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There are ten leukocyte immunoglobulin (Ig)-like receptor (LILR) genes, i.e., five

genes encoding activating receptors (LILRA1, LILRA2, LILRA4, LILRA5, and LILRA6)

characterized by their truncated cytoplasmic tails, and five genes encoding

inhibitory receptors (LILRB1, LILRB2, LILRB3, LILRB4, and LILRB5) characterized by

their extended cytoplasmic tails containing immunoreceptor tyrosine-based

inhibitory motifs (ITIMs). Among these, LILRB3, LILRA6, and LILRA3 are known for

harboring high frequencies of copy number variations (CNVs). However, the

presence of CNVs in the leukocyte receptor complex (LRC) region complicates

single nucleotide polymorphism (SNP) association analysis within commercially

available SNP microarray datasets. This study introduces LILR Genotype Imputation

with Attribute Bagging (LIBAG), a novel method for determining CNVs in LILRB3,

LILRA6, and LILRA3 from commercially available SNP genotyping array datasets.

LILRA6 CNV imputation accuracy peaked at 98.0% for the Infinium Japanese

Screening Array, followed by 97.4% for Axiom Japonica V2, 97.3% for Axiom

Japonica Array NEO, and 94.3% for Axiom Japonica V1, with the lowest recorded

accuracy of 93.6% for the Axiom Genome-wide ASI1 array. For the 1000 Genomes

Project (1kGP) dataset, LILRA6 CNV imputation achieved peak accuracies of 94.5%

for 1kGP-EAS (East Asian), 86.6% for 1kGP-AMR (Admixed American), 83.8% for

1kGP-EUR European), and 75.0% for 1kGP-AFR (African), particularly after the 20 kb

flanking region. Similarly, imputation accuracy for LILRA3 CNV progressively

increased, peaking at the 80 kb flanking region. Accuracy reached 1kGP-AMR,

reaching 99.2% and 98.9% for 1kGP-AFR, 98.7% for 1kGP-EUR, and 97.5% for 1kGP-

EAS. Investigating the LILR copy number (CN) in diseases associated with HLA class I

molecules will provide further insights into disease pathogenesis.
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Introduction

The leukocyte immunoglobulin (lg)-like receptor (LILR) gene

family (also known as immunoglobulin-like transcript (ILT)) or LIR

family) is mapped to the leukocyte receptor complex (LRC) region on

chromosome 19q13.4. This region contains multigene families of the

innate immune system belonging to the lg superfamily, such as killer

lg-like receptors (KIR), leukocyte-associated lg-like receptors

(LAIRs), natural cytotoxicity receptor 1 (NCR1) and the Fc-alpha

receptor (FcAR) (1, 2). LILRs are classified into two major groups, i.e.,

LILRA and LILRB. LILRAs (Figure 1) consist of five activating

receptors (LILRA1, LILRA2, LILRA4, LILRA5, and LILRA6),

characterized by truncated cytoplasmic tails and interaction with

the g-chain of FceRI through a charged arginine residue in the

transmembrane domain. This interaction facilitates transduction of

the activating signal via an immunoreceptor tyrosine-based activation

motif (ITAM) (3). In contrast, LILRBs comprise five inhibitory

receptors (LILRB1, LILRB2, LILRB3, LILRB4, and LILRB5),

characterized by long cytoplasmic tail with immunoreceptor

tyrosine-based inhibitory motifs (ITIM). LILRA3 is a soluble

protein lacking both transmembrane and cytoplasmic domains (4, 5).

Immune cell types including myeloid and lymphoid lineages

broadly express LILR genes. In contrast with KIRs, which interact

with polymorphic epitopes on the a1 and a2 domains of HLA class

I members, LILRs bind to conserved motif epitopes on the a3
domain and/or with the highly conserved b2-microglobulin

structure (6). At the single-gene level, all four LILR receptors

(LILRA1, LILRA3, LILRB1, and LILRB2) exhibit strong affinity

for HLA class I molecules, especially LILRB1 and LIRB2 (7–9).

