

immunogenicity and high biocompatibility, may become a future

priority. Additionally, nanomaterial-modified NK cells (e.g.,

membrane-fused liposomes) and biomimetic membrane coatings (e.g.,

macrophage membranes) further expand functional diversity (Table 2).

Future research should focus on: 1.Optimizing CAR-NK

targeting strategies to reduce off-target toxicity; 2.Elucidating

nanomaterial mechanisms, developing low-toxicity and high-

efficiency materials, and addressing production/delivery

challenges; 3.Exploring synergistic effects of combining

nanomaterials with NK therapy to identify more effective

regimens; 4.Advancing the clinical translation of plant-derived

nanomaterials and engineered exosomes. These efforts will

accelerate breakthroughs in NK therapy for solid tumors,

providing better options for cancer patients.
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