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Leveraging a disulfidptosis-based
signature to characterize
heterogeneity and optimize
treatment in multiple myeloma
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Background: Disulfidptosis is an emerging type of programmed cell death

related to ROS accumulation and aberrant disulfide bond formation. Multiple

myeloma (MM) is the second most prevalent hematologic malignancy

characterized by a high synthesis rate of disulfide bond-rich proteins and

chronic oxidative stress. However, the relationship between disulfidptosis and

MM is still unclear.

Methods: Using the non-negative matrix factorization and lasso algorithm, we

constructed the disulfidptosis-associated subtypes and the prognostic model on

the GEO dataset. We further explored genetic mutation mapping, protein-

protein interactions, functional enrichment, drug sensitivity, drug prediction,

and immune infiltration analysis among subtypes and risk subgroups. To

improve the clinical benefits, we combined risk scores and clinical metrics to

build a nomogram. Finally, in vitro experiments examined the expression patterns

of disulfidptosis-related genes (DRGs) in MM.

Results: By cluster analysis, we obtained three subtypes with C2 having a worse

prognosis than C3. Consistently, C2 exhibited significantly lower sensitivity to

doxorubicin and lenalidomide, as well as a higher propensity for T-cell depletion

and a non-responsive state to immunotherapy. Similarly, in the subsequent

prognostic model, the high-scoring group had a worse prognosis and a higher

probability of T-cell dysfunction, immunotherapy resistance, and cancer cell

self-renewal. DRGs and risk genes were widely mutated in cancers. Subtypes and

risk subgroups differed in ROS metabolism and the p53 signaling pathway. We

further identified eight genes differentially expressed in risk subgroups as drug

targets against MM. Then 27 drugs targeting the high-risk group were predicted.

Based on the DRGs and risk genes, we constructed the miRNA and TF regulatory

networks. The nomogram of combined ISS, age, and risk score showed good
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predictive performance. qRT-PCR of cell lines and clinical specimens provided

further support for prognostic modeling.

Conclusion: Our research reveals the prognostic value of disulfidptosis in

MM and provides new perspectives for identifying heterogeneity and

therapeutic targets.
KEYWORDS

multiple myeloma, disulfidptosis, prognostic gene signature, tumor microenvironment,
oxidative stress, immunotherapy, targeted drugs
1 Introduction

Multiple myeloma (MM) is the second most common

hematologic mal ignancy character ized by mal ignant

transformation of plasma cells in the bone marrow, whose

uncontrolled growth may lead to hypercalcemia, renal injury,

anemia, and destructive bone damage (1). Although the treatment

paradigm for MM has made great strides in the past, a cure remains

out of reach for most patients. Many patients eventually develop

resistance to the standard therapies, which ultimately leads to

relapse. The treatment of relapse-refractory MM, especially in

patients with risk characteristics, remains a clinical challenge (2).

Malignant transformation of plasma cells is frequently

accompanied by molecular biological aberrations. The presence

of potential molecular drivers leads to heterogeneity in the

clinical course (3, 4). The International Staging System (ISS)

is based on two simple laboratory indicators: serum albumin and

b2-microglobulin (b2-MG) levels. The revised ISS (R-ISS) further

combines high-risk genetic abnormalities, lactate dehydrogenase (LDH)

levels, and ISS. The ISS and R-ISS are the most widely used prognostic

evaluation systems for MM (5). However, there are still limitations to

the heterogeneity and prognostic evaluation of MM patients based on

the above staging (6). Therefore, it is imperative to develop reliable and
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effective prognostic biomarkers to identify high-risk features in MM

and to guide customized and optimal treatment.

In addition, there is growing evidence that cancer cells exhibit

altered metabolic profiles associated with increased demand for

metabolic gene reorganization (7–9). A recent study reported an

emerging type of metabolism-related programmed cell death,

namely “disulfidptosis” (10). During glucose deprivation,

SLC7A11-mediated cystine uptake leads to the accumulation of

ROS and the formation of abnormal disulfide bonds by consuming

intracellular NADPH, thereby promoting cell death by disrupting

the conformation of cytoskeletal proteins (10).