Similar to the neighboring KIR genes, LILR genes exhibit high levels

of copy number variation (CNV) and allelic variations (9, 10); LILRA6

shows a CNV ranging from 0 to 4 copies per haplotype, a result of

nonallelic homologous recombination between LILRB3 and LILRA6 (9,

11, 12). In addition, 0–2 copies of LILRA3 have been detected in 48

human cell lines sourced from the International Histocompatibility

Working Group (12). LILRA3 with a deficiency in the extracellular

domain (13) and LILRA3with a premature termination codon have also

been reported (14, 15). However, experimental CNV determination of

LILRA6 and LILRA3 remains laborious because of the homology (98%)

between LILRB3 and LILRA6. In this paper, we propose a novel method

to determine LILR CNV from whole-genome sequencing (WGS)

datasets and a novel SNP-based imputation method to determine the

CNV of LILRs that show CNV (LILRB3, LILRA6, and LILRA3). This

project is part of the 19th International HLA & Immunogenetics

Workshop (https://ihiw19.org/), focusing on the “Leukocyte

Receptor Complex (LRC) Structure and Polymorphism.”
Materials and methods

Samples

Japanese dataset
A total of 418 Tokyo Healthy Control (THC) samples were

collected from healthy Japanese individuals in Tokyo, Japan; 182
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Japanese individuals from a replication cohort were recruited from

the National Hospital Organization Nagasaki Medical Center

(NMC), Nagasaki, Japan. Healthy control participants were

confirmed to have no significant disease at sample collection. All

the healthy individuals This study was approved by the Ethical

Committee of the National Center for Global Health and Medicine

and National Hospital Organization Nagasaki Medical Center.

Written informed consent was obtained from all participants.

1000 genomes project dataset
Short-read whole-genome sequencing (srWGS) 175 1kGP-AFR

(African), 268 1kGP-AMR (Admixed American), 140 1kGP-EAS

(East Asian) and 100 1kGP-EUR (European) were downloaded

from the International Genome Sample Resource database (https://

www.internationalgenome.org/data-portal/data-collection/30x-

grch38). The SNP microarray dataset, genotyped using the Illumina

Omni2.5 microarray (Illumina, CA, US), was downloaded from

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

supporting/hd_genotype_chip/.

SNP genotyping
Genome-wide SNP genotyping was performed on 418 Japanese

THC samples using the following arrays: Axiom Genome-wide ASI1

array (Thermo Fisher Scientific, MA, US), Axiom Japonica V1

(Thermo Fisher Scientific, MA, US), Axiom Japonica V2 (Thermo

Fisher Scientific, MA, US), Axiom Japonica Array NEO (Thermo

Fisher Scientific, MA, US) and Infinium Japanese Screening Array

(Illumina, CA, US). CEL format output files were generated according

to the manufacturer’s recommended procedure. Genotyping of each

variant was performed using Apt software (ver. 2.10.2.2). All samples

met quality control criteria as defined by the manufacturer’s

recommended workflows. Probe intensity clustering results were

classified using SNPolisher. Quality controls for SNPs involved

removing autosomal SNPs with a frequency of ≤ 5%, a call ≤ 95%,

and deviation from Hardy–Weinberg equilibrium (p < 1e-5).

CNV calling from PacBio sequencing dataset
CNV of LILRB3, LILRA6, and LILRA3 was determined from the

short-read whole-genome sequencing (srWGS) dataset for both the

Japanese and 1kGP sample sets using the JoGo-LILR CNV Caller

(16) (https://jogo.csml.org/JoGo-LILR/). Briefly, the JoGo-LILR CN

Caller (16) employs three sequential steps in determining the CN:

mapping whole-genome sequencing reads to GRCh38 with decoy

sequences (GRCh38DH); calculating normalized read depths for

LILRB3, LILRA6, and LILRA3 using CNVNator (17); and calling of

CN types and estimating CN haplotypes based on the LILRB3,

LILRA6, and LILRA3 cluster plots generated in step 2. Internal

validation of the results was performed using the trio datasets from

the 1kGP data.

LIBAG – LILR genotype imputation with attribute
bagging

LIBAG is a novel method for determining CNV in LILRB3,

LILRA6, and LILRA3 from commercially available SNP genotyping

array datasets (Figure 1). This method combines attribute bagging,
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an ensemble classifier method, with haplotype inference for SNPs

and LILR CNV. Attribute bagging improves the accuracy and

stability of imputation references through bootstrap aggregation

and random variable selection (18).
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LIBAG constructs classifiers by taking K bootstrap samples

