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Multimodal diagnostic
models and subtype
analysis for neoadjuvant
therapy in breast cancer
Zheng Ye1,2†, Jiaqi Yuan1†, Deqing Hong1, Peng Xu1,2*

and Wenbin Liu1*

1Institute of Computational Science and Technology, Guangzhou University, Guangzhou, China,
2School of Computer Science of Information Technology, Qiannan Normal University for
Nationalities, Duyun, Guizhou, China
Background: Breast cancer, a heterogeneous malignancy, comprises multiple

subtypes and poses a substantial threat to women's health globally. Neoadjuvant

therapy (NAT), administered prior to surgery, is integral to breast cancer

treatment strategies. It aims to downsize tumors, optimize surgical outcomes,

and evaluate tumor responsiveness to treatment. However, accurately predicting

NAT efficacy remains challenging due to the disease's complexity and the diverse

responses across different molecular subtypes.

Methods: In this study, we harnessed multimodal data, including proteomic,

genomic, MRI imaging, and clinical information, sourced from multiple cohorts

such as I-SPY2, TCGA-BRCA, GSE161529, and METABRIC. Post data

preprocessing, Lasso regression was utilized for feature extraction and

selection. Five machine learning algorithms were employed to construct

diagnostic models, with pathological complete response (pCR) as the

predictive endpoint.

Results: Our results revealed that the multi-omics Ridge regression model

achieved the optimal performance in predicting pCR, with an AUC of 0.917.

Through unsupervised clustering using the R package MOVICS and nine

clustering algorithms, we identified four distinct multimodal breast cancer

subtypes associated with NAT. These subtypes exhibited significant differences

in proteomic profiles, hallmark cancer gene sets, pathway activities, tumor

immune microenvironments, transcription factor activities, and clinical

characteristics. For instance, CS1 subtype, predominantly ER-positive, had a

low pCR rate and poor response to chemotherapy drugs, while CS4 subtype,

characterized by high immune infiltration, showed a better response to

immunotherapy. At the single-cell level, we detected significant heterogeneity

in the tumor microenvironment among the four subtypes. Malignant cells in

different subtypes displayed distinct copy number variations, differentiation

levels, and evolutionary trajectories. Cell-cell communication analysis further

highlighted differential interaction patterns among the subtypes, with

implications for tumor progression and treatment response.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559200/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559200/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559200/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559200/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1559200&domain=pdf&date_stamp=2025-03-18
mailto:gdxupeng@gzhu.edu.cn
mailto:wbliu6910@gzhu.edu.cn
https://doi.org/10.3389/fimmu.2025.1559200
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1559200
https://www.frontiersin.org/journals/immunology


Ye et al. 10.3389/fimmu.2025.1559200

Frontiers in Immunology
Conclusion: Our multimodal diagnostic model and subtype analysis provide

novel insights into predicting NAT efficacy in breast cancer. These findings hold

promise for guiding personalized treatment strategies. Future research should

focus on experimental validation, in-depth exploration of the underlying

mechanisms, and extension of these methods to other cancers and

treatment modalities.
KEYWORDS
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1 Introduction

Breast cancer (BC) is a prevalent malignant tumor among

women globally, posing a significant threat to female health (1,

2). Despite advancements in medical technology and the

continuous innovation of diagnostic and therapeutic methods

leading to a decrease in mortality rates, the incidence of breast

cancer has shown a marked increase over the past four decades (3,

4). According to the 2020 statistical data, there were approximately

2.3 million new cases and 685,000 deaths worldwide, with notable

regional disparities and a higher prevalence in high-income

countries (5–7). It is projected that by 2040, the annual number

of new breast cancer cases could surpass 3 million, with the death

toll potentially exceeding 1 million (7, 8).

Breast cancer is classified into molecular subtypes based on the

expression levels of estrogen receptor (ER), progesterone receptor

(PR), human epidermal growth factor receptor 2 (HER2), and the

proliferation marker Ki-67 (9, 10). These subtypes include Luminal

A (ER+ and/or PR+, HER2−, low Ki-67), Luminal B (ER+ and/or

PR+, HER2− with high Ki-67 or HER2+ regardless of Ki-67 status),

HER2-enriched (ER−, PR−, HER2+, with ERBB2 overexpression),

and Triple-negative (TN) (ER−, PR−, HER2−) (11–13). These

molecular subtypes serve as critical prognostic indicators and

guide the selection of pre- and post-operative systemic therapies,

which often target these receptors (14). Luminal A breast cancer has

the best prognosis and is typically treated with endocrine therapy

(15); Luminal B has a good prognosis and can be treated with

endocrine therapy, cytotoxic chemotherapy, or targeted therapy

(16); HER2-enriched breast cancer is now commonly treated with a

combination of targeted therapy and cytotoxic chemotherapy,

significantly improving prognosis (17, 18); TN breast cancer

remains the most aggressive subtype, primarily treated with

cytotoxic (neoadjuvant) chemotherapy (19, 20). However, these

classifications may not accurately reflect the heterogeneity of breast

cancer, as genomic characteristics and expression patterns can vary

significantly among individuals (21). Consequently, there has been

a growing interest in understanding the genomic landscape of

breast cancer to identify novel molecular markers and therapeutic

targets (22–24). For instance, mutations in the BRCA1 and BRCA2
02
genes have garnered considerable attention due to their association

with familial inheritance risk of breast cancer and their potential

impact on molecular characteristics and treatment response

(25, 26).

Neoadjuvant therapy (NAT) is a strategic approach to treating

breast cancer, administered prior to surgery with the intent of

reducing tumor size and the extent of lymph node involvement,

thereby enhancing the success rate of surgical resection (27–29).

NAT encompasses a combination of chemotherapy, endocrine

therapy, and targeted therapy (30). Chemotherapy aims to kill

tumor cells using cytotoxic agents, which target rapidly dividing

cells. While this is effective against many cancer cells, it also affects

non-cancerous, highly proliferative cells in the body, such as those

in the bone marrow, hair follicles, and gastrointestinal tract, leading

to common side effects (31, 32). The goal of NAT is to reduce the

tumor burden preoperatively, improve surgical outcomes, and

decrease the risk of postoperative recurrence and metastasis (33).

Pathologic complete response (pCR), defined as the absence of

invasive tumor in the breast and lymph nodes (ypT0/is; ypN0), is a

crucial prognostic factor in breast cancer management (34, 35). This

treatment outcome is associated with improved disease-free and

overall survival, underscoring the importance of accurately

predicting the response to neoadjuvant therapy (NAT) (36). The

ability to accurately forecast NAT response is a critical component

in clinical decision-making for breast cancer patients. By identifying

patients likely to achieve a pCR, clinicians can optimize treatment

strategies, potentially sparing patients from unnecessary toxicity

while maximizing the likelihood of favorable long-term

outcomes (37).

However, predicting the efficacy of NAT in breast cancer is

complex due to the heterogeneous nature of the disease and the

varying responses to treatment across different molecular subtypes

(38). The efficacy of NAT varies significantly depending on the

molecular subtype of breast cancer. HER2-positive and triple-

negative breast cancers (TNBC) generally show higher rates of

pCR to chemotherapy-based NAT compared to Luminal A tumors,

which are often less responsive to chemotherapy (37, 39).

Multimodal breast cancer data, which often reflect the molecular

and pathological diversity of breast cancer, can be leveraged to
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improve the accuracy of NAT response prediction (40–42). Despite

this, there is a paucity of multimodal predictive models for breast

cancer NAT efficacy, and no studies have yet explored multimodal

molecular subtypes in this context.

In this study, we integrated proteomic, genomic, and MRI

imaging data from breast cancer to construct a predictive model

for NAT response. We also employed nine unsupervised clustering

methods to establish novel multimodal molecular subtypes based

on three modal features related to NAT. By comparing these

molecular subtypes at the tissue sequencing level and single-cell

sequencing level, we revealed unique characteristics in the tumor

microenvironment features of these subtypes. Our multimodal

predictive model and molecular subtypes for breast cancer NAT

offer a novel approach to assist clinicians in making informed

diagnostic and therapeutic decisions and provide new insights into

the progression of breast cancer.
2 Methods

2.1 Data source and preprocessing

The discovery cohort is sourced from the I-SPY2 trial (43, 44) (The

Cancer Imaging Archive, https://www.cancerimagingarchive.net/

collection/ispy2/), while the validation cohorts originate from

TCGA-BRCA ( 4 5 ) ( c B i o Po r t a l ( 4 6 , 4 7 ) , h t t p s : / /

www.cbioportal.org/), GSE161529 (48) (TISCH2 (49), tisch.comp-

genomics.org/gallery/), and Breast Cancer (METABRIC (50, 51),

www.cbioportal.org). Our primary focus is on comparing and

analyzing the clinical and tissue microenvironment differences

among breast cancer mult imodal subtypes using the

validation cohorts.

The I-SPY2 cohort comprises data from 719 patients, including

MRI scans, proteomic data, expression profiles, and clinical

information. After thorough curation, we retained 678 samples

with complete multimodal information. Expression profile data

from the TCGA-BRCA cohort were standardized using log2(TPM

+1). Mutation data underwent processing with maftools, while

methylation data were processed using CHAMP (52). Proteomic

and microbiome information were standardized using data from

cbioportal. mRNA microarray data from the METABRIC cohort

were log transformed. CIBERSORT (53) was employed to infer the

composition of 22 immune cell types based on the gene expression

profiles of the samples. The algorithm uses support vector

regression to deconvolute the gene expression matrix, providing

an estimate of the relative proportions of each immune cell type in

the samples. Progeny (54) was utilized to infer differential activity

across 13 major signaling pathways. Progeny computes pathway

activity scores by integrating the expression of predefined sets of

target genes that respond to the activity of 13 major signaling

pathways, including pathways such as MAPK, NF-kB, and PI3K.

These scores provide a quantitative measure of the differential

activity of these pathways across samples. The xCell algorithm is

used to evaluate the infiltration scores of 64 common cell types
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based on transcriptome data. This computational method provides

a comprehensive assessment of cellular composition within a given

sample by deconvolving the transcriptional profiles (55). Seurat V4

(56) was used for processing and analyzing the GSE161529 cohort’s

53 breast cancer samples from the 10x Genomics platform.

Summation of expression profile data across samples yielded bulk

RNAseq data for the 53 samples (57, 58). The R package SCP was

employed for data preprocessing, including linear dimensionality

reduction (PCA), unsupervised clustering (Louvain), and nonlinear

dimensionality reduction (UMAP).

The I-SPY2 multicenter trial provided a comprehensive, highly

curated imaging dataset, including pre-NAC MRI scans and

corresponding Regions of Interest (ROIs) for direct utilization.

However, due to the multicenter nature of the trial, voxel sizes of

each patient’s MRI were resampled to 1 x 1 x 1 mm3. Additionally,

given the wide distribution of MRI intensity values, z-score

normalization was applied to render image intensities with

standard normal distribution characteristics. Following MRI

preprocessing, the Pyradiomics (59) module (https://github.com/

Radiomics/pyradiomics) was utilized to extract features from tumor

ROIs using various filters (Gaussian, Laplacian, high-pass, and low-

pass filters), generating additional derived images. All radiomic

features were categorized into seven classes (1): 306 First Order

Features (2); 14 Shape Features (3); 408 Gray Level Co-occurrence

Matrix (GLCM) Features (4); 272 Gray Level Size Zone Matrix

(GLSZM) Features (5); 272 Gray Level Run Length Matrix

(GLRLM) Features (6); 85 Neighbouring Gray Tone Difference

Matrix (NGTDM) Features (7); 238 Gray Level Dependence Matrix

(GLDM) Features. A total of 1595 features were extracted from each

patient’s ROI and respective MRI sequences.

Cell type annotations for the GSE161529 dataset were obtained

from the TISCH2 database (http://tisch.comp-genomics.org/home/

), which provides pre-computed cell type labels based on marker

gene expression and, commonly, inferred copy number variations.

We adopted the ‘Epithelial’ and ‘Malignant’ cell labels as provided

by TISCH2, assuming their reasonable accuracy based on standard

single-cell analysis practices. Detailed cell annotation and

downstream Seurat analysis objects are available from Chen

et al (60).
2.2 Feature extraction

For the radiomic features extracted using Pyradiomics, we

employed a two-step normalization process to ensure the data

was appropriately scaled and standardized. First, we applied Min-

Max scaling to ensure that each feature value fell within the range of

-1 to 1. This scaling technique linearly transforms the data to a

common scale, mitigating the potential influence of differing feature

value ranges.

Subsequently, we applied Z-score normalization to the scaled

radiomic features. This standardization method transformed the

features to have a mean of 0 and a standard deviation of 1,

effectively removing the original scale and distribution of the
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data. The resulting standardized radiomic feature set was used for

further analysis, promoting the comparability and interpretability

of the features across the study population.

Lasso regression was utilized to perform feature selection on the

radiomic, proteomic, transcriptomic, and clinical features extracted

from MRI images (61). Through 1000 permutations, features with a

weight standard deviation greater than 0 were selected for model

construction. After filtering features from each modality, the

information from multiple modalities was directly merged, and

Lasso regression was employed again to extract features from the

combined modalities. This approach enabled the construction of

machine learning models using features from multiple modalities.
2.3 Machine learning models

In this study, Orange3 (62) was employed for constructing

machine learning models. Features selected through Lasso

regression were utilized, and models were built using five

commonly employed algorithms: Lasso Regression, Ridge

Regression, Random Forest, Gradient Boosting, and Support

Vector Machines (SVM). The predictive outcome measure for the

models was pathological complete response (pCR). To identify the

best-performing model, we compared the performance of these

algorithms across four modalities. Model evaluation was primarily

based on six metrics: AUC (Area Under the Curve): AUC assesses the

overall performance of a model by evaluating its ability to correctly

rank instances from different classes. Higher AUC values indicate

better predictive performance.CA (Classification Accuracy): CA

calculates the proportion of correctly classified instances out of the

total instances, providing an overall measure of the model’s accuracy;

F1 Score: The F1 score, which is the harmonic mean of precision and

recall, offers a balanced measure of a model’s performance. It

considers both the model’s ability to identify positive instances

(precision) and its ability to capture all positive instances (recall);

Precision: Precision measures the proportion of correctly predicted

positive instances out of the total instances predicted as positive,

reflecting the model’s ability to minimize false positives; Recall: Also

known as sensitivity or true positive rate, recall measures the

proportion of correctly predicted positive instances out of the total

actual positive instances. It reflects the model’s ability to minimize

false negatives; MCC (63) (Matthews Correlation Coefficient): MCC

considers true positives, true negatives, false positives, and false

negatives to evaluate a model’s performance.
2.4 Multi-omics subtypes of
neoadjuvant therapy

The R package MOVICS was employed for unsupervised

clustering of multi-modal breast cancer information (64). Initially,

we utilized data from three modalities: 46 protein expression

profiles, 60 mRNA expression profiles, and 42 radiomic features

extracted during feature selection. Subsequently, the optimal

number of clusters was determined using the getClustNum
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function. This function utilizes two measurements, namely the

clustering prediction index (CPI) and Gap-statistics, to identify

the optimal number of clusters for multi-omics integrative

clustering. Essentially, the peaks reached by the red (CPI) and

blue (Gap-statistics) lines guide the determination of ‘N.clust’.