Oxidative stress andmutational risk are two important pathogenic

mechanisms in MM, and the former can in turn lead to the

accumulation of the latter (11, 12). As a tumor with a high protein

synthesis and secretion load (13), MM relies on the thioredoxin (Trx)

system to reduce endoplasmic reticulum stress and oxidative stress

(14). These cells secrete large amounts of immunoglobulins and

cytokines requiring the support of rearranged disulfide bonds (13,

15, 16). It relies on the protein disulfide isomerase (PDI) to fold and

preserve its structural integrity (17, 18). In addition, actin

polymerization is an important process by which myeloma cells

home to the BM and interact with its protective microenvironment.

However, current studies on the relationship between disulfidptosis

and MM remain to be further explored.

In our study, distinct clustering features were identified to explore

the heterogeneity of MM based on disulfidptosis-related molecular

characteristics. The model associated with disulfidptosis was

developed to characterize the immune microenvironment, assess

drug sensitivity, and predict the prognosis and immunotherapy

sensitivity of MM. Disulfidptosis may provide new avenues for

MM risk stratification and metabolic therapy.
2 Materials and methods

2.1 Data acquisition

The Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo/) was utilized to obtain the gene
frontiersin.org
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expression and clinical data of the MM patients (GSE136337,

GSE24080, and GSE4204). We normalized the three datasets to

increase the comparability between the data. GSE136337 was used

to construct tumor subtypes and prognostic models, while the other

two were used as validation sets. We screened samples with

complete survival information (GSE136337, n = 424; GSE24080,

n = 556; GSE4204, n = 534). Subjects with complete clinical data

were further identified (GSE136337, n = 415; GSE24080, n = 556).

Table 1 summarizes the included datasets.

15 disulfidptosis-related genes (DRGs) include SLC7A11,

SLC3A2, ABI2, BRK1, CYFIP1, NCKAP1, RPN1, RAC1, WASF2,

GYS1, NDUFS1, NUBPL, NDUFA11, LRPPRC, and OXSM (19).
2.2 Gene interaction and the genetic
variant landscape

Based on the Pearson correlation coefficients, we used the

“circlize” R package to explore the genetic interactions among the

DRGs. For proteomics, the STRING database (version 11.5) (20)

provides a way to visualize the correlations between the proteins

regulated by these genes. Due to limited data on myeloma in The

Cancer Genome Atlas, we conducted a pan-cancer analysis of

mutations in DRGs and risk genes using Gene Set Cancer

Analysis (https://guolab.wchscu.cn/GSCA/#/) (21). The mutation

status and loci in cancers were further obtained with the cBioPortal

for Cancer Genomics (http://www.cbioportal.org/).
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2.3 Identification and validation of
disulfidptosis-related isoforms

Unsupervised clustering of MM samples is performed using the

nonnegative matrix factorization (NMF) clustering algorithm (22).

The “lee” function is selected and 500 iterations are performed. The

number of clusters k was set from 2 to 6. We choose the optimal

rank based on the inflection point at which cophenetic values begin

to drop significantly (23–26). The discrimination between the

isoforms (C1, C2, and C3) was further validated using principal

component analysis (PCA). Since C1 contained a small number of
TABLE 1 Clinical covariates of the training and validation cohorts.

Characteristics Training
cohort
GSE136337
(n = 415)

Validation
cohort
GSE24080
(n = 556)

Validation
cohort
GSE4204
(n = 534)

Sex

Female 158 (38%) 222 (40%) NA

Male 257 (62%) 334 (60%) NA

Age

≤ 65 years 297 (72%) 421(76%) NA

> 65 years 118 (28%) 135(24%) NA

Alb

≥ 3.5 g/dL 331 (80%) 481(87%) NA

< 3.5 g/dL 84 (20%) 75(13%) NA

b2-MG

< 3.5 mg/L 187 (45%) 320(58%) NA

3.5–5.5 mg/L 109 (26%) 118(21%) NA

(Continued)
TABLE 1 Continued

Characteristics Training
cohort
GSE136337
(n = 415)

Validation
cohort
GSE24080
(n = 556)