from a reference set of individuals with known LILR CN and SNP

genotypes. Each sample, Bk, includes some individuals multiple

times, leaving approximately 37% as out-of-bag. For each Bk, a
FIGURE 1

Schematic overview of LILR copy number (CN) imputation. (a) Copy Number Distribution of 11 LILR Genes (b) Overview of the LIBAG prediction
algorithm. LIBAG constructs classifiers by taking K bootstrap samples from a reference set of individuals with known LILR CN and SNP genotypes.
Each sample, Bk, includes some individuals multiple times, leaving approximately 37% as out-of-bag. For each Bk, a classifier Ck is trained using an
optimal SNP subset Sk. (c) SNPs from the target dataset are aligned with those in the LILR CN model to estimate LILR CN for all K classifiers LILR CN
with the highest aggregated probabilities (Prk) is determined as the final predicted LILR CN.
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classifier Ck is trained using an optimal SNP subset Sk (Figure 1).

LIBAG was used to select a random subset of SNPs (Sk) flanking

LILRB3, LILRA6, and LILRA3 for each bootstrapped sample. This

subset was optimized by iteratively adding SNPs until maximum

imputation accuracy is achieved, based on out-of-bag samples

(samples that are not included in the current bootstrapped

samples). The conditional probability of each possible LILR CN

was calculated using estimated haplotype frequencies for the

selected SNP subset, allowing the classifier to predict the LILR

CN by maximizing posterior probabilities. Subsequently, an

ensemble prediction was generated by averaging the posterior

probabilities across all the individual classifiers. This method

avoids overfitting and improves the CN prediction stability. To

predict the CN for LILR genes of a new individual, LIBAG combines

the probabilities from all classifiers and selects the LILR CNwith the

highest average probability.

Simulation studies on the flanking SNPs region, ranging from

10 to 100kb, were conducted to maximize LILR CNV imputation

accuracy while minimizing computer power consumption. A call

threshold (CT) was generated for each imputed LILR CNV pair,

representing the confidence of the imputation. CT cutoff

evaluations were performed to determine the delicate balance

between call rate and imputation accuracy.

After constructing the LILR CN imputation model (Figure 1),

the SNPs in the target dataset are matched to the SNPs set in our

LILR CN imputation model to impute all possible LILR CN for all K

classifiers. We leverage the aggregation of the K predictors to

maximize imputation accuracy; LILR CN with the highest

aggregated probabilities (Pr) is determined as the final predicted

LILR CN.

Validation of LILR imputation reference
External validation of the generated LILR gene imputation

references was performed by comparing the LILR CNV calling

results with the LILR CNV imputation results in the 182 NMC

Japanese dataset.
Results

LIBAG, an imputation toolkit developed as an integral

component of the pre-existing HIBAG R statistics package (18, 19),

facilitates CNV imputation within LILRB3, LILRA6, and LILRA3.

This CNV imputation process is compatible with various

commercially available SNP genotyping array datasets, including

those from Thermo Fisher Scientific (MA, USA) and Illumina (CA,

USA). In order to facilitate a high-quality LILR CNV imputation

system for the datasets from these two companies (Figure 1), we have

built a high-quality LILR CNV imputation system consisting of SNP

data from genome-wide SNP microarray genotyping and LILR CNV

genotyping data generated using the JoGo-LILR CN Caller. Once the

LILR CNV imputation system is built, imputation can be performed

by matching SNPs between the LILR CNV imputation model and the

target dataset. Call thresholds, representing the confidence of LILR
Frontiers in Immunology 04
CNV imputation quality, were assigned to each imputed LILR CNV

haplotype set.
LILR CNV distributions

The JoGo-LILR CN Caller was used to call the LILR CNV for

LILRB3, LILRA6, and LILRA3 from the WGS dataset, comprising

Japanese and 1kGP datasets. In the Japanese dataset (Figure 2A),

LILRB3, LILRA6, and LILRA3 CNVs exhibited uneven

distributions. LILRA6 showed the most CNV polymorphism

(92.6% 1CN, 5.1% 2CN, 1.9% 0CN), followed by LILRA3 (75%

0CN, 24% 1CN). LILRB3 displayed the least CNV polymorphism

(0.3% of 0CN, 99.6% of 1CN).