Following the determination of the optimal cluster number, we

performed clustering analysis using the getMOIC function. We

employed nine clustering algorithms: SNF(Similarity Network

Fusion) (65), PINSPlus (66), NEMO (67), COCA() (68),

LRAcluster (69), consensusClustering (70), IntNMF (71), CIMLR

(called cancer integration via multi-kernel learning) (72),

MoCluster (73), and iClusterBayes (74). These algorithms offer

diverse approaches to analyze and cluster multi-modal breast

cancer data, enabling a comprehensive exploration of underlying

patterns and structures within the dataset. Furthermore, we utilized

the NTP algorithm (75) to predict breast cancer subtypes based on

single-cell aggregated bulk RNA sequencing data from the TCGA-

BRCA and GSE161529 datasets. Samples with an adjusted P-value <

0.05 were selected for subsequent analysis.
2.5 Analysis of epithelial cells and
malignant cells using inferCNV

As epithelial cells constitute the primary cell type involved in

breast cancer progression, we extracted epithelial cells and

malignant cells from the single-cell dataset for analyzing

differences among various breast cancer subtypes. Using fibroblast

and endothelial cells as references, we employed inferCNV (76) to

analyze copy number variations (CNVs) in epithelial cells and

malignant cells. We employed two modes in inferCNV, with

cluster_by_groups set to TRUE and FALSE, respectively. By

disregarding group clustering, we obtained hierarchical clustering

plots for epithelial cells and malignant cells. The height of each

group in the clustering plot represents the clonal evolution

landscape of each cell subgroup. InferCNV was used to infer

large-scale chromosomal copy number variations (CNVs) in the

‘Epithelial’ and ‘Malignant’ cells, as defined by the TISCH2

annotation. Fibroblasts and endothelial cells were used as

reference cells, representing cells with expected genomic stability.

InferCNV compares the gene expression profile of each cell to the

average expression profile of the reference cells, using a moving

average across the genome to identify regions of gain or loss. We

expect that malignant cells, due to genomic instability, will generally

exhibit a greater extent of CNVs compared to non-malignant cells.
2.6 Analysis of molecular evolutionary
trajectories for epithelial cells and
malignant cells

To compute the evolutionary trajectories of epithelial cells and

malignant cells, we utilized two algorithms: CytoTrace (77) and

Monocle2 (78). Initially, we conducted evolutionary trajectory

analysis for epithelial cells and malignant cells using CytoTrace.
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Subsequently, employing Monocle2, we performed pseudotime

analysis separately for each breast cancer subtype to analyze the

differentiation process of each subtype. Finally, we analyzed the

branches of the evolutionary trajectories for epithelial cells and

malignant cells in each breast cancer subtype, thereby exploring the

key signaling pathways involved in the differentiation of each

cell subtype.
2.7 Transcription factor
enrichment analysis

For bulk RNA-seq data, transcription factor enrichment

analysis was conducted using Dorothea. Regulons were selected

from the Dorothea_hs (79, 80) database at confidence levels A, B,

and C for analysis. The activity of each transcription factor in every

sample was calculated using the run_viper function.

For single-cell RNA-seq (scRNA-seq) data, transcription factor

activity was inferred using SCENIC (81). The annotation file hg19-

tss-centered-10kb-7species.mc9nr.feather was utilized in the

runSCENIC_2_createRegulons function, with the coexMethod

parameter set to “top5perTarget” for optimal performance. The

analysis was performed as previously described [21]. Initially, the

gene regulatory network was constructed using the grn function in

pySCENIC (82) (version 0.11.1) with standard settings. Regulons

were subsequently identified using the ctx function with the –

mask_dropouts parameter. The area under the curve (AUC) was

computed using the aucell function with standard settings. The

regulon specificity score was calculated per regulon and cell type to

obtain a cell type-specific ranking of regulons. For visualization

purposes (refer to FIGREF for graphs of, e.g., SOX10), the top 30

downstream targets (ranked by “importance”; see Supplementary

Dataset 4 for all regulons) and the top 5 secondary targets were

plotted in a directed graph.
2.8 Analysis of cells associated with pCR

To identify cells associated with pathological complete response

(pCR) in the single-cell data queue, we utilized the Scissor (83, 84)

algorithm. This algorithm employs specific criteria to filter cells that

exhibit a correlation with pCR. The Scissor algorithm was configured

with an alpha parameter of 0.5 and a family parameter set to

“binomial,” based on empirical observations. These settings were

chosen to optimize the identification of cells relevant to pCR. By

applying the Scissor algorithm, we effectively isolated a subset of cells

that are most pertinent to the pCR outcome. This subset can now be

subjected to further analysis to explore their molecular characteristics

and potential implications in breast cancer treatment response.
2.9 Cell communication analysis

We conducted cell-cell communication analysis using the

CellChat (85) V2 software on 53 BRCA scRNAseq samples. For
Frontiers in Immunology 05
each pair of cell types, we identified and quantified ligand-receptor

(L-R) interactions. These interactions are determined by the

projection profiles of ligands and receptors, where the expression

levels of L and R approximate their geometric mean within a single

cell type. They represent the strength of interaction between all

expressed ligands and their receptors within two given cell types,

referred to as “probability” in CellChat. It is important to note that

CellChat analysis, based on mRNA expression, infers the potential

for cell-cell interactions. It does not directly measure protein levels,

post-translational modifications, or ligand-receptor binding.

Therefore, our interpretations are based on the potential for

communication, and further experimental validation would be

required to confirm these interactions in vivo.

CellChat infers biologically significant cell-cell communication

by assigning a probability value to each interaction and conducting

a permutation test. It integrates gene expression with prior

knowledge of interactions between signaling ligands, receptors,

and their cofactors using the law of mass action. The number of

inferred ligand-receptor pairs depends on the method used to

calculate the average gene expression per cell group. By default,

CellChat employs a statistically robust mean method called

“trimean,” which yields fewer interactions but excels at predicting

stronger interactions, facilitating the selection of interactions for

further experimental validation. It’s crucial to note that besides L-R

pairs, CellChat also considers crucial signaling factors such as

isoform complexes involved in each interaction. Thus, the

absence of any of these components results in no interaction. We

excluded genes expressed in less than 20% of cells within a cell type

and only considered communications that were statistically

significant (p < 0.05, permutation test). When computing ligand-

receptor pairs, our focus was primarily on the overall number and

strength of interactions.
2.10 Potential compounds detection

We searched the Connectivity Map (CMap) database (86)

(https://clue.io/cmap) to identify potential chemicals that could

induce opposite transcriptomic alterations to those observed in

the nonresponse group compared to the response group. CMap is a

comprehensive library of cellular signatures that captures responses

to various chemical, genetic, and disease perturbations. By

comparing the transcriptomic changes in our samples with those

induced by perturbagens in the CMap library, we can predict drugs

and their annotated mode of action (MoA) (87). This process

involves using differentially expressed genes as input to identify

corresponding target drugs and their MoA. Additionally, the

Genomics of Drug Sensitivity in Cancer (88) (GDSC) database

contains genomic expression profiles of numerous cell lines and

their drug response data, measured by the half-maximal inhibitory

concentration (IC50). The GDSC is divided into two datasets:

GDSC1, which includes 958 cell lines and 367 drugs, and GDSC2,

which includes 805 cell lines and 198 drugs. We utilized the data

from GDSC to predict responses to various drugs using the

oncoPredict (89) package in R. We also utilized the pRRophetic
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(90) to evaluate the half-maximal inhibitory concentration (IC50)

of commonly used breast cancer drugs, including Cisplatin,

Paclitaxel, Gemcitabine, and Vinorelbine. The pRRophetic

method is a computational approach that leverages gene

expression data to predict the sensitivity of cancer cell lines to

various pharmacological agents. By applying this algorithm to our

dataset, we were able to estimate the IC50 values for these

chemotherapeutic drugs across the breast cancer samples.
2.11 Immunetherapy score estimate

The EaSIeR (91) framework calculates the following scores to

assess immune infiltration and response in the tumor

microenvironment: Cytolytic Activity (CYT) (92), Roh Immune

Score (Roh_IS) (93), Chemokine Features (Chemokines) (94),

Davoli Immune Features (Davoli_IS) (95), IFNg Features (IFNg)
(96), Ayers Expanded Immune Signature (Ayers_expIS) (96), T Cell

Inflammation Features (Tcell_inflamed) (96), Regulatory Immune

Response (RIR) (97), and Tertiary Lymphoid Structure Features

(TLS) (98). These scores aid researchers in better understanding the

tumor immune microenvironment and predicting the potential

efficacy of immunotherapy.

TIDE (99) (Tumor Immune Dysfunction and Exclusion) is a

computational framework for assessing immune therapy response

using tumor tissue gene expression profiles. Through the TIDE

framework, researchers can obtain 12 immune scores associated

with immune therapy response: TIDE, IFNG, MSI Score, CD274,

CD8, CTL.flag, Dysfunction, Exclusion, MDSC, CAF, TAM, M2,

and CTL.
2.12 Statistical analysis

All statistical analyses were conducted using R (v4.2+) and

Python (v3.8+). Data visualization was performed using the ggplot2

R package (v3.4). A two-tailed P-value < 0.05 was considered

statistically significant, denoted as follows: * P < 0.05, ** P < 0.01,

*** P < 0.001, **** P < 0.001. Differential gene expression analysis

was performed using DESeq2 (v1.38)100 for bulk RNA-sequencing

data and the non-parametric Wilcoxon rank-sum test for single-cell

RNA-sequencing (scRNA-seq) data, accounting for the non-normal

distribution typically observed in scRNA-seq datasets. For the

METABRIC breast cancer cohort, differential expression was

assessed using the limma R package (v3.54) (100). Functional

enrichment of gene sets was carried out using Metascape (v3.5)

(101), and Gene Set Enrichment Analysis (GSEA) (102) was

performed with the ClusterProfiler R package (v4.6). To facilitate

downstream analyses and data exploration, we employed both

linear and non-linear dimensionality reduction techniques.

Principal Component Analysis (PCA), implemented via the R

package SCP, was applied to multi-omics data (proteomics,

transcriptomics, and radiomics) to reduce dimensionality while

retaining maximal variance, thus aiding in unsupervised

clustering and machine learning model building. Additionally,
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Uniform Manifold Approximation and Projection (UMAP) was

used for non-linear dimensionality reduction, particularly for

visualizing single-cell data and preserving both local and global

data structures, thereby revealing complex, non-linear relationships

within the tumor microenvironment. For comparisons across

multiple groups (e.g., IC50 values of chemotherapy drugs across

multimodal subtypes), the non-parametric Kruskal-Wallis test was

utilized due to its robustness to deviations from normality and

unequal variances. Comparisons between two groups (e.g., immune

therapy-related gene set scores between pCR-positive and pCR-

negative samples) were conducted using the Student’s t-test,

assuming normality and homogeneity of variances. Machine

learning models were implemented using the Orange3 platform

(v3.32). Lasso Regression employed L1 regularization (C=1).

Extreme Gradient Boosting (XGBoost) utilized 100 trees, a

learning rate of 0.3, a maximum tree depth of 6, and a

regularization parameter (l) of 1. Support Vector Machine

(SVM) was implemented with a cost parameter (C) of 1.0, a

regression loss epsilon of 0.1, and a radial basis function (RBF)

kernel. Ridge Regression used L2 regularization (C=1). Random

Forest was configured with 10 trees, 5 attributes per split, and a

minimum of 5 instances for splitting.
3 Results

3.1 Multi-omics-based diagnostic models
for accurate prediction of neoadjuvant
chemotherapy efficacy in breast cancer

We utilized features extracted from Protein, mRNA, and MRI

imaging omics data, along with clinical characteristics, to construct

diagnostic models with Lasso regression as the training target and

AUC as the performance metric. Through 1,000 permutations, we

obtained feature weight information for each modality. Employing

Orange3, we built five models, including Lasso Regression, SVM,

Gradient Boosting, Random Forest, and Ridge, which are

commonly used machine learning models for the diagnosis of

pathological complete response (pCR).

In the mRNA expression data, we obtained 60 features,

including genes such as IRF4, SERPING1, AGR3, PGAP3,

ZNF44, PGR, and HLA-DPB2. The model based on

transcriptomics information achieved the highest AUC of 0.884

and CA of 0.808, with an F1 score of 0.805, precision of 0.806, recall

of 0.808, and MCC of 0.580 in the validation set(Figure 1A;

Supplementary Figures S1A, B). Within the proteomics data, we

identified 46 features, including Cyclin.D1.total, STAT5.Y694,

ATR.S428 , IRS1 .S612 , Es trogen .Receptor .a lpha . to ta l ,

p70S6K.T412, and STAT1.S108. The model constructed using

proteomics information achieved the highest AUC of 0.768 with

Ridge, while Lasso Regression yielded the highest classification

accuracy (CA) of 0.675, F1 score of 0.658, precision (Prec) of

0.661, recall (Recall) of 0.675, and Matthew’s Correlation

Coefficient (MCC) of 0.263(Figure 1B; Supplementary Figure S1C,

D; Supplementary Table S1, S2).Clinical features such as MP, HER2,
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FIGURE 1

Construction of a multimodal diagnostic model for neoadjuvant therapy in breast cancer. Non-zero weight features were selected through 1000
permutations using Lasso regression for the development of the diagnostic model. (A) Top 20 genes by weight from gene expression data, with a
total of 60 features. (B) Top 20 features by weight from protein expression profiles, with a total of 46 features. (C) Feature weights from clinical
information. (D) Top 20 features by weight from MRI data, with a total of 42 features. (E) Weight information of the top 20 features after integrating
the four modalities, resulting in a total of 32 features, including 1 clinical feature (ER), 6 radiomics features, 6 proteomics features, and 19 genomics
features. (F) AUC obtained from five common machine learning models (Logistic Regression, Ridge, Gradient Boosting, SVM, Random Forest) using
the constructed multimodal diagnostic model for neoadjuvant therapy in breast cancer. The Ridge model showed the best diagnostic performance
with an AUC of 0.917 (0.879-0.964).
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Arm, and ER were also weighted. The best model derived from

clinical information was Ridge, with an AUC of 0.725, CA of 0.680,

F1 score of 0.632, precision of 0.679, recall of 0.680, and MCC of

0.256(Figure 1C; Supplementary Figures S1E, F). From the MRI

radiomics information, we extracted 42 features, including

original_shape_Maximum2DDiameterColumn, wavelet-

LHH_glrlm_RunVariance, and original_shape_LeastAxisLength,

among other geometric features. The Ridge regression model built

with radiomics features achieved the best AUC of 0.753, CA of 0.685,

F1 score of 0.642, precision of 0.683, recall of 0.685, and MCC of

0.271(Figure 1D; Supplementary Figures S1G, H). Integrating these

features, we performed feature engineering for pCR outcomes using

Lasso regression on a total of 148 features. We identified 32 features

that could accurately predict the outcome events, including 1 clinical

feature (ER), 6 radiomics features, 6 proteomics features, and 19

g enomi c s f e a t u r e s . Among th em , o r i g i n a l _ shape_

Maximum2DDiameterColumn had the highest feature weight

(Figures 1E, F; Supplementary Figures S2A, B). By constructing a

machine learning model with the combined information, we found

that Ridge regression provided the best predictive performance, with

an AUC of 0.917, CA of 0.823, F1 score of 0.818, precision of 0.822,

recall of 0.823, and MCC of 0.611. This result outperformed any

single-omics approach and utilized the fewest number of features. In

summary, our Ridge regression model, which integrates data from

three omics domains and clinical information, achieved the best

prediction of pathologic complete response (pCR), demonstrating the

superiority of a multi-omics approach for predicting the efficacy of

neoadjuvant chemotherapy in breast cancer.

The Matthews Correlation Coefficient (MCC) of 0.611 achieved

by the multi-omics Ridge regression model is particularly

noteworthy. While an MCC of 1 represents perfect prediction,

and 0 indicates performance equivalent to random chance, a value

of 0.611 signifies a moderate positive correlation between the

model’s predictions and the true pCR outcomes. This is a

substantial improvement over the MCC values obtained from the

individual omics and clinical models (ranging from 0.256 to 0.580),

highlighting the synergistic value of integrating diverse data types.