Validation
cohort
GSE4204
(n = 534)

b2-MG

≥ 5.5 mg/L 119 (29%) 118(21%) NA

LDH

≤ 250 U/L 392 (94%) 507(91%) NA

> 250 U/L 23 (6%) 49(9%) NA

del (17p)

False 400 (96%) NA NA

True 15 (4%) NA NA

t (4; 14)

False 401 (97%) NA NA

True 14 (3%) NA NA

t (14; 16)

False 414 (99%) NA NA

True 1 (1%) NA NA

ISS

I 163 (39%) 296(53%) NA

II 133 (32%) 142(26%) NA

III 119 (29%) 118(21%) NA

R-ISS

I 149 (36%) NA NA

II 243 (59%) NA NA

III 23 (5%) NA NA

Risk score

High 206 (50%) 278 (50%) 267 (50%)

Low 209(50%) 278 (50%) 267 (50%)

Survival

Alive 239 (58%) 386 (69%) 442 (83%)
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individuals (n = 12), Kaplan-Meier curves were generated to assess

the variations in survival between C2 and C3.
2.4 Comprehensive analyses of subtypes

To evaluate the variations in medication sensitivity among the

clusters, the “pRRophetic” package was utilized. With the “limma”

package, differentially expressed genes (DEGs) between C2 and C3

were screened as candidate genes for subsequent prognostic models.

To further screen out key DEGs with significant biological

significance for constructing prognostic models, we set the

threshold criteria as FC > 1.5 and adjusted P < 0.05. Then we

explored the biological mechanisms underlying the disulfidptosis-

related isoforms via the Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis and Gene Ontology (GO) analysis (P < 0.05, FDR-

q < 0.25).
2.5 Construction and evaluation of the
prognostic model

Prognosis-associated DEGs were further identified by Cox

regression analysis to serve as candidate genes for prognostic

model construction (P < 0.05). Then, we used the “glmnet”

package (27) and conducted 10-fold cross-validation to construct

a lasso Cox regression prognostic model based on lambda. min.

Lambda.min directly corresponds to the minimum of the cross-

validation error under preserving more features, and it is chosen to

provide more accurate prediction results and help identify potential

biomarkers. Depending on the median score, the individuals were

classified into low- and high-risk subgroups. To evaluate the

prognostic prediction effectiveness, the area under the curve

(AUC) was computed using the “timeROC” package.
2.6 Exploration of biological functions and
drug targets based on the model

In the differential analysis among the risk groups, we set lower

thresholds (FC > 1.2, adjusted P < 0.05) for comprehensive

exploration of gene expression changes, and performed KEGG

and Gene Set Enrichment Analysis (GSEA v4.2.2 software, P <

0.05 and FDR-q < 0.25) to explore potential biological functions.

We subsequently explored the genes targeted by MM drugs

among DEGs between risk subgroups through the DrugBank

database (https://go.drugbank.com/) (28). Furthermore, to

identify more effective treatments targeting the high-risk group,

we employed human cancer cell line gene expression data from the

Cancer Cell Line Encyclopedia (https://depmap.org/portal/) as a

training set and calculated dose-response AUC to quantify the drug

sensitivity of the high-risk subgroup by using the “pRRophetic”

package. The AUC was negatively associated with drug

responsibility. The Cancer Therapeutics Response Portal (CTRP)

(https://portals.broadinstitute.org/ctrp.v2.1/) (29) and PRISM
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Repurposing (https://depmap.org/portal/prism/) (30) are sources

of drug sensitivity data. Next, we conducted differential drug

response analysis between the highest and lowest risk score

deciles (log2FC > 0.1). Then compounds that showed a negative

correlation with the risk score were examined (Spearman’s r <

-0.2) (31).
2.7 Analysis of miRNA and transcription
factors

Based on miRWalk database (current version: January 2022)

(http://129.206.7.150/), we searched in the “Disease” column

(DOID: 9538#multiple myeloma) and finally obtained miRNAs

related to MM. Then we intersected them with DEGs among

clusters and risk subgroups. In addition, we inputted DRGs and

prognostic genes into the Cistrome DB database (http://

dbtoolkit.cistrome.org/) (Default parameters) and obtained

transcription factors (TFs) that regulate these genes. The miRNA and

TF regulatory networks were finally visualized by Cytoscape (v3.9.1).
2.8 Characterization of the
immunophenotype and immunotherapy
responsiveness among subgroups