Similarly, LILRA6 CN exhibited the most polymorphism in the

1kGP dataset (Figure 3B). 1kGP-AFR showed five CN types: 56.6%

1CN, 24.3% 2CN, 14.3% 0CN, 4.6% 3CN, and 0.3% 4CN. Both

1kGP-AMR and 1kGP-EUR showed five CN types: 75.4% 1CN,

21.5% 2CN, 1.7% 0CN, 1.3% 3CN, and 0.2% 4CN; 67.5% 1CN,

29.0% 2CN, 1.5% 0CN, 1.0% 3CN, and 1.0% 4CN. Finally, 1kGP-

EAS showed only three CN types: 91.8% 1CN, 4.3% 2CN,

3.9% 0CN.

LILRA3 was the second most polymorphic LILR identified in

this study (Figure 3C). Both 1kGP-AFR and 1kGP-EUR showed

three CN types: 92.5% 1CN, 7.3% 0CN, and 0.3% 2CN; and 80.1%

1CN, 19.8% 0CN, and 0.2% 2CN. However, 1kGP-AMR and 1kGP-

EAS showed only two CN types: 74.0% 1CN, 26.0% 0CN, 50.5%

1CN, and 49.5% 0CN.

Finally, LILRB3 showed no CNV in the 1kGP dataset with all

samples carrying 1CN (Figure 3A).
Japanese LILR CNV imputation accuracies

Simulation studies were performed on the SNP region flanking

10–100 kb from the center of LILRB3, LILRA6, and LILRA3. The

objective was to improve the LILR CNV imputation accuracy while

reducing computer power usage. The number of SNPs used for

LILR imputation varied based on the evaluated SNP genotyping

array. For instance, (Figures 2B–D) the Axiom Genome-wide ASI1

array, an earlier SNP genotyping version, contained the fewest

usable SNPs, ranging from 1 to 18 SNPs. In contrast, Japanese-

specific SNP genotyping arrays such as the Infinium Japanese

Screening Array with 7-79 SNPs, Axiom Japonica V1 with 3-61

SNPs, Axiom Japonica V2 with 6-89 SNPs, and Axiom Japonica

Array NEO with 4-92 SNPs, exhibit a wide range of usable SNPs for

LILR CNV imputation.

Internal validations assessed LILR CNV imputation accuracies

(Figures 2B–D) over an SNP region extending 10–100 kb from the

center of the LILRB3, LILRA6, and LILRA3 genes. We found a clear

relationship between the number of SNPs utilized in the LILR

imputation model and the imputation accuracies; for example, the

CNV imputation accuracies for LILRA6 (Figure 2C) and LILRA3

(Figure 2D) increased notably from the 20 kb to the 30 kb flanking
frontiersin.org
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region before plateauing beyond 30 kb. LILR CNV imputation

accuracy also depends heavily on SNPs’ availability across various

SNP genotyping arrays. Specifically, the LILRA6 CNV imputation

accuracy peaked at 98.0% for the Infinium Japanese Screening

Array, followed by 97.4% for Axiom Japonica V2, 97.3% for

Axiom Japonica Array NEO, and 94.3% for Axiom Japonica V1,

with the lowest recorded accuracy of 93.6% for the Axiom Genome-

wide ASI1 array. In contrast, LILRA3 and LILRB3 CNV imputation

accuracies demonstrated minimal variation (98.4-99.0% and 99.7-

99.8%, respectively) across the five SNP genotyping arrays. A

Japanese dataset (182 NMC; Table 1), SNP genotyped using the

Axiom Japonica V2 array, served as an independent validation set.

Imputation accuracies for LILR CNV in this set closely matched

those of the internal validation test results: LILRB3 achieved 100%

accuracy, while LILRA3 and LILRA6 achieved 98.1% and 96.7%

accuracy, respectively.