This level of correlation, although not perfect, indicates a clinically

relevant predictive capacity, suggesting that the multi-omics model

captures important biological interactions and dependencies that

are not evident when analyzing each data type in isolation. The

improved MCC further validates the robustness of our multi-omics

approach, especially considering the inherent complexities and

potential class imbalances in predicting treatment response in

breast cancer.
3.2 Characteristics of multimodal subtypes
of breast cancer neoadjuvant therapy
constructed by diagnostic model

We conducted unsupervised clustering analysis by integrating

information from three omics layers (proteomics, transcriptomics,

and radiomics) in the ISPY2 breast cancer cohort study, aiming to

explore the multimodal subtypes of breast cancer. We integrated 46
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features from proteomics, 60 features from transcriptomics, and 42

features from radiomics. To determine the optimal number of

clusters, we utilized two metrics, Cluster Prediction Index (71)

and Gap-statistics (103), searching for cluster numbers from two to

eight. Through the analysis of these metrics, we found that the

optimal cluster number was four, which could accurately capture

the latent structure and patterns in the data. Subsequently, using

this optimal cluster number, we conducted further cluster analysis

to reveal the characteristics of multimodal subtypes of breast cancer

and related biological information. We analyzed the robustness of

module clustering of the four clusters through nine unsupervised

clustering algorithms (Figures 2A, B). CS1 contained 207 samples,

CS2 contained 217 samples, CS3 contained 163 samples, and CS4

contained 91 samples. We found that CS1 and CS3 demonstrated

robust clustering, while CS2 and CS4 exhibited a low degree of

inconsistency across different clustering algorithms.

We compared the differences in the four subtypes from the

perspectives of proteomics, hallmark cancer gene sets, pathway

activities, tumor immune microenvironment, and transcription

factor activities (Figure 2C). At the protein level, we found that

PTEN.total, Estrogen.Rec.alpha.total, ERBB4.total, Cyclin.D1.total

were significantly higher in CS1 compared to the other three

subtypes. ERBB2.total, EGFR.Y1068 were significantly higher in

CS3, while Ki67.total and Cyclin.B1.total were significantly

upregulated in CS2 and CS4 (Supplementary Figures S3A, B).

Hallmark cancer gene set ssGSEA results showed significant

enrichment of ESTROGEN-RESPONSE-EARLY, ESTROGEN-

RESPONSE-LATE in CS1, and G2M-CHECKPOINT,

INFLAMMATORY-RESPONSE, ALLOGRAFT-REJECTION in

CS2 and CS4 (Supplementary Figure S3C). We found that p53

pathway activity was significantly elevated in CS1 and CS3, while

MAPK pathway activity was significantly decreased. Hypoxia

pathway activity was significantly lower than the other three

groups. EGFR activity and TGFb activity were highest in CS3,

corresponding to the results from proteomics (Supplementary

Figure S3D).Using the CIBERSORT algorithm, we obtained

relative scores of 22 immune cells in each sample based on

transcriptomics data. Our results showed that Mast-cells-resting

had the highest score in CS1, while most inflammation-related cells

had higher scores in CS2 and CS4, including T cells follicular helper,

Macrophages M0, T cells CD4 memory activated, NK cells

activated, T cells gamma delta. We found that Macrophage M2

had the lowest score in CS2, indicating different characteristics of

Macrophage M2 polarization. Mast cell activated had the lowest

score in CS1, indicating the potential role of mast cell dormancy

and activation status in CS1. Additionally, to compare the

differences in other stromal cells in tumor tissue, we used xCell to

evaluate 64 cell types and three comprehensive scores in 678

samples. We also found a significant increase in inflammation-

related cells in CS4 compared to other tissues (Supplementary

Figures S3E, F). In the analysis of transcription factor activity, we

found two enriched transcription factor groups, with TFAP2C,

RFX1, FOXA1 mainly enriched in CS1 and CS3, and E2F5,

ATF4, RELA, JUN mainly enriched in CS2 and CS4

(Supplementary Figure S3I).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1559200
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2025.1559200
FIGURE 2

Construction and Comparison of Multimodal Subtypes in Breast Cancer. (A, B) The optimal number of subtypes was determined to be four using the
Cluster Prediction Index and Gap-statistics. (C) Clinical and molecular characteristics of the four breast cancer multimodal subtypes were compared,
including significantly different mRNA, protein, pyradiomics, hallmark pathways, CIBERSORT immune infiltration scores, Progeny pathway activities,
and transcription factor activities. The four subtypes exhibit distinct differences in these characteristics. (D) Distribution of pCR across the four
subtypes. (E) Distribution of ER status across the four subtypes. (F) Distribution of HER2 status across the four subtypes. (G) Distribution of PAM50
classifications across the four subtypes. (H) Distribution of TCGA-immune subtypes across the four subtypes. (I) Comparison of pathway activities
among the four breast cancer multimodal subtypes using GSVA scores, with mean scores representing pathway activities for each subtype. (J–T)
Comparison of ten immune therapy scores among the four breast cancer multimodal subtypes, revealing that the CS4 subtype responds better to
immune therapy. (U–X) Evaluation of drug response (IC50) for four chemotherapeutic agents (Cisplatin, Vinorelbine, Paclitaxel, Gemcitabine) across
the four subtypes, showing significant differences (Kruskal-Wallis, P < 0.001), with the CS1 subtype exhibiting higher IC50 values, indicating
resistance to common breast cancer chemotherapy drugs.
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Furthermore, We compared the differences in clinical

information among the four groups. Through the comparison of

clinical information, we found that all samples in CS1 were ER-

positive, while the majority in CS2 and CS4 were ER-negative. Over

90% of samples in CS2 and CS3 were HER2-negative, while 75% in

CS1 and 74% in CS3 were HER2-negative. 74% of samples in CS1

were Luminal B subtype, 56% in CS3 were Her2 subtype, and over

90% in CS2 and CS4 were Basal subtype. 89% of samples in CS1

showed no response to neoadjuvant therapy, while the response was

highest in CS3 at 52% (Figures 2D–F).In addition, we compared our

subtypes with the PAM50 subtypes (104) and immune subtypes.

We found that the CS1 subtype predominantly corresponds to the

Luminal B subtype, while the CS2 and CS4 subtypes mainly

correspond to the Basal subtype. According to immune

subtyping, these samples primarily belong to the IS2 subtype

(105). The IS2 subtype in the TCGA immune classification is

characterized as the “IFN-g dominant” subtype. This subtype is

known for its high levels of immune activity, particularly involving

interferon-gamma (IFN-g) signaling, which plays a crucial role in

the immune response to tumors. The IS2 subtype typically exhibits

a robust immune response, which can influence the tumor

microenvironment and potentially impact therapeutic outcomes.

These results indicate significant differences and characteristics in

clinical features and molecular subtypes among the four groups.

CS2 and CS4 were more similar, while CS1 was more unique

compared to the other three subtypes.

To further explore the differences in signaling pathways among

the four subtypes, we conducted GSVA (106) analysis on

transcriptome data of the four subtypes. We performed

enrichment analysis using 186 classic signaling pathway gene sets

from the KEGG database (107). The comparison results showed

significant enrichment of oxidative phosphorylation, endocytosis,

glycosylphosphatidylinositol (GPI) anchor biosynthesis pathways

in CS1. Lysine degradation, ribosome, mismatch repair, RNA

degradation pathways were significantly enriched in CS2. Drug

metabolism cytochrome P450, steroid hormone biosynthesis,

Tyrosine metabolism pathways were significantly enriched in

CS3. Autoimmune thyroid disease, Viral myocarditis, Antigen

processing and presentation pathways were significantly enriched

in CS4 (Figure 2I).

We evaluated the scores of 11 gene sets in 678 samples using the

EaSleR package, including CYT, TLS, IFNy, Ayers-explS, Tcell-

inflamed, Roh-IS, DavoII-IS, chemokines, resF-up, resF-down, and

resF. We found that the scores of immune therapy-related gene sets

in the pCR-positive group were significantly higher than those in

the pCR-negative group (Supplementary Figures S4A, B). Similarly,

we found that the scores of immune therapy-related gene sets in the

CS4 subtype were significantly higher than those in the other three

subtypes (Figures 2J-T). We compared the scores of immune

therapy-related gene sets between pCR-positive and pCR-negative

samples in each subtype. The results showed that in CS2 and CS4

subtypes, the scores of CYT, IFNy, Tcell-inflamed, and Roh-IS

immune gene sets were significantly higher in the pCR-positive

group than in the pCR-negative group (Student-t Test, P<0.05;

Supplementary Figure S4C). To further validate these results, we
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immune therapy-related indicators in 678 samples. We found that

the positive indicators of immune therapy, including IFNG, CD274,

CD8, CTL_flag, CTL, were significantly higher in the pCR-positive

group than in the pCR-negative group (student-t Test, P<0.05).

Conversely, the negative indicators of immune therapy, such as

Exclusion and TAM M2, were significantly lower in the pCR-

positive group (student-t Test, P<0.05). Similarly, we compared

the scores of 12 immune therapy indicators between pCR-positive

and pCR-negative samples in the four subtypes. The results

indicated that in CS2 and CS4 subtypes, the positive indicators of

immune therapy, IFNG, and CTL, were significantly higher in the

pCR-positive group than in the pCR-negative group (Student-t test,

P<0.05). Conversely, the negative indicator of immune therapy,

CAF, was significantly lower in the pCR-positive group than in the

pCR-negative group (Student-t test, P<0.05) (Supplementary

Figures S4D, E). These results suggest that the immune therapy

efficacy in the pCR-positive group may be better than that in the

pCR-negative group. Moreover, as a highly immune-infiltrated

subtype, CS4 may have better immune therapy efficacy than the

other three subtypes, while the efficacy of immune therapy in the

CS1 subtype may be the poorest. In the CS4 subtype, patients with

pCR-positive response may have a better response to

immune therapy.

Next, we used the pRRophetic package to evaluate the

differences in commonly used chemotherapy drugs in four

multimodal breast cancer subtypes. We found significant

differences in the IC50 of chemotherapy drugs Cisplatin,

Gemcitabine, Paclitaxel, and Vinorelbine among the four

subtypes (Kruskal-Wallis Test). CS1 was the least sensitive to

Cisplatin, while CS2 and CS4 were the most sensitive. We

obtained similar results for the chemotherapy drugs Gemcitabine

and Vinorelbine. Paclitaxel was most sensitive to CS3 subtype

(Figures 2U-X). These results were consistent with the pCR

response, indicating that CS1 had an unfavorable response to

chemotherapy drugs. In addition, we also used oncoPredict to

predict drug responses in the four subtypes within the GDSC1

and GDSC2 drug databases. We found that the CS1 subtype

exhibited higher drug resistance to most drugs, followed by the

CS2 subtype (Supplementary Figure S4F). To further accurately

identify effective therapeutic drugs for the four breast cancer multi-

modal subtypes, we utilized the cmap database (https://

www.broadinstitute.org/connectivity-map-cmap) to analyze the

highly expressed marker genes in each subtype. We found that

for the CS1 subtype, the genes ESR1, CYP2B6, PGR, and SERPINA6

were the most commonly targeted drug targets. Among them, the

drugs targeting ESR1 mainly had the mechanism of action (MOA)

as Estrogen receptor agonist. The drugs targeting PGR had the

MOA of Progesterone receptor agonist. The drugs targeting

SERPINA6 had the MOA of Glucocorticoid receptor agonist. For

the CS2 subtype, the primary drug target was the CDK1 gene, with

the MOA label of CDK inhibitor. For the CS3 subtype, the main

drug target was ERBB2, with the MOA label of EGFR inhibitor. For

the CS4 subtype, the primary drug targets were MMP9 and LCK,

with the MOA of Matrix metalloprotease inhibitor and SRC
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inhibitor, respectively. These results suggest that the four multi-

modal subtypes have significantly different drug targets and

mechanisms of action, providing important evidence for

personalized treatment strategies for each subtype.

Through the study of CS1 subtype, we identified ESR1,

CYP2B6, PGR, and SERPINA6 as critical drug targets. Drugs

targeting ESR1, primarily estrogen receptor agonists, modulate

breast cell proliferation and apoptosis by activating the estrogen

receptor (108). PGR, as a progesterone receptor agonist, also plays a

significant role in breast cancer treatment (109). Targeting

SERPINA6, which acts as a glucocorticoid receptor agonist, may

inhibit tumor progression by regulating stress responses and

inflammatory processes (110). These findings provide multiple

potential therapeutic options for patients with the CS1 subtype.

For the CS2 subtype, CDK1 is the primary drug target. Inhibitors of

CDK1 can arrest the cell cycle, thereby inhibiting tumor cell

proliferation. CDK inhibitors have shown promising results in

treating various cancers, particularly in patients resistant to

conventional chemotherapy (111). In the CS3 subtype, there is a

significant increase in the expression of ERBB2 (also known as

HER2). Drugs targeting ERBB2, such as EGFR inhibitors, effectively

block this signaling pathway, thus inhibiting tumor cell growth and

proliferation (112). This discovery underscores the importance of

selecting targeted therapies based on molecular characteristics in

breast cancer treatment. Finally, for the CS4 subtype, MMP9 and

LCK were identified as major drug targets. As a matrix

metalloproteinase, MMP9 inhibitors can prevent tumor cell

invasion and metastasis (113). LCK, a member of the SRC family

kinases, can be targeted by inhibitors to disrupt cell signal

transduction, thereby inhibiting tumor cell proliferation and

survival (114).

In summary, our research successfully identified specific drug

targets and mechanisms for each of the four breast cancer subtypes

through CMAP database analysis. These results not only reveal the

biological differences between the subtypes but also provide a

scientific basis for personalized treatment strategies. Future

studies should further validate the clinical efficacy of these targets

and drugs to offer more precise and effective treatment options for

breast cancer patients.

The TCGA database contains more comprehensive omics

information. We used the NTP algorithm to predict the breast

cancer multimodal subtypes of 1098 samples in the TCGA-BRCA

cohort based on the transcriptome data constructed by the ISPY2

predictive model. By screening FDR<0.05 as the criterion, we finally

obtained 1026 effectively predicted samples. CS1 subtype contained

462 samples, CS2 contained 138 samples, CS3 contained 159

samples, and CS4 contained 267 samples. Similarly, we conducted

GSEA analysis on differentially expressed genes in each subtype

(KEGG database 186 classic signaling pathways). We found that the

differential genes in CS1 were mainly enriched in signaling

pathways such as Glycosylphosphatidylinositol GPI Anchor

Biosynthesis, Peroxisome, Aminoacyl TRNA Biosynthesis, and

Oxidative Phosphorylation. Differential genes in CS2 were mainly

enriched in Cell Cycle, Ribosome, DNA Replication, and

Spliceosome pathways. Differential genes in CS3 were mainly
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Steroid Hormone Biosynthesis and Pentose And Glucuronate

Interconversions. Differential genes in CS4 were mainly enriched

in inflammation-related signaling pathways such as Graft Versus

Host Disease, Allograft Rejection, and Cell Adhesion Molecules

CAMs (Supplementary Figures S6A, B). This result is consistent

with the functional enrichment results obtained from the ISPY2

cohort. Similarly, we compared the IC50 of four commonly used

breast cancer chemotherapy drugs (Cisplatin, Gemcitabine,

Paclitaxel, Vinorelbine) among the four breast cancer multimodal

subtypes. We found that CS1 was the least sensitive to all

chemotherapy drugs, while CS2 and CS4 remained the most

sensitive subtypes to these four chemotherapy drugs (Kruskal-

Wallis, P<0.05) (Supplementary Figures S6C–F). This result is

consistent with the results obtained from the ISPY2 cohort.

Consistent results were observed in the Metabrick BRCA cohort

(Supplementary Figures S6G–L). This indicates that the marker-

based NTP algorithm we used can correctly classify breast cancer

samples in the TCGA-BRCA and Metabrick-BRCA cohorts into

breast cancer subtypes.