The number of immune cells in the tumor microenvironment

across subtypes was determined using the single-sample gene set

enrichment analysis (ssGSEA) and the xCell (32). Tumor immune

dysfunction and exclusion (TIDE) was performed to analyze the

function and infiltration level of T cells (33). Both TIDE (33) and

immunophenotype score (IPS) (34) can assess the sensitivity of

immune checkpoint blockade (ICB). IPS addresses the

immunological phenotype of the cells from four perspectives

(“antigen-presenting (AP), effector cells (EC), suppressor cells

(SC), and checkpoints (CP)”). The indicator balance resulted in

the generation of a total score (z-score, AZ). Greater z-scores and

lower TIDE were associated with increased immunotherapy

responsiveness (33, 34). Moreover, we conducted a correlation

analysis between prognostic genes and immune-related genes,

pathways, and functions (35). To assess the self-renewal ability of

the samples, the mRNA expression-based stemness index

(mRNAsi) was calculated according to transcriptomic and

epigenetic characteristics (36).
2.9 Establishing a predictive nomogram

Through univariate and multivariate Cox regression, we

screened for independent prognostic factors to be included in the

construction of a nomogram. The construction of the nomogram is

achieved through the “rms” package. For the internal validation, a

calibration curve was developed. Time-ROC curves for 1-, 3- and 5-
frontiersin.org
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year survival compared between the nomogram and other

factors (37).
2.10 Cell lines and cell culture

Cells for RPMI8226, MM1.R, U266, NCI-H929, and LP-1 were

purchased from Fenghui Biotechnology Co., Ltd (Hunan, China).

The cells were grown in RPMI-1640 media (Gibco, Shanghai,

China) containing 10% fetal bovine serum, 0.1 mg/ml

streptomycin, and 100 U/ml penicillin G. The medium was then

incubated with the cel l s at 37°C and 5% CO2 in a

humid environment.
2.11 Patients

50 MM patients from the First Affiliated Hospital of Wenzhou

Medical University were included in the study. Additionally, BM

from 24 healthy donors served as a control group for cell lines and

patient samples. The clinical characteristics of the patients are

shown in Table 2. All samples were taken with the subjects’

informed consent. This research was approved by the Ethics

Committee in Clinical Research of the First Affiliated Hospital of

Wenzhou Medical University and followed the Declaration

of Helsinki.
2.12 RNA extraction, reverse transcription,
and quantitative real-time PCR

RNA was extracted from bone marrow samples by Righton

DNA&RNA Blood and Tissue Kit (Righton Bio, Shanghai, China),

followed by reverse transcription with the cDNA Synthesis Kit

(Vazyme, Nanjing, China). Finally, quantitative PCR was

performed using Taq Pro Universal SYBR qPCR Master Mix

(Vazyme, Nanjing, China). Internal controls were implemented

using b-ACTIN. The comparative threshold cycle (Ct) approach

was used to determine relative expression (38). The primer

sequences used are as follows:
Fron
CR2 forward primer: 5′‐AAAGGGCTGGAACCAAGGAA‐3′;
CR2 reverse primer: 5′‐GACAGGAGCAAGTGAACG

GGA‐3′;
DIRAS3 forward primer: 5′‐CTGCCGACCATTGAAAAT

ACCT‐3′;
DIRAS3 reverse primer: 5′‐GACTGAGTAGACCAGG

ACGAAGG‐3′;
FOSB forward primer: 5′‐GAGACAGATCAGTTGG

AGGAAGAA‐3′;
FOSB reverse primer: 5′‐CACAAACTCCAGACGTTCC

TTC‐3′;
GJB2 forward primer: 5′‐GAGTGAATTTAAGGACAT

CGAGGAG‐3′;
tiers in Immunology 05
GJB2 reverse primer: 5′‐TGCATGGAGAAGCCGTCGTA-3′;
HK2 fo rward pr imer : 5 ′ ‐TTGGAGCCACCACTC