Furthermore, using our internal validation results, we predicted

the most likely miscalled CNVs before quality control in the

Japanese dataset (Supplementary Table 1). For example, miscalled

LILRA6 CN0 and CN2 were most commonly mistaken for LILRA6

CN1. Conversely, miscalled LILRA6 CN1 was frequently referred to

as LILRA6 CN2.
Frontiers in Immunology 05
1kGP LILR CNV imputation accuracies

All 1kGP samples were genotyped using the Illumina Omni2.5

microarray. A minor discrepancy was observed in the number of

SNPs available within the 10-100kb flanking region across different

populations. For instance, in the case of LILRA6 (Figure 4B), the

1kGP-EAS population exhibited the fewest SNPs, ranging from 10–
FIGURE 2

CN distributions of LILRs in the Japanese population and CN imputation accuracies across five Asian/Japanese-specific SNP microarray platforms.
(A) CN distribution of LILRB3, LILRA6, and LILRA3 in 418 Japanese individuals. (B) Internal validations of LILRB3 CN imputation accuracies across five
SNP microarray platforms, including the number of SNPs used for model building in flanking regions spanning from 10–100 kb around the LILRB3 gene
(C) Internal validations of LILRA6 CN imputation accuracies across five SNP microarray platforms and the number of SNPs used for model building in
flanking regions spanning from 10–100 kb around the LILRA6 gene (D) Internal validations of LILRA3 CN imputation accuracies across five SNP
microarray platforms, including the number of SNPs used for model building in flanking regions spanning from 10–100 kb around the LILRA3 gene.
TABLE 1 Summary of prediction accuracies (call rate) based on LILR
Japanese model as reference for independent Japanese validation set
model as reference on independent Japanese validation set.

LILR genes

LILRB3 LILRA6 LILRA3

Japonica array® v2

No. of SNPs 49 49 43

No. of training samples 419 419 363

No. of validation samples 190 180 188

No. of missing SNPs (%) 1 (2%) 1 (2%) 0 (0%)

Accuracies % (call rates %) 100.0 (100) 96.7 (100) 98.1 (100)
fr
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165, which were utilized for the LILR CNV imputation model. This

was followed by the 1kGP-EUR with SNPs ranging from 13–177,

the 1kGP-AFR with 17–215 SNPs, and finally, the 1kGP-AMR with

18–219 SNPs. A similar trend was observed for LILRB3 (Figure 4A)

and LILRA3 (Figure 4C).
Frontiers in Immunology 06
In our internal validation test (Figures 4A–C), LILRB3 achieved

100% accuracy, attributable to the lack of CNV in the dataset. In

contrast, LILRA6’s CNV imputation reached peak accuracies of

94.5% (1kGP-EAS), 86.6% (1kGP-AMR), 83.8% (1kGP-EUR), and

75.0% (1kGP-AFR), particularly beyond the 20 kb flanking region.
FIGURE 3

Distributions of LILR CN across the 1000 Genome Project super-populations (A) LILRB3 (B) LILRA6 (C) LILRA3. AFR, African; AMR, Admixed
American; EAS, East Asian; EUR, European; CN, Copy Number.
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Similarly, LILRA3 CNV imputation accuracy gradually increased,

peaking at the 80 kb flanking region: with 1kGP-AMR reaching

99.2% and 98.9% for 1kGP-AFR, 98.7% for 1kGP-EUR, and 97.5%

for 1kGP-EAS.
Frontiers in Immunology 07
Moreove r , we fo r eca s t the mos t p robab l e CNV

misidentifications across all miscalls before quality control in the

1kGP dataset (Supplementary Table 2). Our analysis miscalled

LILRA6 (0CN, 2CN, or 3CN) was most often identified as
FIGURE 4

Internal validation of LILRs CN imputation accuracies across four 1000 Genome Project superpopulations. (A) LILRB3 (B) LILRA6 (C) LILRA3. AFR,
African; AMR, Admixed American; EAS, East Asian; EUR, European; CN, Copy Number.
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LILRA6 1CN. Similarly, LILRA3 1CN is most likely to be

misclassified as 0CN, and vice versa.
Call threshold evaluation

Call thresholds, reflecting confidence in LILR CNV imputation

quality, were established for each imputed CNV pair. The optimal

cutoff for CT was determined by internal validation, considering

CNV imputation success rates (call rates). Overly stringent CT can

diminish call rates, while overly lenient CTs would fail to adequately

exclude low-quality imputed CNVs.

In the Japanese dataset (Figure 5), a 0.5 CT effectively filtered

low-quality imputed CNVs, as shown by the accuracy results, while

improving sample call rates. This trend was observed across all five

SNP genotyping arrays examined in this study. Conversely, a CT

exceeding 0.75 significantly reduces call rates and is therefore not

recommended. For LILRB3 (Supplementary Table 3), among the 5

SNP genotyping arrays, the sensitivity (SEN) ranged from 89.9% to

100%. The specificity (SPE) also ranged from 89.9% to 100%. The

Positive Predictive Value (PPV) ranged from 95.4% to 99.8%, while
Frontiers in Immunology 08
the Negative Predictive Value (NPV) ranged from 95.4% to 99.8%.