Next, we utilized the comprehensive multi-omics data from the

TCGA-BRCA and Metabrick-BRCA cohort to validate and

compare the clinical and pathological information of the breast

cancer multimodal subtypes we established, thereby obtaining

richer information. Through the cbioportal platform, we

compared the prognosis of the four subtypes. We found that the

disease-specific survival, overall survival, and Progress-Free

Survival of the CS4 and CS1 subtypes were significantly better

than those of the CS2 and CS3 subtypes, with significant differences

in prognosis among the four subtypes (Logrank Test, P<0.05)

(Figures 3A-C). We obtained the same results in the Metabrick-

BRCA cohort as well (Figures 3D, E). We found that almost all

samples of the CS4 subtype were from the American Indian or

Alaska Native population, while the CS3 subtype had a higher

proportion in the Asian population, and the CS1 subtype had a

higher proportion in the Caucasian population (Figure 3F).

Additionally, Invasive Breast Carcinoma predominantly belonged

to the CS2 subtype, while Breast Invasive Mixed Mucinous

Carcinoma predominantly belonged to the CS1 subtype

(Figure 3G). In terms of sex, we found that over 90% of male

breast cancers belonged to the CS1 subtype, followed by the CS3

subtype (Figure 3H). These findings reveal associations between

reported race/ethnicity and the breast cancer multimodal subtypes,

as well as an observed trend towards an association between male

sex and the CS1 subtype. However, the TCGA-BRCA cohort

included only 12 male breast cancer cases, limiting the statistical

power to draw definitive conclusions about sex-specific differences.

Subsequently, we compared the differences in genomic mutations

among the four breast cancer multimodal sequencing data. We

found that PIK3CA had the highest mutation rate, occurring in 31%

of all subtypes, with a notably lower mutation rate in the CS2

subtype. The TP53 gene mutation, present in 32% of cases, was the

second most frequent and primarily occurred in the CS2 subtype,

while its mutation rate was very low in the CS1 subtype. Other

significant mutations included TTN (17%), CDH1 (12%), and
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GATA3 (11%)(Figure 3I). We then compared the different mutated

genes in the four groups. The mutation characteristics of the CS1

subtype were low mutations in TP53 and TTN but high mutations

in GATA3 and MAP3K1. The mutation characteristics of the CS2
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subtype were high mutations in TP53, with low mutation rates in

PIK3CA, GATA3, and CDH1. The CS2 subtype had a higher

hypoxia score and a poorer prognosis, which may be related to

these factors (Figure 3J). We obtained similar results in the
FIGURE 3

Comparative analysis of four breast cancer multimodal subtypes from multiple perspectives. (A–E) Prognostic information comparisons in the
TCGA-BRCA and Metabric-BRCA cohorts, examining Disease-Specific Survival (DSS), Overall Survival (OS), and Progression-Free Survival (PFS).
Significant prognostic differences were observed among the four breast cancer multimodal subtypes (P<0.001). (F) Distribution of population-
specific characteristics demographics across the four subtypes in the TCGA-BRCA cohort. (G) Comparison of sex distribution within the four
subtypes in the TCGA-BRCA cohort. (H) Distribution of cancer pathological subtypes within the four subtypes in the TCGA-BRCA cohort. (I, J)
Genetic mutation comparisons among the four subtypes in the TCGA-BRCA cohort. (K) Genetic mutation comparison in the Metabric-BRCA cohort
validating findings from the TCGA-BRCA cohort, with similar patterns observed in PIK3CA and TP53 mutation frequencies. (L–O) Comparative
analysis of Fraction Genome Altered, Mutation Count, Aneuploidy Score, and Buffa Hypoxia Score across the four breast cancer multimodal subtypes
in the TCGA-BRCA cohort. (P–R) Protein expression differences in RPPA data for EGFR_PY1068, ERBB2, and ERBB2_PY1248 in the TCGA-BRCA
cohort. The highest expression of these proteins was noted in the CS3 subtype, consistent with findings from the ISPY2 cohort, further supporting
the robustness of the multimodal subtype construction.
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Metabrick-BRCA cohort (Figure 3K). Additionally, we validated the

clinical characteristics comparison across the four multimodal

subtypes within this cohort (Supplementary Figure S7D–K).

Through comparison on cbioportal, we found that TP53

mutations were mainly enriched in the CS2 subtype, GATA3 and

MAP3K1 were mainly enriched in the CS1 subtype, while PIK3CA

and RICTOR were mainly enriched in the CS3 subtype

(Supplementary Figure S7A).We compared the Fraction Genome

Altered and Mutation Count. We found that the CS2 subtype had

the highest genomic mutation score, while the CS1 and CS4

subtypes had the lowest. The CS1 subtype had the lowest

mutation burden, which may be related to the lower TP53

mutation rate in the CS1 subtype (Figures 3L, M). Furthermore,

the Aneuploidy Score and Buffa Hypoxia Score were significantly

lower in the CS1 and CS4 subtypes than in the CS2 and CS3

subtypes (t-test, P<0.05) (Figure 3N, O). The hypoxia score of the

CS1 subtype was the lowest among all subtypes, while that of the

CS2 subtype was the highest. Considering the active oxidative

phosphorylation signaling pathway in the CS1 subtype and the

active inflammation-related signaling pathway in the CS4 subtype,

we speculate that the tumor mutational burden is low in the CS1

subtype, and the oxidative phosphorylation activity is good, with

low activity in hypoxia-related signaling pathways, which may be

related to the state of tumor cells. The tumor mutational burden is

low in the CS4 subtype, with high activity in inflammation-related

signaling pathways and low activity in hypoxia-related signaling

pathways, which may be related to the transportation of immune

cells and oxygen in newly formed blood vessels within the tumor

tissue. Although the prognosis of the CS1 and CS4 subtypes is

better, the mechanisms behind them are completely different. The

CS2 subtype has a high tumor mutation rate, while the activity of

hypoxia-related signaling pathways is low, resulting in a poorer

prognosis. The CS3 subtype may be related to other factors.

We compared the expression levels of EGFR_PY1068, ERBB2,

and ERBB2_PY1248 in the four multimodal subtypes using TCGA-

BRCA RPPA protein data (Figures 3P–R). Our analysis revealed that

these three proteins are predominantly expressed in the CS3 subtype,

validating the protein data results obtained from the ISPY2-BRCA

cohort. This further confirms the reliability of our subtype

classification. Furthermore, we compared the characteristics of

these subtypes across multiple modalities in the TCGA-BRCA

cohort. We compared the gene-level methylation characteristics of

the four breast cancer multimodal subtypes. In the CS1 subtype,

genes highly methylated included SLC43A3, MMP7, andMIA. In the

CS2 subtype, genes highly methylated included NAV1, MUC1,

PRR18, and TBX19. In the CS3 subtype, genes highly methylated

included RUSC2, CYBA, and SOCS3. In the CS4 subtype, genes

highly methylated included AGR2, TGFB3, NOR2, and ANKRD9

(Supplementary Figure S8A). Highly methylated genes in the CS1

subtype were mainly enriched in signaling pathways such as

Cytokine-cytokine receptor interaction, Neuroactive ligand-receptor

interaction, Calcium signaling pathway, and cAMP signaling

pathway. On the other hand, lowly methylated genes in the CS1

subtype were mainly enriched in signaling pathways such as Tight

junction, Hippo signaling pathway, and Primary bile acid
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biosynthesis. Highly methylated genes in the CS2 subtype were

mainly enriched in signaling pathways such as Allograft rejection,

Autoimmune thyroid disease, and Graft-versus-host disease. This

result indicates that inflammation-related signaling pathways in the

CS2 subtype are inhibited by methylation at the DNA level. Lowly

methylated genes in the CS2 subtype were mainly enriched in

signaling pathways such as PI3K-Akt signaling pathway and

MAPK signaling pathway. Considering the mutations in PIK3CA

and MAP3K1 in the CS2 subtype, these cell proliferation and

differentiation-related signaling pathways are activated at the DNA

level (115). Highly methylated genes in the CS3 subtype were mainly

enriched in signaling pathways such as cAMP signaling pathway,

Human T-cell leukemia virus 1 infection, and Cellular senescence,

indicating that energy metabolism and inflammation-related

signaling pathways are inactivated in the CS3 subtype, which is

completely different from the CS2 and CS4 subtypes. In the CS4

subtype, genes related to the PI3K-Akt signaling pathway and MAPK

signaling pathway were in a highly methylated inactive state, while

lowly methylated genes were mainly enriched in signaling pathways

such as Cytokine-cytokine receptor interaction, Calcium signaling

pathway, cAMP signaling pathway, and Human T-cell leukemia virus

1 infection. These results indicate that energy metabolism and

inflammation-related signaling pathways in CS4 are in a

methylated activated state (Supplementary Figure S8B). These

results demonstrate significant differences in methylation levels

among the breast cancer multimodal subtypes we proposed, and

these differences can be mutually reflected by other omics

information. Additionally, we compared the protein-level

differences among the four multi-modal subtypes. In the CS1

subtype, the highly expressed proteins included PGR (progesterone

receptor), LYRM9, and TCEAL1. The high expression of PGR may

indicate the subtype’s specificity in hormonal responses (116). In the

CS2 subtype, the highly expressed proteins were mainly TRIM29,

TSPYL5, and S100A1. TRIM29 is a protein involved in cell

proliferation and DNA damage repair (117), TSPYL5 plays an

important role in cell cycle regulation (118) in the CS2 subtype. In

the CS3 subtype, the highly expressed proteins included ERBB2 (also

known as HER2), HMGCS2, and PRODH. ERBB2 is a known

oncogene that is often overexpressed in breast cancer, and its high

expression may indicate that the CS3 subtype has a higher

proliferative potential (119). HMGCS2 is involved in ketone body

formation (120), and PRODH is related to amino acid metabolism

(121), suggesting that the CS3 subtype may have unique metabolic

characteristics. In the CS4 subtype, the enriched proteins were FBP2,

HLA-F, and CORO1A. FBP2 is a glycolytic enzyme involved in the

regulation of glucose metabolism (122). HLA-F participates in the

regulation of immune responses (123), and CORO1A affects the

reorganization of the cytoskeleton (124), indicating that the CS4

subtype may have unique biological characteristics in metabolism

and immune response. These proteins are consistent with the protein

results from the ISPY-2 BRCA cohort (Supplementary Figure S8D,

E). We found that the majority of methylated genes were under

methylation control. For example, the expression level of MMP7 was

significantly negatively correlated with the methylation level of

MMP7 (Spearman cor.=-0.44, P<0.001), and the expression level of
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MUC1 was also significantly negatively correlated with its

methylation level (Spearman cor.=-0.4, P<0.001) (Supplementary

Figure S8F, G, H). Finally, we found that in the comparison of

intratumoral microbiota, the four multi-modal subtypes also

exhibited significant differences. The CS1 subtype was enriched

with microbes such as Bafinivirus, Psychrilyobacter, and

Simplexvirus, the CS2 subtype was enriched with Bacteriovorax,

Hypovirus, and Methanocella, the CS3 subtype was enriched with

Candidatus-Microthrix, Phenylobacterium, and Rubrobacterium,

and the CS4 subtype was enriched with Carboxydothemus,

Anoxybacillus, and Anaeromusa (Supplementary Figure S8H).

These results all suggest the unique biological characteristics of the

four subtypes.
3.3 At single-cell resolution, breast cancer
neoadjuvant therapy subtypes show
distinct tumor
microenvironment characteristics

We aggregated pseudo-bulk RNA information from 53 single-

cell sequencing samples of the GSE161529 dataset. Using the NTP

algorithm on the signature gene matrix of the four subtypes from

the ISPY2 dataset, we screened samples with FDR < 0.05 as

statistically significant subtype samples, ultimately obtaining

subtype information for 49 samples (Figure 4A). Among these,

there were 13 samples in the CS1 subtype, 16 in CS2, 8 in CS3, and

12 in CS4. After proper subtyping, we proceeded to compare and

analyze the single-cell sequencing data of these subtypes.

Firstly, leveraging cell annotation information from the

TISCH2 database, we obtained the quantities of 11 major cell

types (B, CD4Tconv, CD8T, Endothelial, Epithelial, Fibroblasts,

Malignant, Mono/Macro, NK, Pericytes, Plasma) in the four breast

cancer multimodal subtypes. CS1 had 86,347 cells, CS2 had 113,108

cells, CS3 had 45,227 cells, and CS4 had 69,914 cells (Figures 4B, C).

We compared the distribution of the 11 major cell types in the 4

subtypes and found that malignant cells accounted for 77.2% in

CS1, 34.6% in CS2, 53.4% in CS3, and 27.3% in CS4. Furthermore,

we observed notable differences in other cell types among the

subtypes, such as the high proportion of NK cells in CS4 and the

presence of Plasma cells in CS3 and CS4, indicating enriched

immune activation responses in these subtypes. Additionally, B

cells and CD4Tconv were highly represented in CS4, suggesting the

formation of relatively more tertiary lymphoid structures, which

contribute to the anti-tumor immune response (Figures 4D–G, H)

(125, 126). We performed differential analysis and functional

enrichment analysis on these 11 major cell types, and found that

the marker genes and functions of these cell types were consistent

with previous studies (Figure 4I). The results highlight significant

heterogeneity in the tumor microenvironment among the four

neoadjuvant therapy subtypes, consistent with bulk-RNAseq

analysis findings.

Next, we focused on exploring the differences in Malignant and

Epithelial cells among the four subtypes. Firstly, we observed

distinct distributions of Malignant and Epithelial cells from the
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four breast cancer multimodal subtypes in different regions of the

UMAP scatter plot, accompanied by significant differences in

transcription factors and gene functions (Figures 4J-M).

Specifically, Epithelial cells in each subtype showed enrichment in

different signaling pathways, reflecting distinct biological

characteristics. Notably, Epithelial cells in CS4 exhibited

pronounced inflammatory features, with significant enrichment in

the Antigen processing and presentation, Allograft rejection, and

Viral myocarditis signaling pathways. Furthermore, IL-17 signaling

pathway was significantly enriched in Epithelial cells across all four

subtypes. However, differences in Malignant cells among the four

subtypes were relatively minor (Figures 4N-R).

To further explore the differences between Epithelial cells and

Malignant cells in these subtypes, we conducted copy number

variation (CNV) analysis on these two cell types across the four

subtypes. Using infercnv, we performed analysis in two modes (with

the parameter cluster_by_groups set to TRUE and FALSE, with

Fibroblasts and Endothelial cells as references). We compared the

CNVs of Epithelial cells and Malignant cells across the four

subtypes and found that regardless of the subtyping method, the

CNVs of Malignant cells were significantly higher than those of

Epithelial cells (Figure 5A; Supplementary Figure S10A). This

indicates that our cell annotation was correct and suggests that

Malignant cells have a higher degree of genomic variation.

By conducting hierarchical clustering on all cells, with the

height of each cell in the clustering tree indicating its

differentiation level, we observed that Malignant cells exhibited a

much higher degree of differentiation compared to Epithelial cells

(Figure 5B). Additionally, Malignant cells from CS2 and CS3

exhibited the highest differentiation levels, followed by those from

CS4, while Malignant cells from CS4 showed the lowest

differentiation level. Furthermore, Malignant cells from CS2 and

CS3 formed distinct clusters with significant differentiation.

Therefore, to further understand the heterogeneity of these cell

subtypes, we performed unsupervised clustering (louvain cluster)

on Epithelial cells and Malignant cells, reclassifying them into 39

subgroups(Figure 5C). We found that highly differentiated clusters,

such as cluster 1 and cluster 24, primarily comprised subgroups of

Malignant_CS2, while cluster 10 mainly consisted of subgroups of

Malignant_CS3. Conversely, relatively less differentiated cluster 28

predominantly belonged to Malignant_CS4 subgroups (Figure 5D).

We successfully identified highly differentiated subgroups of

Malignant cells within the four breast cancer multimodal

subtypes. These subgroups did not overlap, indicating significant

tumor evolutionary differences among these subtypes.

Breast cancer malignant cells originate from epithelial cell lesions.