ACCCTA‐3′;
HK2 r e v e r s e pr imer : 5 ′ ‐GAGCCCATTGTCCGT

TACTTTC-3′;
KIF21B forward primer: 5′‐GTCAAGGTGGCCGTC

AGGAT‐3′;
KIF21B reverse primer: 5′‐TTCTTGCCAGGTGTCCA

GGTC-3′;
LY6E forward primer: 5 ′‐AATCTGTACTGCCTGA

AGCCGA‐3′;
LY6E reverse primer: 5 ′‐CCAAATGTCACGAGAT

TCCCA-3′;
PLTP forward primer: 5′‐GCTGGCTCTGATCCCA

TTACAG‐3′;
PLTP reverse primer: 5′‐AATCCCGCATGGTTCGTCA-3′;
SHROOM3 forward primer: 5′‐CTCACGGACATCAAGC

TCAACAA‐3′;
SHROOM3 reverse primer: 5′‐CCTTTCTTCATTACTGGC

ATCTTCA-3′;
TEAD1 forward primer: 5′‐CCAACCATTCTTACAGTGA

CCCAT‐3′;
TEAD1 reverse primer: 5′‐TCAAACCTTGCATACTC

CGTCTC-3′;
b-ACTIN forward primer: 5′‐TCAAGATCATTGCTCCTC

CTGAG‐3′;
b-ACTIN reverse primer: 5 ′‐ACATCTGCTGGAAG

GTGGACA‐3′.
2.13 Statistical analyses

R 4.1.1, SPSS 24.0, and GraphPad Prism 9.0.0 were employed in

statistical analyses. For comparison of differences, Student’s t-test

and ANOVA were used for normal data, while the Wilcoxon test

corresponded to skewed data. Multiple comparisons use FDR to

correct P-values. As for correlation analysis, Pearson correlation

was applied to the bivariate normal distribution, otherwise

Spearman rank analysis was used. Survival analysis was

performed using the Kaplan-Meier method and the log-rank test

was used to compare survival probabilities.

3 Results

3.1 Gene interaction and the genetic
variant landscape

The study design is presented in Figure 1. These genes were

closely related to each other (Figures 2A, B). In addition, these genes

exhibited widespread mutations in cancer. CYFIP1 had the highest

mutation rate (19%), followed by LRPPRC (18%) and NCKAP1
frontiersin.org
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(17%) (Figure 2C). Moreover, missense mutations were the most

common type of mutation (Figure 2C). The cBioPortal analysis

further validated the extensive mutation status of CYFIP1 in

multiple cancers (Figure 2D). Figure 2E demonstrated the

mutation site of CYFIP1.
3.2 Identification and validation of
disulfidptosis-related isoforms

The training set was clustered using the NMF algorithm. The

decrease of cophenetic value is obviously slowed down after rank=3

(Figure 3A). And there is a clear block structure in the consensus

matrix at rank=3 (Figure 3A), indicating a high stability of the

clustering results. The accuracy and stability of this clustering

analysis was further demonstrated by PCA (Figure 3B). We

selected the top three suppressor hits, SLC7A11, SLC3A2 and

RPN1, from the CRISPR-Cas9 screening in Liu et al.’s study (10).

Differential analysis revealed that the expression levels of these three

genes in C1 were higher than those in C2 and C3 (P < 0.01)

(Figure 3C). And the expression of SLC3A2 in C2 was higher than

that in C3 (P < 0.001) (Figure 3C). This suggests that they are more

susceptible to disulfidptosis. Furthermore, Kaplan-Meier curve

revealed that C2 had worse survival than C3 (P = 0.043)

(Figure 3D). Similar results were replicated in the GSE4204

validation set (P = 0.002) (Figures 3E, F).
3.3 Comprehensive analyses of subtypes

Additionally, we found heterogeneity in drug responsiveness

between the two subtypes (Figure 4A). C1 and C2 were more

sensitive to bortezomib than C3 (P < 0.05) (Figure 4A). While on

doxorubicin and lenalidomide, C3 was more sensitive than C2 (P <

0.01) (Figure 4A).