Subsequently, for LILRA6 (Supplementary Table 4), among the 5

SNP genotyping arrays, the SEN varied from 26.3% to 100.0%

(notably low SEN for the Affymetrix Axiom™ Japonica Array™

NEO for LILRA6 2CN at 26.3%). The SPE ranged from 18.5% to

100% (notably low SPE for the Affymetrix Axiom™ Japonica

Array™ NEO for LILRA6 1CN at 18.5%). The PPV varied from

88.2% to 100%, and the NPV ranged from 90.5% to 100%. Lastly,

for LILRA3 (Supplementary Table 5), among the 5 SNP genotyping

arrays, the SEN varied from 89.9% to 99.3%, the SPE varied from

89.9% to 99.3%, the PPV varied from 95.4% to 98.9%, and the NPV

varied from 95.4% to 98.9%.

Generally, a 0.5 CT is also suitable for the 1kGP dataset

(Figure 6), except for 1kGP-EUR for LILRA6, where 0.4 is

essential to maximize the call rate.
Discussions

This study introduced LIBAG, a tool designed for CNV

imputation, exclusively using SNP genotype data from SNP
FIGURE 5

Call threshold evaluations of LILRB3, LILRA6 and LILRA3 on five Asian/Japanese-specific SNP genotyping arrays: Axiom Genome-Wide ASI 1 Array
Plate, Infinium Japanese Screening Array, Japonica array®v1, Japonica array®v2 and Axiom Japonica Array NEO.
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microarray datasets. The current version focuses on three LILR

genes with known substantial CNV: LILRB3, LILRA6, and LILRA3.

CNV in the LRC region complicates the design of distinct SNPs on

conventional SNP genotyping arrays that adequately account for

CNV in this area. Therefore, instead of relying on SNPs within the

LILR genes, which exhibit high CN, LIBAG utilizes SNPs in their

flanking regions of LILRB3, LILRA6, and LILRA3. This approach

mitigates the issue of inadequate SNPs in LILR regions and

facilitates CNV imputation for these genes.

In this study, we successfully developed a population-specific

LILR CN imputation system and validated it internally and

externally. Using a Japanese dataset genotyped on five distinct

SNP microarray platforms, we directly assessed LILR CN

imputation efficiency (Figure 2). SNP density surrounding the

LILR and LILR CN distribution were directly linked to LILR CN

accuracy. LILRA6 CN accuracies reached up to 98.0% with the

Infinium Japanese Screening Array, while LILRA3 and LILRB3 CN

accuracies remained stable at approximately 99%. External

validation using an independent NMC dataset corroborated the

interval validation results, achieving 96.7% accuracy for LILRA6

and 98.1% for LILRA3. This finding highlights the robustness of the
Frontiers in Immunology 09
LILR-CN imputation panel. Our findings indicate that population-

specific SNP microarrays, such as the Infinium Japanese Screening

Array and Axiom Japonica arrays, are more efficient at capturing

population-specific CNV, as demonstrated by the CN distribution

across various populations (Figures 2, 3).

LILR receptors interact with conserved HLA motif epitopes

located within the a3 domain and/or the highly conserved b2
microglobulin structure. Inhibitory LILRB receptors, recognize

HLA class I molecules, particularly those expressing non-classical

HLA-G (20). These interactions trigger inhibitory signals,

suppressing the immune response mediated by HLA class I

proteins, thereby promoting immune tolerance (21).

Genome-wide association studies (GWAS) have revealed that

several LILRs are associated with diseases, such as Takayasu arteritis

(LILRB3/LILRA3) (22, 23) and prostate cancer (LILRA3) (24). The

effect of CNV on these conditions requires further investigation;

however, a positive correlation exists between the relative

expression levels of LILRA6/LILRB3 mRNA and the CNV

genotype, with higher copies of LILRA6 resulting in an elevated

LILRA6/LILRB3 ratio (25). Therefore, higher LILRA6 copy

numbers may induce a shift towards an activation phenotype.
FIGURE 6

Call threshold evaluations of LILRB3, LILRA6 and LILRA3 across four 1000 Genome Project superpopulations. AFR, African; AMR, Admixed American;
EAS, East Asian; EUR, European; CN, Copy Number.
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Additional functional and large-scale population-based case-

control studies will offer insights into the functional significance

of CNV for these LILRs. Case-control analysis of disease should be

accompanied by an examination of classical HLA class I molecules,

including HLA-A, -B, and -C, as well as non-classical HLA-G, and

their interactions with LILRs.
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