Therefore, we further explored the evolution of Epithelial and

Malignant cells across these four multimodal subtypes of breast

cancer. Initially, we assessed the differentiation process of these

cells using Cytotrace (Figures 5E-G). Firstly, we observed that

Epithelial_CS1 exhibited the lowest degree of differentiation,

followed by Malignant_CS1. This suggests that the malignant cells

in CS1 breast cancer exhibit a state close to that of normal breast

epithelial cells. Additionally, we found that Malignant_CS4 displayed

the highest degree of differentiation, followed by Malignant_CS. This
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FIGURE 4 (Continued)
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FIGURE 4 (Continued)

Tumor microenvironment comparison of four breast cancer multimodal subtypes at the single-cell level. (A) The NTP algorithm was applied to infer
the breast cancer multimodal subtypes from 53 single-cell sequencing datasets of breast cancer. (B) A total of 314,596 cells were classified into 11
cell types: 5,249 B cells, 14,754 CD4 T conv cells, 4,503 CD8 T cells, 11,230 endothelial cells, 67,637 epithelial cells, 23,985 fibroblasts, 149,060
malignant cells, 18,400 monocytes/macrophages, 6,928 NK cells, 7,068 pericytes, and 5,782 plasma cells. (C) UMAP visualization displaying the
distribution of cells from the four breast cancer multimodal subtypes. (D) CS1 subtype contained 86,347 cells, including 432 B cells, 1,137 CD4 T
conv cells, 879 CD8 T cells, 877 endothelial cells, 6,166 epithelial cells, 3,921 fibroblasts, 66,649 malignant cells, 4,787 monocytes/macrophages,
438 NK cells, 923 pericytes, and 138 plasma cells. (E) CS2 subtype comprised 113,108 cells, including 33 B cells, 355 CD4 T conv cells, 9 CD8 T
cells, 7,118 endothelial cells, 52,644 epithelial cells, 8,568 fibroblasts, 39,172 malignant cells, 1,180 monocytes/macrophages, 5 NK cells, 3,989
pericytes, and 35 plasma cells. This subtype showed a marked reduction in immune cells compared to the others. (F) CS3 subtype consisted of
45,227 cells, including 774 B cells, 1,666 CD4 T conv cells, 1,024 CD8 T cells, 1,214 endothelial cells, 6,608 epithelial cells, 3,235 fibroblasts, 24,160
malignant cells, 3,634 monocytes/macrophages, 345 NK cells, 522 pericytes, and 2,045 plasma cells. (G) CS4 subtype included 69,914 cells, with
4,010 B cells, 11,596 CD4 T conv cells, 2,591 CD8 T cells, 2,021 endothelial cells, 2,219 epithelial cells, 8,261 fibroblasts, 19,079 malignant cells,
8,799 monocytes/macrophages, 6,140 NK cells, 1,634 pericytes, and 3,564 plasma cells. This subtype had the highest abundance of immune cells.
(H) Percentage distribution of 11 cell types within the tumor microenvironment across the four breast cancer multimodal subtypes. (I) Gene markers
for 11 cell types within the four multimodal subtypes. The markers were consistent across subtypes, with B cell markers including MS4A1, CD4 T
conv cell markers such as IL7R, and endothelial cell markers including ADAMTS9, IL6, FABP4, and HMOX1. Epithelial cell markers included SAA1 and
MMP7, while fibroblast markers included COL3A1, COL6A3, APOD, and COL1A1. Malignant cell markers were PIP and TFF3, monocyte/macrophage
markers included C1QB, APOE, CTSD, and CD74. NK cell markers were GNLY, NKG7, and GZMB, pericyte markers were IGFBP7, ACTA2, and PDK4,
and plasma cell markers were IGKC, IGHA1, and IGHM. (J–M) UMAP plots showing distinct distribution patterns of the four multimodal subtypes,
highlighting clear differences in cell composition. Cells were classified into eight groups based on multimodal subtype and cell type: Epithelial_CS1,
Epithelial_CS2, Epithelial_CS3, Epithelial_CS4, Malignant_CS1, Malignant_CS2, Malignant_CS3, Malignant_CS4. (N) Volcano plots depicting
differential expression analysis of the eight cell groups (Wilcox-Test). (O) Heatmap of differential expression and the results of transcription factor
(TF), transcriptional cofactor (CSPA), GO_BP pathway, and KEGG pathway enrichment analyses for the eight cell groups.These analyses provide an
in-depth view of the tumor microenvironment at the single-cell level, revealing significant heterogeneity in cellular composition, gene expression,
and pathway activation among the four breast cancer multimodal subtypes.
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finding aligns with the results obtained from copy number variation

analysis. We also observed that the differentiation level of

Epithelial_CS2 was higher than that of Malignant_CS3, possibly

due to the high mutation characteristics of CS2 tumors (Figure 5H).

Furthermore, we sorted and compared the 39 cell subgroups of

Epithelial and Malignant cells based on the pseudotime constructed

by Cytotrace (Figures 5I, J). We found that cluster 24, belonging to

Malignant_CS2, exhibited the highest differentiation level. Next was

cluster 3, belonging to Malignant_CS4, although its position on the

dendrogram was not highly ranked, indicating a potential difference

in differentiation direction from malignant cells. Moreover, cluster

10, primarily composed of Malignant_CS3, ranked third in terms of

differentiation status, with relatively high levels of copy variation.

The differentiation direction of malignant tumor cells is not fixed.

The high immune infiltration in CS4 may exert strong selective

pressure, leading to the elimination of the most highly malignant

cells and a relative enrichment of cells with lower genomic

instability or with adaptations for immune evasion. The high

differentiation level observed in CS4 malignant cells, despite the

intense immune pressure, is consistent with the superior prognosis

observed for this subtype. This suggests that the immune system

may be effectively controlling or eliminating the most aggressive

cells, or that the remaining malignant cells have adapted to the

immune pressure in a way that reduces their aggressiveness.

To further elucidate the evolutionary processes of malignant

cells within each subtype, we performed pseudotime analysis using

Monocle2 on the four multimodal breast cancer subtypes

individually (Figure 6). CS1 Subtype: The CS1 subtype exhibited

a relatively low differentiation level, consistent with its lower

mutation burden and minimal differences between ‘Epithelial’

and ‘Malignant’ cells as defined by the TISCH2 annotations

(Figures 6A, B, E; Supplementary Figures S10C–E). Two main

differentiation trajectories were observed, with branch 2 showing a
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slightly higher degree of differentiation. Key gene modules

act ivated during this transit ion were associated with

fundamental biological processes such as cell signaling and cell

cycle regulation, suggesting potential therapeutic targets. The

limited differentiation and relative homogeneity of CS1

malignant cells may be influenced by the lower immune

infiltration and predominance of signals associated with a less

aggressive phenotype, as observed in our previous analyses. This

suggests that CS1 tumors may maintain malignancy through

relatively conserved genetic mechanisms rather than extensive

genomic alterations. CS2 Subtype: In contrast to CS1, the CS2

subtype displayed a higher degree of differentiation and two

dist inct tra jector ies , wi th branch 1 showing greater

differentiation and enrichment for pathways related to

endothelial cell chemotaxis and angiogenesis (Figures 6C, D, F;

Supplementary Figures S10F–H). This, coupled with the

previously observed HGF signaling from fibroblasts in this

subtype, suggests that the CS2 TME actively promotes an

invasive and angiogenic phenotype. The distinct differentiation

t r a j e c t o r i e s l i k e l y r efl e c t a d ap t a t i o n t o d i ff e r e n t

microenvironmental pressures, leading to increased tumor

adaptability and invasiveness. The CytoTRACE analysis

indicated a higher differentiation score, suggesting a trajectory

towards a more dedifferentiated and aggressive phenotype. This is

consistent with the high genomic instability (high mutation rate

and CNVs) observed in this subtype. While some features of

epithelial differentiation may be retained, the overall trajectory,

coupled with weakened cell-cell communication, likely

contributes to the poorer prognosis observed for CS2. CS3

Subtype : The CS3 subtype a lso exhib i ted two main

differentiation trajectories, with branch 1 showing higher

differentiation and enrichment for pathways involved in tissue

homeostasis and maintenance of tissue structure (Figures 6G, H,
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FIGURE 5

Comparison of tumor progression trajectories in breast cancer multimodal subtypes. (A) Copy number variation (CNV) inference in epithelial and
malignant cells using inferCNV, with fibroblasts and endothelial cells serving as reference cells. (B) Clustering of CNVs to obtain hierarchy height
(cnv_height) for each cell type. By comparing the cnv_height of the eight cell subgroups (Epithelial_CS1, Epithelial_CS2, Epithelial_CS3,
Epithelial_CS4, Malignant_CS1, Malignant_CS2, Malignant_CS3, and Malignant_CS4), we assessed the evolutionary degree of each subgroup.
Malignant_CS2 and Malignant_CS3 exhibited higher tumor heterogeneity and progression. (C) Unsupervised clustering using the Louvain algorithm
identified 39 cell clusters from epithelial and malignant cells, revealing distinct distribution patterns across the eight cell subgroups. (D) Distribution
of the 39 cell clusters within the eight cell subgroups. (E) Differentiation degree of epithelial and malignant cells assessed using CytoTRACE,
visualized in a differentiation heatmap. Higher differentiation levels indicate more mature tumor cell differentiation trajectories. (F) Distribution of the
eight cell subgroups in the differentiation heatmap. (G) Distribution of the 39 cell clusters in the differentiation heatmap. (H) Ranking of the
differentiation degrees of the eight cell subgroups predicted by CytoTRACE, showing that Malignant_CS4 had the highest differentiation, while
Epithelial_CS1 had the lowest. (I) Comparison of cnv_height across the 39 cell clusters, highlighting clusters 1, 10, and 24 as having high
differentiation degrees. (J) Ranking of the differentiation degrees of the 39 cell clusters predicted by CytoTRACE, indicating that cluster 24 (mainly
from Malignant_CS2) had the highest differentiation degree, followed by cluster 3 (from Malignant_CS4), despite cluster 3 not having particularly
high cnv_height. The lowest differentiation levels were observed in clusters 17 and 22, both from Malignant_CS1, suggesting that Malignant_CS1
tumor cells are in a low differentiation state, potentially related to drug resistance. These analyses offer insights into the tumor progression and
differentiation trajectories of breast cancer multimodal subtypes, emphasizing the heterogeneity and distinct evolutionary pathways within and
between subtypes. The findings highlight the variability in tumor cell differentiation states, with potential implications for understanding drug
resistance and therapeutic responses.
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K; Supplementary Figures S10I–K). This, combined with the

observed intermediate levels of immune infiltration and distinct

metabolic characteristics, suggests that CS3 malignant cells may

maintain their malignant phenotype through mechanisms related

to cell adhesion, polarity, and cell cycle regulation. The previously

noted high mutation characteristics in CS3 may be associated with

its copy number variation burden, contributing to intratumoral
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heterogeneity and potential therapeutic resistance. The Monocle2

analysis revealed differentiation trajectories enriched for pathways

involved in tissue homeostasis. However, this does not necessarily

imply a less aggressive phenotype. The combination of these

differentiation pathways with the observed high mutation

characteristics and intermediate immune infiltration likely

contributes to a complex phenotype with a poorer prognosis
FIGURE 6

Comparison of epithelial cell malignant progression trajectories in four breast cancer multimodal subtypes. (A) The progression pathway of epithelial cells to malignant
cells in the CS1 subtype. (B) In the CS1 subtype, two differentiation branches (branch1 and branch2) were identified, with branch2 showing a higher degree of
differentiation compared to branch1. (C) The progression pathway of epithelial cells to malignant cells in the CS2 subtype. (D) In the CS2 subtype, two differentiation
branches (branch1 and branch2) were identified, with branch1 exhibiting a higher degree of differentiation compared to branch2. (E) In the CS1 subtype, branch1
differentiation is predominantly regulated by genes such as ANKRD30A, TFF1, and CRABP2, and is enriched in pathways like response to interferon-alpha and
endothelial cell chemotaxis. Branch2 is mainly regulated by genes like MT1X and GLIPR1, influencing pathways such as granulocyte chemotaxis, neutrophil migration,
and neutrophil chemotaxis. (F) In the CS2 subtype, branch1 differentiation is largely governed by inflammation-related signaling pathways. Branch2 is primarily
regulated by genes such as CRYAB, KRT5, and CRABP2, focusing on pathways related to epidermis development and skin development. (G) The malignant
differentiation trajectory in the CS3 subtype. (H) In the CS3 subtype, branch1 displays a higher degree of differentiation compared to branch2. (I) The differentiation
along branch1 in the CS3 subtype is regulated by genes like CLDN3, ANKRD30A, and SCGB2A2, which are enriched in pathways such as tissue homeostasis and
anatomical structure homeostasis. Branch2 is primarily influenced by inflammation-related pathways. (J) The progression pathway of epithelial cells to malignant cells
in the CS4 subtype. (K) In the CS4 subtype, two differentiation branches (branch1 and branch2) were identified, with branch2 showing a higher degree of
differentiation. (L) In the CS4 subtype, branch1 differentiation is regulated by genes such as MIA, PLS3, S100A4, CDKN2A, and STMN1, and is enriched in pathways
related to epidermis development and keratinization. Branch2 is primarily regulated by pathways such as response to cAMP and response to steroid hormone.
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compared to CS1 or CS4. CS4 Subtype: The CS4 subtype,

characterized by high immune infiltration, displayed the highest

degree of malignant cell differentiation and two main trajectories,

with branch 1 exhibiting greater differentiation (Figures 6I, J, L;

Supplementary Figures S10L–N). Key gene modules were

associated with epidermal development, keratinization, and cell

apoptosis. This suggests that the strong selective pressure exerted

by the immune system drives the evolution of malignant cells with

specialized mechanisms for both maintaining malignancy and

evading immune surveillance.

The pseudotime analysis reveals distinct evolutionary

trajectories of malignant cells across the four multimodal breast

cancer subtypes, alongside evidence of shared pathways like cell

cycle regulation; these differences, driven by the interplay between

intrinsic cellular programs and the selective pressures of the tumor

microenvironment, highlight potential targets for both subtype-

specific and broader therapeutic interventions.

Next, we analyzed the differences in transcription factor activity

between epithelial cells and malignant cells of the four subtypes using

SCENIC (Supplementary Figure S10B). By screening differentially

activated transcription factors, we found similarities in the spectrum

of differentially activated transcription factors between

Epithelial_CS1 and Epithelial_CS4, as well as between

Epithelial_CS2 and Epithelial_CS3. Commonly activated

transcription factors included CD59 and FOSL1 in epithelial cells

and RAD21-extended(57g) in Malignant_CS4, indicating extensive

differences in transcription factor activity between the four

multimodal subtypes. To further understand the role of these

differentially activated transcription factors in cell malignant

transformation, we performed functional analysis of key

transcription factors such as CD59, FOSL1, RAD21-extended(57g),

TFDP1(33g), and TFDP1-extended(64g). The activation status of

these transcription factors in different subtypes may directly affect cell

growth, differentiation, and malignant transformation processes.

CD59 is an immune inhibitor that protects cells from complement

attack. Its activation in both normal and malignant cells may regulate

immune evasion and facilitate transformation (127). FOSL1 is an AP-

1 transcription factor that regulates proliferation, apoptosis, and

differentiation. FOSL1 activation in epithelial cells across subtypes

may maintain normal epithelial cell function (128)s. RAD21 is a key

component of the cohesin complex, which plays a critical role in

maintaining chromosomal structural stability (129). The significant

activation of RAD21-extended(57g) in Malignant_CS4 may reflect

increased chromosomal instability, a common feature of many

cancers. TFDP1 (transcription factor Dp-1) is a member of the

transcription factor family (130). As an auxiliary factor of E2F

transcription factors, TFDP1 regulates the cell cycle process. The

significant activation of TFDP1(33g) and TFDP1-extended(64g) in

Malignant_CS2 may indicate issues in cell cycle regulation, thereby

promoting malignant transformation.