Compared to C3, the pathways enriched in C2 include the HIF-

1 signaling pathway, autophagy, glycolysis, actin filament binding,

and cellular responses to dexamethasone and oxidative stress

(Figures 4B, C).

C2 had higher levels of activated CD8+ T cells and central

memory CD8+ T cells (P < 0.05), while C3 was enriched in effector

memory CD4+ T cells and NK cells (P < 0.05) (Figure 5A). In the

xCell algorithm, C1 showed the lowest immunity score, followed by

C2 (P<0.05) (Figure 5B). However, the stroma score of C2 was
TABLE 2 The clinical features of the subjects included in
this experiment.

Variables Levels
MM
(n = 50)

Normal
(n = 24)

P

Sex
Female 18 (36%) 10 42%) 0.638

Male 32 (64%) 14 (58%) –

Age (years)
< 65 14 (28%) 9 (38%) 0.408

≥ 65 36 (72%) 15 (62%) –

Isotype

IgG 27 (54%) – –

IgA 13 (26%) – –

IgD 1 (2%) – –

IgM 1 (2%) – –

Light chain k 5 (10%) – –

Light chain l 3 (6%) – –

Albumin (g/dL)
≥ 3.5 20 (40%) – –

< 3.5 30 (60%) – –

b2-MG (mg/L)

< 3.5 17 (34%) – –

3.5–5.5 12 (24%) – –

≥ 5.5 21 (42%) – –

LDH (U/L)
≤ 250 41 (82%) – –

> 250 9 (18%) – –

del (17p)
False 49 (98%) – –

True 1 (2%) – –

IgH rearrangement
False 46 (92%) – –

True 4 (8%) – –

del (13q)
False 37 (74%) – –

True 13 (26%) – –

amp 1q
False 37 (74%) – –

True 13 (26%) – –

ISS

I 9 (18%) – –

II 20 (40%) – –

III 21 (42%) – –

R-ISS

I 8 (16%) – –

II 37 (74%) – –

III 5 (10%) – –

Myeloma cells (%)
< 10 18 (36%) – –

≥ 10 32 (64%) – –

Calcium (mmol/L)
≤ 2.65 44 (88%) – –

> 2.65 6 (12%) – –

Serum creatinine
(mmol/L)

< 177 41 (82%) – –

≥ 177 9 (18%) – –

(Continued)
TABLE 2 Continued

Variables Levels
MM
(n = 50)

Normal
(n = 24)

P

Hb (g/L)
≥ 85 23 (46%) – –

< 85 27 (54%) – –

Bone lesions

0 18 (36%) – –

1-3 4 (8%) – –

> 3 28 (56%) – –
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higher than that of C3 (P<0.001). Further analysis of T cells revealed

that the T-cell exclusion was highest in C1, followed by C2 (P <

0.01) (Figure 5C). Additionally, C2 was more prone to T-cell

dysfunction (P < 0.05). The TIDE of C1 and C2 was higher than

that of C3 (P < 0.05), indicating a greater possibility of immune

escape and resistance to immunotherapy in C1 and C2.
3.4 Construction and evaluation of the
prognostic model

We further included 90 DEGs in Cox regression analysis

(P<0.05) and ultimately obtained 10 candidate genes. Using the
Frontiers in Immunology 07
lasso algorithm, a prognostic model related to disulfidptosis was

constructed as follows (l = 0.015) (Figure 6A): risk score = (0.0068

× CR2) + (0.0670 × SHROOM3) + (0.0226 × LY6E) + (0.0468 ×

TEAD1) + (0.0322 × GJB2) + (0.0724 ×HK2) + (0.1084 × KIF21B) +

(0.0425 × PLTP) - (0.0961 × DIRAS3) - (0.0763 × FOSB). The

sample was separated into high- and low-risk categories according

to median scores. The risk score, age, and ISS proved to be

independent prognostic factors (Figure 6B).