In summary, our study reveals differences in transcription

factor activity between epithelial cells and malignant cells of

different subtypes, which may directly impact the processes of cell

growth, differentiation, and malignant transformation. Further

research will help deepen our understanding of the roles of these
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transcription factors in cellular malignant transformation,

providing new insights for cancer treatment and prevention.
3.4 The cell-cell communication shows
significant differences among the four
breast cancer molecular subtypes

Through CellChatV2.1.2 analysis of single-cell sequencing data

from four molecular subtypes, we annotated all cells into different

cell types, including Endothelial, Epithelial, Fibroblasts, Malignant,

Mono/Macro, NK, Pericytes, Plasma, B, CD4Tconv, and CD8T

cells. First, we compared the differences in the number of cell-cell

interactions among the four molecular subtypes (Figure 7A).

Interestingly, we found that in the CS2 subtype, NK cells, B cells,

and Plasma cells had almost no interactions with other cell types,

indicating their communication activity was remarkably low in this

subtype compared to the other subtypes. In the CS4 subtype, Mono/

Macro cells and Pericytes showed significantly higher numbers of

interactions with other cell types, suggesting these cells may play a

more active role in this subtype. In terms of the overall cell-cell

interaction counts, we also found that the CS1 subtype had the

highest interaction strength, potentially indicating a relatively more

active cell communication in the tumor microenvironment of this

subtype. The CS4 subtype had the highest number of cell-cell

interactions, revealing a higher frequency of cell-cell

communication in this subtype. In contrast, the CS2 subtype

exhibited the lowest cell-cell interaction counts and interaction

strength, which is consistent with its poorer prognosis.

The interaction number and intensity between cells of the CS3

subtype are also relatively low, leading to a similarly poor prognosis.

We observed a significant reduction in the amount and strength of

cell-cell communication in the CS2 and CS3 subtypes (Figure 7B).

We refer to this as a “weakening of intercellular communication.”

Biologically, this could reflect several scenarios: fewer physical

interactions between cells due to altered tumor architecture or

reduced immune cell infiltration; lower expression of genes

encoding key ligands or receptors; or the presence of factors that

inhibit ligand-receptor binding. Given the poor prognosis

associated with these two subtypes, we hypothesize that the

weakening of intercellular communication may be an important

factor contributing to the poor outcomes in these cancer

patients.The complexity and activity of cell-cell communication

within the tumor microenvironment may have a significant impact

on cancer progression and prognosis. Specifically, the lack of

effective intercellular communication could lead to increased

immune evasion, tumor proliferation, and metastasis - the

hallmarks of malignant behavior - within the tumor

microenvironment. The impaired cellular crosstalk observed in

the CS2 and CS3 subtypes suggests that the integrity and

robustness of the communication network within the tumor

milieu is a critical determinant of clinical outcomes. When this

intercellular communication is disrupted, the tumor may be able to

more readily evade immune surveillance, proliferate uncontrollably,

and spread to distant sites. Next, we analyzed the relative and
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absolute information flow among the four multimodal subtypes.

Relative information flow represents the relative importance of a

specific communication pathway across all subtypes (Figure 7C).

Across multiple communication pathways, the CS1 subtype

exhibited higher relative information flow, such as in the TNF,

IL16, and Notch signaling pathways, indicating that these pathways

have greater relative importance in the CS1 subtype. The CS2

subtype exhibited lower relative information flow across multiple

communication pathways, which is consistent with the previously

observed reduction in the number and strength of cell-cell

communication in this subtype. However, the HGF (Hepatocyte

Growth Factor) signaling pathway was found to be aberrantly

activated in the CS2 subtype. HGF primarily binds to its receptor

c-Met, and this pathway is known to play a crucial role in regulating

various cellular behaviors, such as proliferation, migration,
Frontiers in Immunology 20
invasion, and apoptosis (131, 132). The CS3 subtype has relatively

higher information flow in some specific communication pathways,

such as SELPLG and CEACAM, but overall exhibits relatively lower

information flow. The CS4 subtype has relatively higher

information flow across multiple pathways, such as ICAM, LIFR,

SN, EPHB, TGFb, COMPLEMENT, and CD45, indicating that

these pathways are more important in the CS4 subtype. Absolute

information flow represents the actual information flow quantity of

a specific communication pathway in each subtype. Pathways such

as MK, CypA, MHC-II, and LAMININ exhibit higher absolute

information flow in the CS4 subtype, indicating that these pathways

are more active in these subtypes. Furthermore, we analyzed the

overall differences in signal pattern across the four multi-modal

subtypes (Figure 7D; Supplementary Figure S11).In the CS1

subtype, we found that Fibroblasts and NK cells are the primary
FIGURE 7

Comparison of cell-cell communication in the tumor microenvironment across four breast cancer multimodal subtypes. (A) Comparison of the
number of interactions among 11 different cell types in each of the four breast cancer multimodal subtypes. (B) Comparison of the total number and
strength of communications in the four breast cancer multimodal subtypes. (C) Comparison of the relative (left) and absolute (right) information flow
of receptor-ligand pairs that show statistically significant differences among the four breast cancer multimodal subtypes. (D) Comparison of overall
signaling patterns among the 11 cell types across the four breast cancer multimodal subtypes. The results indicate that the CS1 and CS3 subtypes
exhibit the fewest cell-cell communications, whereas the CS4 subtype shows the highest level of cell-cell communications. These analyses provide
a comprehensive overview of the cellular communication landscapes in the tumor microenvironments of different breast cancer multimodal
subtypes. The comparative analysis highlights significant variations in the number and intensity of cell-cell interactions, as well as in the signaling
pathways mediated by receptor-ligand pairs. These differences underscore the unique microenvironmental dynamics and potential intercellular
regulatory mechanisms that may influence tumor progression and therapeutic response in each subtype. Understanding these communication
networks could offer novel insights into targeted therapies and strategies for disrupting key signaling pathways in breast cancer treatment.
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information sources, with Fibroblasts being the dominant

information senders (communication signals such as

COLLAGEN, FN1, MK, etc.), while NK cells are the primary

information receivers (signals such as MHC-I, CXCL,

GALECTIN, LCK, etc.). The elevated signal pathway activity of

MIF in B cells and CD8 T cells is a key feature of the CS1 subtype.

This suggests that in the tumor microenvironment of the CS1

subtype, Fibroblasts and NK cells may play critical roles in

regulating tumor cell behavior and immune status. The aberrant

activation of the MIF signaling pathway may be an important

biological characteristic of the CS1 subtype, potentially impacting

tumor progression and immune status. In the CS2 subtype, the

overall communication signal activity is relatively low. The LAIR1

(Leukocyte-Associated Immunoglobulin-Like Receptor 1)

communication signal is responsible for signal transduction

between Mono/Macro (Monocyte and Macrophage) cells. While

overall cell-cell communication in CS2 was markedly reduced (as

shown in Figures 7A, B), the interactions that did occur were

disproportionately enriched for immune inhibitory pathways,

notably LAIR1 signaling between monocytes/macrophages. This

suggests a microenvironment where, despite limited cellular

crosstalk, immunosuppression predominates. LAIR1, an

inhibitory receptor expressed on immune cells, binds to collagen

and can suppress immune cell activation (133). The observed

LAIR1 signaling between Mono/Macro cells in the CS2 subtype

suggests significant immune regulatory and inhibitory signaling

within this cell population. This signal transmission may lead to

reduced immune cell activity, thereby impacting the immune

response in the tumor microenvironment and allowing tumor

cells to evade immune surveillance. The JAM (Junctional

Adhesion Molecule) communication signal acts as a sender in

Fibroblasts and a primary receiver in Malignant cells. JAM family

members participate in tight cell-cell junctions and signal

transduction, typically expressed in epithelial and endothelial cells

(134). The JAM signaling pathway plays a crucial role in cell

adhesion, migration, and immune cell traversal (135). This

communication could promote the adaptation and progression of

malignant cells within the tumor microenvironment, particularly in

the interaction between tumor cells and stromal cells. Furthermore,

the Hepatocyte Growth Factor (HGF) communication signal acts as

a sender in Fibroblasts and a primary receiver in Epithelial cells in

the CS2 subtype. This suggests that Fibroblasts may exert a

significant impact on Epithelial cells through the secretion of

HGF, potentially promoting epithelial cell proliferation and

migration. The aberrant activation of the HGF signaling pathway

may drive the malignant transformation of Epithelial cells and

tumor progression in the CS2 subtype, enhancing their invasive and

metastatic capabilities (136). In the CS3 subtype, the SELPLG

(Selectin P Ligand), also known as PSGL-1 (P-selectin

glycoprotein ligand-1), communication signal primarily originates

from NK (natural killer) cells, while the endothelial cells act as the

signal receivers. SELPLG is an adhesion molecule expressed on the

surface of leukocytes, which can bind to selectins (such as P-

selectin, E-selectin, and L-selectin), playing a crucial role in the

processes of inflammation, immune cell rolling, adhesion, and
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migration (137). Through the SELPLG signaling, NK cells interact

with endothelial cells, which may enhance the adhesion and

migratory capabilities of endothelial cells in the context of

inflammation and immune responses. This interaction between

NK cells and endothelial cells may facilitate the localization and

infiltration of NK cells within the tumor microenvironment, while

also potentially modulating the tumor vascular system, thereby

enabling more effective immune surveillance and tumor cell killing.

In the CS4 subtype, the cell types with the strongest communication

signals are Fibroblasts and Mono/Macro cells. We have found that

the CD45, COMPLEMENT, and TGFb communication signals

predominantly occur within the Mono/Macro cell population.

The CD45 signal is sent by NK cells and received by Mono/

Macro cells. The COMPLEMENT signal is sent by Fibroblasts

and received by Mono/Macro cells. The SEMA4 communication

signal is sent by NK cells and received by Malignant and Mono/

Macro cells. The Prostaglandin communication signal is primarily

observed within Mono/Macro cells, with the senders being CD8 T

cells and Malignant cells, and the receivers being Mono/Macro cells.

These findings reflect the important role of Mono/Macro cells in

regulating the inflammatory response and tumor progression

within the tumor microenvironment of the CS4 subtype. The

intricate communication networks involving multiple cell types,

including Fibroblasts, NK cells, CD8 T cells, and Malignant cells,

converge on the Mono/Macro cell population, highlighting their

central role in shaping the tumor ecosystem in this

particular subtype.
3.5 Comparison of drug response-
associated cells in multimodal subtypes of
breast cancer neoadjuvant therapy

To further explore the relationship between disease and drug

response, we utilized gene expression data from the ISPY2 cohort and

subsets of epithelial and malignant cells from the GSE161529 cohort.

Using the Scissor computational framework, we investigated cells

associated with pathological complete response (pCR) outcomes. We

conducted assessments within each of the four multimodal subtypes.

We found that in the CS1 subtype, 10% of cells were non-Response,

and 4% were Response; in the CS2 subtype, 4% were non-Response,

and 3% were Response; in the CS3 subtype, 3% were non-Response,

and 10% were Response; and in the CS4 subtype, 11% were non-

Response, and 4% were Response(Figures 8A, B). Furthermore, we

performed analyses separately for epithelial and malignant cells

across the four different multimodal subtypes. We observed that in

the CS1 subtype, 4% of epithelial cells were non-Response, and 2%

were Response, while 16% of malignant cells were non-Response, and

6% were Response; in the CS2 subtype, 6% of epithelial cells were

non-Response, and 1% were Response, while 2% of malignant cells

were non-Response, and 4% were Response; in the CS3 subtype, 3%

of epithelial cells were non-Response, and 2% were Response, while

3% of malignant cells were non-Response, and 19%were Response; in

the CS4 subtype, 8% of epithelial cells were non-Response, and 3%

were Response, while 13% of malignant cells were non-Response, and
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5% were Response. We found a higher proportion of non-Response

in epithelial cells, whereas in malignant cells, non-Response rates in

CS1 and CS4 subtypes were higher compared to all epithelial and

malignant cell subgroups, at 16% and 13% respectively. Conversely,

the Response rate was highest in CS3 subtype malignant cells (19%).

This result aligns with the earlier analysis, indicating lower pCR rates

in CS1 subtype and higher pCR rates in CS3 subtype. However, the

lower response rate in the CS4 subtype is somewhat inconsistent,

possibly due to its intense immune activation status. From the

preceding conclusions, we observed that malignant cells exhibit a

more pronounced effect on pCR response compared to epithelial
Frontiers in Immunology 22
cells. Next, we performed differential expression analysis on Pos

(Response), Neg (non-Response), and Control (not effective) groups

within malignant cells. We employed the Wilcoxon test for

differential analysis using a one-vs-others strategy.Through

differential expression analysis (|LogFC| > 0.5, P.adj > 0.05), we

identified notable gene expression changes across various groups. In

the Control group, 21 genes were found to be overexpressed,

including KRT14, S100A6, SLPI, and SOD2, while 14 genes were

underexpressed, such as IGKC, IGLC2, ERBB2, and HLA-DRA. The

Pos group exhibited upregulation of 63 genes, including IGKC,

ERBB2, IGLC2, MIEN1, and HLA-DRA, and downregulation of 15
FIGURE 8

Comparison of Drug Response-Related Cells in Four Breast Cancer Multimodal Subtypes. (A) Distribution of positive (pCR positive) and negative
(pCR negative) response cells across eight cell subtypes (Epithelial_CS1, Epithelial_CS2, Epithelial_CS3, Epithelial_CS4, Malignant_CS1,
Malignant_CS2, Malignant_CS3, Malignant_CS4) in a dimensionality reduction scatter plot. (B) Distribution of control (Ctrl), pCR positive (Pos), and
pCR negative (Neg) cells within the eight cell subtypes. (C) Comparison of differentially expressed genes between pCR positive cells, pCR negative
cells, and control cells, focusing exclusively on malignant cells. (D) Heatmap of functional enrichment analysis for differentially expressed genes.
(E) Protein-protein interaction (PPI) network and functional enrichment analysis of upregulated genes in pCR positive malignant cells. (F) Gene set
enrichment analysis (GSEA) results for pCR positive malignant cells. “Activated” denotes pathways enriched with genes highly expressed in pCR
positive malignant cells, while “Suppressed” indicates pathways enriched with genes lowly expressed in these cells. (G) PPI network and functional
enrichment analysis of upregulated genes in pCR negative malignant cells. (H) GSEA results for pCR negative malignant cells. “Activated” denotes
pathways enriched with genes highly expressed in pCR negative malignant cells, while “Suppressed” indicates pathways enriched with genes lowly
expressed in these cells.
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genes, including CXCL14, S100A10, CSTB, and PDSS2. In the Neg

group, 44 genes were upregulated, including FABP3, IFI27, IFITM1,

and ADIRF, whereas 98 genes were downregulated, including

KRT17, KRT14, S100A6, CXCL8, and SOD2(Figure 8C). Based on

the differentially expressed genes, we conducted functional

enrichment analysis using the multi-genelist mode of Metascape,

constructed a PPI network, and identified core modules using the

MCODE algorithm (Figure 8D; Supplementary Figures S12A, B). We

found that genes upregulated in the Pos group were mainly enriched

in Antigen processing and presentation, 17q12 copy number

variation syndrome, while downregulated genes were mainly

enriched in Peptide chain elongation, ribosome biogenesis

pathways. Genes upregulated in the Neg group were predominantly

enriched in Prion disease, Interferon Signaling, while downregulated

genes were mainly enriched in leukocyte migration, supramolecular

fiber organization, epithelial cell differentiation pathways. Control

group upregulated genes were also enriched in Peptide chain

elongation, intermediate filament organization pathways, while

downregulated genes exhibited enrichment similar to the pathways

enriched by upregulated genes in the Pos group. Furthermore, we

explored the PPI networks of upregulated and downregulated genes

in the Pos group, and upregulated and downregulated genes in the

Neg group separately (Figure 8E, G; Supplementary Figures S12C–F).

We found five core regulatory modules in the PPI network of

upregulated genes in the Pos group. Module1 primarily

participated in Antigen processing and presentation; Module2

regulated VEGFA VEGFR2 signaling; Module3 was enriched in

immune response to tuberculosis; Module4 regulated Proteasome.

There was only one core module identified in the PPI network of

downregulated genes in the Pos group, mainly involved in Peptide

chain elongation, Viral mRNA Translation. The PPI module of

upregulated genes in the Neg group mainly regulated the Electron

transport chain OXPHOS system in mitochondria and Oxidative

phosphorylation pathways. It comprised three core modules:

Module1 mainly participated in Respiratory electron transport,

oxidative phosphorylation; Module2 was involved in Cellular

response to stress, Prion disease; Module3 was associated with

Interferon alpha/beta signaling, Interferon Signaling pathways.

Furthermore, we utilized the GSEA algorithm to assess the

enriched signaling pathways of the differentially expressed genes in

both the Pos and Neg groups (Figures 8F, H). Utilizing

ClusterProfiler’s gseKEGG, we conducted functional enrichment

analysis on the gene lists of differentially expressed genes from the

Pos and Neg groups (sorted by logFC). In the Pos group, we

observed significant activation of pathways such as lymphocyte

mediated immunity, B cell mediated immunity, immunoglobulin

mediated immune response, leukocyte mediated immunity, while

pathways including cytoplasmic translation, ribosomal large

subunit biogenesis, ribosome biogenesis were significantly

activated. In the Neg group, we found activation of pathways

including response to heat, response to unfolded protein,

chaperone cofactor-dependent protein refolding, while pathways

such as cytoplasmic translation, wound healing, leukocyte

migration were significantly suppressed. These results are

consistent with the findings from the earlier enrichment analysis.
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4 Discussion

Neoadjuvant therapy, encompassing chemotherapy,

radiotherapy, endocrine therapy, and targeted agents, is

increasingly utilized in breast cancer management prior to

surgery (138). In recent years, the application of neoadjuvant

therapy in breast cancer has become increasingly widespread,

playing a significant role in improving the survival rates and

quality of life for breast cancer patients (139). Despite the

growing application of neoadjuvant therapy in breast cancer,

there are relatively few multimodal prediction models specifically

tailored for neoadjuvant therapy (140). These prediction models are

mainly based on clinical and pathological features, molecular

biomarkers, and imaging examinations, aiming to predict the

efficacy and prognosis of neoadjuvant therapy (141, 142).

Pathological complete response (pCR) is considered one of the

indicators of successful neoadjuvant therapy and is closely related to

long-term survival rates in patients (143). However, there are

relatively few studies on molecular subtyping based on pCR after

neoadjuvant therapy. In this project, we constructed a multimodal

model to predict breast cancer pCR based on the ISPY2 cohort,

which includes transcriptomics, MRI, and proteomics data. Feature

extraction was performed using lasso regression, followed by the

construction of predictive models for breast cancer neoadjuvant

therapy pCR based on five machine learning models. The results

showed that our ridge regression model , integrat ing

transcriptomics, imagingomics, and proteomics, achieved the best

predictive performance on the validation set (AUC=0.917,

CA=0.827, F1 = 0.818, Prec=0.822, Recall=0.823, MCC=0.611).

By integrating features from multiple modalities, we obtained the

weights of these features(46 features from proteomics, 60 features

from transcriptomics, and 42 features from radiomics). We found

that features such as original_shape_Maximum2DDiameter

Column, HLA.DPB2, Cyclin.D1.total, PSMD3, ERBB2.total,

MYCN had higher weights. Original_shape_Maximum2D

DiameterColumn is an imaging feature used to describe the

maximum diameter of tumors in the coronal plane, which is an

important parameter for describing tumor size and shape. This

indicator has been used in various cancer studies, including but not

limited to lung cancer, brain cancer, and liver cancer. Cyclin D1 is a

cell cycle protein that binds to cyclin-dependent kinases (CDKs),

particularly CDK4 and CDK6, promoting cell entry from G1 phase

to S phase, thereby driving cell division and proliferation (144).

Overexpression of Cyclin D1 is associated with the development of

various cancers, including breast cancer, prostate cancer, and

pancreatic cancer (145, 146). Therefore, the level of Cyclin D1

can serve as a biomarker for cancer diagnosis and prognosis.

ERBB2.total (Erb-B2 Receptor Tyrosine Kinase 2), also known as

HER2 in certain contexts, is a receptor tyrosine kinase involved in

signaling pathways regulating cell growth and differentiation (147).

ERBB2 is overexpressed in certain cancers, particularly in breast

cancer, and is associated with disease invasiveness and poor

prognosis (148). MYCN is a member of the MYC gene family,

acting as a transcription factor involved in regulating cell

proliferation, differentiation, and apoptosis (149). Aberrant
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expression of MYCN is associated with the development of various

cancers, including neuroblastoma, small cell lung cancer, and other

types of tumors (150). Thus, the features selected by our machine

learning models for predicting breast cancer neoadjuvant therapy

pCR have significant clinical and biological implications. These

features can aid researchers in the development of breast cancer-

related drug therapies.

Next, we performed unsupervised clustering analysis on

multimodal data related to pCR obtained from transcriptomics,

proteomics, and MRI. Through nine unsupervised clustering

algorithms, we identified four multimodal subtypes relevant to

neoadjuvant therapy in breast cancer. We found significant

differences in transcriptomic, proteomic, and MRI features among

these four multimodal subtypes. Comparing clinical features, we

observed that the pCR rate was lowest in CS1, at only 11%, while

CS3 exhibited the highest rate at 52%. CS1 subtype consisted

entirely of ER+ patients, whereas CS2 and CS4 comprised 77%

and 80% ER- patients, respectively. Additionally, we found that over

90% of patients in CS2 and CS4 were HER2-. From the perspective

of PAM50 subtyping, 96% of CS2 and 92% of CS4 belonged to the

Basal subtype, while 74% of CS1 belonged to the Luminal B subtype.

These results were consistent with previous pathological findings.

Through GSVA analysis, we compared HALLMARK scores

among the four subtypes and found that estrogen response-related

signaling pathways were significantly activated in the CS1 subtype,

consistent with the results of protein expression. Considering that

CS1 mainly comprised ER+ patients, this result suggests that the

efficacy of neoadjuvant therapy in ER+ patients may be suboptimal.

KEGG pathway enrichment analysis using GSEA revealed that lipid

metabolism and oxidative phosphorylation pathways were more

active in CS1, DNA repair-related pathways were more active in

CS2, energy metabolism activities were more active in CS3, and

inflammation-related signaling pathways were more active in CS4.

Next, we explored the response of these four multimodal subtypes

to immunotherapy. We compared Response and Non-Response

groups in each subtype using 11 published immunotherapy response

scores. We found that the pCR response group exhibited better

immunotherapy outcomes, which is closely related to the mechanism

of immunotherapy. Immunotherapy works by activating or enhancing

the patient’s immune system to attack tumor cells. Therefore, the

degree of immune cell infiltration in the tumor microenvironment is

one of the key factors affecting treatment outcomes. Among the four

multimodal subtypes, CS1 showed the worst immunotherapy response,

while CS4 demonstrated the best response. We obtained similar results

in the TCGA-BRCA cohort. Due to the high immune cell infiltration in

CS4, it is more likely to respond to immunotherapy.

Furthermore, we evaluated the differences in drug response

among the four multimodal subtypes. We predicted the sensitivity

of commonly used breast cancer chemotherapy drugs in the ISPY2,

TCGA-BRCA and Metabrick-BRCA cohorts using transcriptomics.

The results indicated that CS1 exhibited resistance to Cisplatin,

Gemcitabine, Paclitaxel, and Vinorelbine, while CS2 and CS4

showed better sensitivity to chemotherapy drugs. We conducted a

comparative analysis of multimodal information among the four

multimodal subtypes in the TCGA-BRCA cohort. Firstly, we found
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that the prognosis of CS1 and CS4 subtypes was the most favorable

(Overall survival, Disease-specific survival, Progression survival) in

the TCGA-BRCA cohort. By comparing three hypoxia scores, we

observed that the hypoxia scores of CS1 and CS4 were relatively

low, while CS2 had the highest hypoxia score. Hypoxia scores

typically reflect insufficient oxygen supply in the tumor

microenvironment, which is related to tumor growth,

invasiveness, and treatment response. Lower hypoxia scores

suggest that tumors in CS1 and CS4 subtypes may have better

oxygen supply. Considering the earlier analysis, the high oxidative

phosphorylation activity in the CS1 subtype and the lowest Hypoxia

score inferred by the Progeny algorithm among all groups suggest a

better prognosis for the CS1 subtype, possibly due to adequate

oxygen supply. Conversely, the CS4 subtype is associated with high

immune cell infiltration. Numerous studies have shown that

immune cell infiltration in tumor cells contributes to the

prognosis of solid tumors such as lung cancer, pancreatic cancer,

and breast cancer (151). Surprisingly, we also found that male breast

cancer patients mainly belonged to the CS1 subtype, while the CS4

subtype was predominant in the American Indian or Alaska Native

population. This finding warrants further exploration and analysis.

Through comparative analysis of TCGA-BRCA exome

sequencing data, we found that among the four multimodal

subtypes, the CS2 subtype had the highest mutation rate, while

the CS1 subtype had the lowest mutation rate. Mutation rates are

usually associated with tumor differentiation and malignancy.

Highly differentiated tumors typically have lower mutation rates,

whereas poorly differentiated or undifferentiated tumors tend to

have higher mutation rates. In this study, the low mutation rate in

the CS1 subtype may indicate a higher degree of tumor cell

differentiation, which may be associated with its better prognosis.

Conversely, the high mutation rate in the CS2 subtype may reflect

its lower degree of differentiation and higher malignant potential.

We also observed that the mutation rate of MAP3K1 in the CS1

subtype was significantly higher than in the other three subtypes,

while TP53 mutations were significantly lower than in the other

three subtypes. The significantly higher mutation rate of MAP3K1

in the CS1 subtype than in other subtypes may have specific effects

on the biological behavior of tumors. MAP3K1 is a component of

the mitogen-activated protein kinase (MAPK) pathway, which plays

a crucial role in cell proliferation and differentiation (152).

Mutations in MAP3K1 may affect the activity of the MAPK

pathway, thereby influencing the behavior of tumor cells (152).

TP53 is a tumor suppressor gene, and its mutations are commonly

found in various cancers, closely associated with tumor

development and progression (153). Loss-of-function mutations

in TP53 typically lead to cell cycle dysregulation and defects in

DNA repair mechanisms, thereby increasing the malignancy of

tumors (154). The lower mutation rate of TP53 in the CS1 subtype

may indicate that tumor cells in this subtype retain certain tumor

suppressor functions, which may be associated with its lower

malignancy and better prognosis.

Based on the previous analysis, we identified that the differences in

tumor microenvironments among the four multimodal subtypes are

the main reasons for the differential efficacy of neoadjuvant therapy. To
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further elucidate the tissue microenvironment differences among the

four multimodal subtypes, we utilized single-cell sequencing data to

analyze the tumor microenvironments of each subtype individually.

Our study indicated that the CS1 subtype has the highest proportion of

malignant cells (77.2%), while the CS4 subtype has the highest

proportion of immune cells (B 5.7%, CD4Tconv 16.6%, Mono/

Macro 12.6%, NK 8.8%, Plasma 5.1%). The CS2 subtype exhibits the

highest proportion of epithelial cells (46.5%). These findings are

consistent with the results obtained through bulk RNA

sequencing analysis.

A key finding of our study is the profound heterogeneity in the

cellular origins and evolutionary trajectories of malignant cells

across the four identified multimodal breast cancer subtypes. By

integrating single-cell RNA-sequencing data with our multi-omics

classification, we were able to dissect the complex interplay between

genomic instability, differentiation status, and the tumor

microenvironment (TME) in shaping these trajectories. The CS1

subtype, characterized by ER-positivity, low genomic instability,

and a relative lack of immune infiltration, presented a

comparatively “quiescent” picture at the single-cell level. Both

Epithelial and Malignant cells exhibited low CNV burdens and

low CytoTRACE differentiation scores, suggesting a closer

resemblance between these cell populations and a potentially less

aggressive phenotype. This is consistent with the known biology of

Luminal B breast cancers, which often exhibit lower mutation rates

and a better prognosis than other subtypes (16). The relative

insensitivity of CS1 to neoadjuvant chemotherapy, observed both

in our predictive model and in the drug response analysis, may be

linked to this lower degree of genomic alteration and the

predominance of cells in a less proliferative state. In stark

contrast, the CS2 subtype, predominantly ER-negative and Basal-

like, displayed a highly unstable genomic landscape, with malignant

cells exhibiting the highest CNV burden. The elevated CytoTRACE

differentiation scores in both ‘Epithelial’ and ‘Malignant’ cells,

coupled with the prevalence of immunosuppressive signals in the

TME, suggest a trajectory driven by rapid genomic diversification

and active immune evasion. This aligns with the known aggressive

behavior and poorer prognosis of many Basal-like breast cancers

(155). The enrichment of pathways related to angiogenesis and

endothelial cell chemotaxis in the differentiation trajectories further

supports the notion of a highly invasive phenotype. The CS3

subtype presented a distinct evolutionary profile. While Monocle2

analysis revealed differentiation trajectories enriched for tissue

homeostasis pathways, the high mutation burden and

intermediate immune infiltration suggest a complex interplay of

factors. This subtype may represent a distinct evolutionary path

where, despite attempts at maintaining tissue architecture, genomic

instability ultimately drives aggressive behavior. Further

investigation is needed to fully elucidate the specific mechanisms

driving tumorigenesis in CS3. Perhaps the most intriguing findings

relate to the CS4 subtype. Despite exhibiting a high CNV burden in

malignant cells, similar to CS2, CS4 is characterized by a robust

immune infiltrate and, crucially, the best prognosis among the four

subtypes. The high CytoTRACE differentiation scores in CS4

malignant cells, seemingly paradoxical given the intense immune
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pressure, likely reflect a process of immune selection. We

hypothesize that the strong immune presence in the CS4 TME

eliminates the most highly malignant and immunogenic cells,

leading to a relative enrichment of cells that have either adapted

to evade immune detection or exhibit lower genomic instability, and

lower inherent aggressiveness. This “immune editing” process (156)

may contribute significantly to the favorable clinical outcomes

observed in this subtype. This also aligns with previous reports

regarding tumor infiltrating lymphocytes in breast cancer (157).

The distinct differentiation trajectories identified by Monocle2,

with their subtype-specific pathway enrichments, provide valuable

insights into the potential mechanisms driving malignant progression

in each subtype. While all subtypes show some modulation of shared

pathways like cell cycle regulation, the unique combinations of

activated pathways and TME interactions likely dictate the specific

therapeutic vulnerabilities of each subtype. For example, the

prominence of angiogenesis-related pathways in CS2 suggests a

potential sensitivity to anti-angiogenic therapies, while the immune

evasion mechanisms in CS4 highlight the potential for immune

checkpoint blockade. It is important to acknowledge that our

interpretations of ‘differentiation’ are based on transcriptomic data

and do not directly reflect histological grading. Further studies, ideally

incorporating spatial transcriptomics and matched histological

analyses, are needed to fully validate these findings and to correlate

the inferred differentiation states with established pathological features.

However, our integratedmulti-omics and single-cell approach provides

a powerful framework for dissecting the complex cellular dynamics

within breast tumors and for identifying potential targets for more

precise and effective therapeutic interventions.

Finally, we utilized the Scissor computational framework to jointly

analyze single-cell sequencing data and bulk RNA-seq data to

investigate the drug response of neoadjuvant therapy. We found that

the CS1 and CS4 subtypes had the highest proportion of non-

responsive malignant cells, while the CS3 subtype had the highest

proportion of responsive cells to neoadjuvant therapy. Considering the

lower degree of malignancy of cells in the CS1 and CS4 subtypes, this

may be one of the main reasons. Conversely, the higher responsiveness

of cells in the CS3 subtype may be due to the higher malignancy of its

tumor cells. The CS2 subtype exhibited the fewest responsive cells to

neoadjuvant therapy, possibly due to its higher genomic instability.