Figure 6C and Supplementary Figure 1A revealed differences in

survival and gene expression between the high- and low-risk

subgroups. In both the training and validation sets, higher scorers

fared worse in terms of survival (GSE136337: HR = 2.13, 95% CI =

1.57-2.87, P < 0.001; GSE24080: HR = 1.76, 95% CI = 1.30-2.40, P <
FIGURE 1

Flow chart of the study.
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0.001; GSE4204: HR = 1.76, 95% CI = 1.16-2.67, P = 0.008)

(Figure 6D; Supplementary Figure 1B). In the training set, the

Brier scores for 1-, 2-, 3-, and 4-year survival of the model were

0.050, 0.057, 0.102, and 0.129, respectively. This further validates
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the stability of the model. AUCs of the 1-, 2-, 3-, and 4-year survival

were 0.602, 0.628, 0.683, and 0.690, respectively, in the GSE136337

(Figure 6E), 0.631, 0.682, 0.710, and 0.648 in the GSE24080, 0.663,

0.707, 0.697, and 0.648 in the GSE4204 (Supplementary Figure 1C).
FIGURE 2

Gene interactions and the genetic variant landscape of DRGs. (A) The correlation network of DRGs. (B) The protein-protein interaction network of
DRGs. (C) Pan-cancer analysis of the mutation landscape of DRGs. (D) The mutation status of CYFIP1 in cancers from the cBioPortal. (E) Major
mutation sites of CYFIP1.
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3.5 Construction and evaluation of the
prognostic model
The risk subgroups differed in clinical risk indicators

(Figure 7A). Those with high levels of LDH and b2-MG had

higher risk scores, in contrast to albumin (P < 0.05). Higher

ISS or R-ISS staging was more concentrated in the high-rated
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group (P < 0.05). Consistently, C2 with a worse prognosis favored

higher risk scores (P < 0.05). In the genetic landscape, KIF21B

(32%), CR2 (31%), and SHROOM3 (27%) were the three genes with

the highest mutation rates (Figure 7B). Based on the 1215 DEGs, we

found that high-risk groups were enriched in pathways including

p53 signaling pathway, proteasome, TCA cycle, oxidative

phosphorylation, PI3K-Akt signaling pathway, chemical

carcinogenesis, and JAK-STAT signaling pathway (Figures 7C, D).
FIGURE 3

Identification and validation of disulfidptosis-related isoforms. (A) The cophenetic curve of NMF clustering at ranks = 2 to 6 and the consensus
matrix when rank = 3 in the training dataset. (B) Principal component analysis of three clusters. (C) Comparison of expression levels of SLC7A11,
SLC3A2 and RPN1 between subgroups. (D) Survival analysis between C2 and C3 in the training set (P = 0.043). (E) The cophenetic curve of NMF
clustering at rank = 2 to 6 and the consensus matrix when rank = 3 in validation dataset GSE4204. (F) Survival analysis between C2 and C3 in the
validation set GSE4204 (P = 0.002).
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3.6 Comparative analysis of immune
background between risk subgroups

In terms of the immune checkpoint, the high-risk group had

higher expression levels of PD-1, CD70, MCM6, POLD3, MSH6,

MSH2, and LGALS3 (P < 0.05) (Figure 8A). For immunity,

prognostic genes were closely associated with immune-related

pathways and functional status (Figure 8B). For example, the

expression of suppressive immune genes was generally favorably

connected with GJB2, whereas the stimulatory immune genes were
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negatively correlated. Furthermore, T cells in the high-risk group

were more susceptible to exclusion (P < 0.001) (Figure 8C). In

addition, we discovered a positive correlation (r = 0.44, P < 0.001)

between mRNAsi and the risk score (Figure 8D). A greater chance

of recurrence was evident in the high-scoring group.

In subsequent immunophenotypic analyses, DIRAS3 and FOSB

were positively correlated with antigen presentation-associated

markers (P < 0.001), whereas HK2 was negatively correlated (P <

0.01) (Figure 8E). Similarly, in terms of inhibitory cell-associated

features, FOSB showed a negative correlation (P < 0.01), whereas
FIGURE 4

Comprehensive analyses of subtypes. (A) Comparison of drug sensitivity between subgroups. (B) Functional enrichment analysis with GO. (C) KEGG
pathway enrichment analysis. BP, biological process; CC, cellular component; MF, molecular function.
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the opposite was true for HK2 and SHROOM3 (P < 0.05)