Furthermore, we compared the differences between the pCR

response group (Pos group) and the non-response group (Neg

group) among malignant cells. We found that highly expressed genes

in the Pos group were mainly enriched in inflammation-related

signaling pathways, especially the 17q12 copy number variation

syndrome. Inflammatory response is a key component of the tumor

microenvironment and can influence tumor development and

treatment response through various mechanisms. The 17q12 copy

number variation syndrome refers to copy number variations (CNV)

occurring in the chromosome 17q12 region, which may affect the

expression of multiple genes in this region, including ERBB2 (HER2), a

known therapeutic target for breast cancer (158). CNV can alter the

expression levels of these genes, thereby affecting the biological

behavior of tumors and their sensitivity to treatment (159). Highly

expressed genes enriched in the Neg group were mainly involved in
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oxidative phosphorylation and respiratory electron transport pathways.

This result is consistent with the signaling pathways enriched in the

CS1 subtype identified in bulk RNA-seq analysis, indicating that energy

metabolism generated by aerobic respiration negatively affects the

efficacy of neoadjuvant therapy.

In the analysis of low-expressed genes in the non-response to

neoadjuvant therapy (Neg group), protein-protein interaction (PPI)

regulatory networks revealed that the core modules were mainly

enriched in neutrophil degranulation and cytokine signaling in the

immune system. Neutrophils are a type of white blood cell and play

a crucial role in the body’s defense against infection. Degranulation

is the release of granules containing antimicrobial proteins and

enzymes by neutrophils, which play a key role in inflammation and

immune defense (160). Tumor-associated neutrophils (TANs) have

diverse roles in the tumor microenvironment, including anti-tumor

(N1 phenotype) and pro-tumor (N2 phenotype) effects (161).

Existing research suggests that chemotherapy resistance may be

primarily due to the involvement of neutrophils in promoting a

pro-tumor phenotype (162).

In summary, we have constructed a multi-modal predictive model

for the efficacy of neoadjuvant therapy in breast cancer, analyzedmulti-

modal subtypes based on predictive features of neoadjuvant therapy,

and delved into the cellular heterogeneity of response to neoadjuvant

therapy using single-cell sequencing data. We identified four distinct

multi-modal subtypes exhibiting significant differences in prognosis,

response to neoadjuvant therapy, tumor immune microenvironment,

cellular differentiation, malignancy, among other aspects. These

findings not only deepen our understanding of the pathogenesis of

breast cancer but also provide novel insights and methodologies for

precision treatment of breast cancer.

Our study, while offering valuable insights, is subject to limitations

warranting careful consideration, including reliance on publicly

available data and open-source computational models, necessitating

experimental corroboration to address potential in silico biases and

confirm findings. Crucially, the demographic composition of the

datasets, particularly ISPY2’s strong bias towards White, Non-

Hispanic/Latino patients (and similar likely limitations in TCGA-

BRCA and METABRIC), significantly restricts generalizability

regarding population-specific characteristics and ethnic disparities in

breast cancer subtypes; furthermore, insufficient treatment data

granularity (omitted dosages/schedules in ISPY2, incomplete data

and “Not Available” responses in TCGA-BRCA, and lacking

chemotherapy regimen specifics in METABRIC) precludes a

comprehensive assessment of treatment efficacy across subtypes.

Variability in laboratory methodologies across datasets (gene

expression, protein detection) without standardized protocols

introduces potential confounding factors, while the potential

omission of emerging biomarkers limits full characterization of

underlying biological mechanisms; finally, the exclusive focus on

neoadjuvant therapy response in breast cancer necessitates further

investigation to determine relevance to other malignancies and

therapeutic strategies.

In the future, we plan to experimentally validate our findings

and further investigate the specific mechanisms of action of these
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multi-modal subtypes in the occurrence and development of breast

cancer. Additionally, we aim to apply these methods to research on

other types of cancer and treatment modalities to provide more

valuable information for precision treatment of cancer. Overall, our

study provides a new perspective and approach for predicting the

response to neoadjuvant therapy and analyzing subtypes in breast

cancer, opening up new possibilities for precision treatment. We

look forward to making greater contributions to the treatment and

prevention of cancer through further research.
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SUPPLEMENTARY FIGURE 1

Predictive performance of models constructed using gene expression data,
protein expression data, clinical data, and MRI radiomics features across four

common machine learning algorithms (Lasso Regression, Random Forest,
Gradient Boosting, and Support Vector Machines). The performance metrics

include AUC, Calibration curve, Precision-Recall, Lift curve, and Cumulative

Gains for both training and testing datasets. (A, B) Models constructed using
gene expression data. (C, D) Models constructed using protein expression

data. (E, F) Models constructed using clinical data. (G, H) Models constructed
using MRI radiomics features.

SUPPLEMENTARY FIGURE 2

Performance of the model constructed using features selected via Lasso

regression from three modalities (46 proteomics features, 60 transcriptomics
features, and 42 radiomics features) combined with clinical features. The final

model, obtained through another round of Lasso regression with 1000
permutations, includes 32 features. The performance metrics include AUC,

Calibration curve, Precision-Recall, Lift curve, and Cumulative Gains. (A)
Performance in the training set. (B) Performance in the validation set.

SUPPLEMENTARY FIGURE 3

Comparison of Four Breast Cancer Multimodal Subtypes. (A, B) Heatmap of

protein expression profiles from the ISPY2 cohort across the four breast cancer
multimodal subtypes, highlighting the top 20 most significantly different

proteins. (C) Significantly different HALLMARKER scores. (D) Significantly
different Progeny scores. (E) Significantly different xCell infiltration scores. (F)
Significantly different CIBERSORT immune infiltration scores. (G) Significantly
different transcription factor activity scores. (H) Significantly different MRI
radiomic feature scores. Significance levels are indicated as follows: P<0.05 *,

P<0.01 **, P<0.001 ***, P<0.0001 ****, NS (Not Significant).

SUPPLEMENTARY FIGURE 4

Comparison of immunotherapy and drug response across breast cancer

multimodal subtypes. (A) Expression of marker genes in the ISPY2 cohort’s

fourmultimodal subtypes, identified using the NTP algorithm. (B)Comparison
of 10 immunotherapy scores between pCR-positive and pCR-negative

groups in the ISPY2 cohort, indicating a potentially better immunotherapy
response in the pCR-positive group. (C) Comparison of 12 TIDE-derived

immunotherapy-related scores between pCR-positive and pCR-negative
groups across the four multimodal subtypes in the ISPY2 cohort. (D)
Comparison of 12 immunotherapy-related scores among the four

multimodal subtypes in the TCGA BRCA cohort, showing similar results to
the ISPY2 cohort, with the CS4 subtype exhibiting a better immunotherapy

response. (E) Comparison of 12 immunotherapy scores between pCR-
positive (1) and pCR-negative (0) groups in the TCGA BRCA cohort. (F)
Comparison of drug response scores among breast cancer multimodal
subtypes in the ISPY2 cohort. Drug scores were obtained from GDSC1 (up)

and GDSC2 (down), visualizing the top 20 drugs with significant differences

among the four subtypes. Results indicate that the CS1 subtype is generally
resistant to most drugs, consistent with our findings.
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SUPPLEMENTARY FIGURE 5

Potential drug predictions for the four breast cancer multimodal subtypes.

Using the Connectivity Map (cmap) platform, genes highly expressed in each

of the four subtypes were input to identify potential therapeutic drugs and
their mechanisms of action (MOA) specific to each subtype. (A) Predicted
drugs and MOA for the CS1 subtype. (B) Predicted drugs and MOA for the CS2
subtype. (C) Predicted drugs and MOA for the CS3 subtype. (D) Predicted
drugs and MOA for the CS4 subtype. This analysis highlights the unique
molecular profiles of each subtype and suggests potential targeted therapies

tailored to these profiles, offering insights into personalized treatment

strategies for breast cancer patients.

SUPPLEMENTARY FIGURE 6

Validation of molecular and drug response characteristics across breast

cancer multimodal subtypes. (A–F) Validation of pathway activity and IC50
scores for four common chemotherapeutic drugs in the four subtypes within

the TCGA BRCA cohort. (G–L) Validation of pathway activity and IC50 scores

for the same chemotherapeutic drugs in the four subtypes within the
Metabrick BRCA cohort. The analyses demonstrate consistent findings

across both validation cohorts, underscoring the robustness of the
molecular and drug response differences observed among the breast

cancer multimodal subtypes. These results provide further evidence for the
distinct biological and therapeutic profiles of each subtype, reinforcing the

potential for subtype-specific treatment strategies in breast cancer.

SUPPLEMENTARY FIGURE 7

Comparative analysis of four breast cancer multimodal subtypes in the TCGA-
BRCA and Metabric-BRCA cohorts. (A) Mutation frequency comparison of five

significantly different genes (TP53, GATA3, PIK3CA, RICTOR, MAP3K1) within the
TCGA-BRCA cohort. (B) Comparison of EBV virus scores across the four

multimodal subtypes in the TCGA-BRCA cohort, showing statistically significant

differences. (C) Comparison of HPV virus scores across the four multimodal
subtypes in the TCGA-BRCA cohort, with no statistically significant differences

observed. (D–K)Comparative analysis of PR Status, Pam50+Claudin-low subtype,
Inferred Menopausal State, Chemotherapy response, 3-Gene classifier subtype,

Hormone Therapy response, ER Status measured by IHC, and overall ER Status
across the four multimodal subtypes within the Metabric-BRCA cohort. These

comparisons collectively provide a comprehensive understanding of the distinct
molecular and clinical characteristics associated with each breast cancer

multimodal subtype, reinforcing the robustness and clinical relevance of the

proposed subtype classification.

SUPPLEMENTARY FIGURE 8

Differential analysis of gene methylation, proteomics, and microbiomics

across four breast cancer multimodal subtypes. The TCGA-BRCA cohort,
possessing comprehensive multimodal data, was utilized to compare the four

breast cancer multimodal subtypes across multiple molecular modalities. (A)
Differential gene methylation analysis across the four breast cancer
multimodal subtypes within the TCGA-BRCA cohort. The top 20 genes

exhibiting significant methylation differences were selected, with the
average beta value of all methylation sites for each gene used to represent

its methylation level. (B) Functional enrichment analysis of differentially
methylated genes. Highly methylated genes in the CS1 subtype were

predominantly enriched in inflammation-related signaling pathways,

suggesting suppression of these pathways in CS1. Conversely, the CS2 and
CS4 subtypes showed high methylation in genes associated with

inflammation-related pathways, indicating activation of these pathways. (C,
D) Differential protein expression analysis and functional enrichment of

differentially expressed proteins within the TCGA-BRCA cohort. (E, F)
Negative correlation between gene expression and methylation levels of

MMP7 and MUC1, respectively, illustrating the regulatory effect of

methylation on the expression of these genes. (G) Significant negative
correlation between gene expression and high methylation levels within the

TCGA-BRCA cohort. (H) Differences in intratumoral microbiome
composition across the four breast cancer multimodal subtypes within the

TCGA-BRCA cohort (P<0.05 *, P<0.01 **, P<0.001 ***, P<0.0001 ****).

SUPPLEMENTARY FIGURE 9

Comparative analysis of the tumor microenvironment at the single-cell level
across four breast cancer multimodal subtypes. (A) Volcano plots of

differential expression analyses for Epithelial_CS1, Epithelial_CS2,
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Epithelia l_CS3, Epithel ia l_CS4, Malignant_CS1, Malignant_CS2,

Malignant_CS3, and Malignant_CS4. (B, C) Functional enrichment analysis

results of highly expressed genes in the above eight cell subgroups, utilizing
GO_BP and KEGG databases.

SUPPLEMENTARY FIGURE 10

Copy number variation, transcription factor analysis, and tumor evolution analysis

in four breast cancer multimodal subtypes. (A) Copy number variation (CNV)

analysis grouped by the four breast cancer multimodal subtypes, illustrating the
distinct CNV profiles among the subtypes. (B) Transcription factor (TF) enrichment

analysis for the eight cell subgroups (Epithelial_CS1, Epithelial_CS2, Epithelial_CS3,
Epithelial_CS4, Malignant_CS1, Malignant_CS2, Malignant_CS3, and

Malignant_CS4), highlighting key TFs driving the molecular characteristics of
each subgroup. (C–E) Cell differentiation trajectory from epithelial cells to

malignant cells in the CS1 subtype, depicting the stepwise evolution and key

transitional states. (F–H) Cell differentiation trajectory from epithelial cells to
malignant cells in the CS2 subtype, demonstrating the progression and cellular

changes characteristic of this subtype. (I–K) Cell differentiation trajectory from
epithelial cells to malignant cells in the CS3 subtype, showing the specific

evolutionary pathway and intermediate stages. (L–N) Cell differentiation
trajectory from epithelial cells to malignant cells in the CS4 subtype, outlining

the transformation process and unique features of this subtype. These analyses

provide comprehensive insights into the genetic alterations, transcriptional
regulation, and evolutionary dynamics of breast cancer multimodal subtypes.

The CNV analysis reveals subtype-specific genomic changes, while the
transcription factor enrichment highlights the regulatory networks underlying

each cell subgroup. The differentiation trajectories map the complex pathways
through which epithelial cells evolve into malignant cells, offering a detailed view

of tumor progression and potential targets for therapeutic intervention.

SUPPLEMENTARY FIGURE 11

Incoming and outgoing signaling patterns in four breast cancer multimodal
subtypes. (A) Incoming signaling patterns of the four breast cancer

multimodal subtypes, detailing the signals received by each of the 11 cell
types within the tumor microenvironment. (B) Outgoing signaling patterns of

the four breast cancer multimodal subtypes, illustrating the signals sent by

each of the 11 cell types within the tumor microenvironment. These figures
provide a detailed analysis of the directional flow of cellular communications
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in the tumor microenvironment of different breast cancer multimodal

subtypes. The incoming signaling patterns (A) highlight which cell types are

primarily receiving signals and how these patterns vary across subtypes. The
outgoing signaling patterns (B) reveal the key signaling cell types and the

nature of the signals they emit in each subtype. This comprehensive view of
intercellular communication dynamics can help elucidate the complex

interactions that drive tumor behavior and may identify critical nodes for
therapeutic intervention in breast cancer.

SUPPLEMENTARY FIGURE 12

Functional Enrichment Analysis of Differentially Expressed Genes in Malignant

Cells using Metascape. (A, B) Comparative distribution of six differential gene
sets: Pos up, Pos down, Neg up, Neg down, Ctrl up, and Ctrl down. (C)
Functional enrichment analysis of the six differential gene sets mentioned

above, highlighting key biological pathways and processes. (D) Construction
of a functional enrichment network based on the differential gene sets,

illustrating the interconnected pathways and their roles in cellular
functions. (E) Protein-protein interaction (PPI) network constructed from

the differential gene sets, showcasing the interactions between proteins
encoded by the differentially expressed genes. (F) Core hub gene

regulatory network identified using the MCODE algorithm on the PPI
network of differentially expressed genes. These figures provide a detailed

overview of the functional enrichment analysis performed on differentially

expressed genes in malignant cells, specifically comparing pCR positive cells,
pCR negative cells, and control cells. The comparative distribution of

differential gene sets (A, B) reveals distinct patterns of gene expression
associated with different drug response statuses. The functional enrichment

analysis (C) highlights the key biological processes and pathways that are
differentially regulated in these gene sets, offering insights into the underlying

mechanisms of drug response. The functional enrichment network (D) and
PPI network (E) provide a comprehensive view of the interconnected
pathways and protein interactions, respectively, that are involved in the

drug response. The identification of core hub gene regulatory networks
using the MCODE algorithm (F) further pinpoints critical genes and

interactions that may play pivotal roles in determining the drug response in
malignant cells. These analyses are crucial for understanding the molecular

basis of drug response variability in breast cancer and could potentially guide

the development of targeted therapeutic strategies.
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