(Figure 8E). Finally, DIRAS3 and FOSB correlated with higher

total scores (P < 0.001) (Figure 8E), which was associated with

greater ICB responsiveness.
3.7 Targeted drug prediction and the
network of mRNAs and interrelated
miRNAs, TFs

A total of 27 compounds were predicted to potentially target

people in high-risk groups (CTRP: paclitaxel, methotrexate, BI-

2536, oligomycin A, daporinad, vincristine, GSK461364,

leptomycin B, SB-743921, rigosertib, KX2-391; PRISM:

cabazitaxel, danusertib, TAS-103, gemcitabine, BNC105,
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AMG900, verubulin, OTX015, rigosertib, G-1, tipifarnib, 10-

hydroxycamptothecin, barasertib-HQPA, ispinesib, SNS-314,

taltobulin, genz-644282). All compounds had lower AUCs in the

high-scoring subgroup (P < 0.05) (Figures 9A, B). In addition, we

further identified eight genes among DEGs in risk subgroups as

targets of drugs commonly used in MM through the DrugBank

database: CYP2C19, CYP2C9, SLCO1A2, CYP17A1, CYP3A43,

XDH, NOS1, and PTGS2 (Figure 9C).

Using the miRWalk database, we predicted 13 miRNAs that

were closely interlinked with DEGs between subtypes and risk

subgroups (miR-365a-5p, miR-6734-5p, miR-6165, miR-6879-5p,

miR-25-5p, miR-6830-5p, miR-5787, miR-7107-5p, miR-4657,

miR-6825-5p, miR-1908-5p, miR-193b-5p, miR-885-3p)

(Figure 9D). With the Cistrome DB database, five possible TFs

(BRD4, EP300, MYC, POLR2A, and H2AZ) may regulate the

expression of DRGs and prognostic risk genes (Figure 9E).
FIGURE 5

Comparative analysis of immune background between clusters. (A) Analysis of intersubtype immune cell infiltration with ssGSEA. (B) Immunological
comparison between subtypes with xCell algorithm. (C) Assessment of T-cell dysfunction and exclusion. TIDE, tumor immune dysfunction and
exclusion; *P < 0.05; **P < 0.01; ***P < 0.001.
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3.8 Establishing a predictive nomogram

Nomograms can visualize complex regression equations and

facilitate the prediction of the probability of an individual’s outcome

in medical research and clinical practice. Based on existing data, we
Frontiers in Immunology 12
constructed a nomogram by combining age, ISS, and the risk score

(Figure 10A). Self-validation was obtained in the calibration curve

(Figure 10B). The 1-, 3-, and 5-year AUCs exceeded those of the ISS

and R-ISS (GSE136337: 72.41%, 72.77%, and 72.63%; GSE24080:

69.36%, 71.88%, and 68.33%) (Figures 10C, D).
FIGURE 6

Construction and evaluation of the prognostic model. (A) Prognostic model constructed with lasso algorithm. (B) Univariate and multivariate analysis.
(C) Distribution of survival status between high- and low-risk groups and gene expression heatmap of the prognostic model. (D) Kaplan-Meier curve
of high- and low-risk groups (P < 0.001). (E) The sensitivity and specificity of the model were assessed by time-ROC analysis.
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3.9 External validation with experiments

The expression levels of CR2, GJB2, HK2, KIF21B, LY6E, PLTP,

SHROOM3, and TEAD1 were upregulated in all cell lines used in

the experiments (RPMI8226, MM1.R, U266, NCI-H929, and LP-1)

(P < 0.05), in contrast to FOSB (P < 0.001). DIRAS3 was
Frontiers in Immunology 13
downregulated in MM1.R, U266, and LP-1 (P < 0.001)

(Figure 11). We next performed further validation in collected

clinical BM specimens. Consistently, DIRAS3 and FOSB showed a

trend of downregulation in MM patients relative to normal subjects

(P < 0.001), whereas the other genes showed the opposite trend (P <

0.001) (Figure 12).
FIGURE 7

Exploration of the mutation landscape and pathways in the prognostic model. (A) Relationships between the risk score and various clinical
characteristics. (B) The mutation landscape of genes in the model. (C) Exploration of biological functions with GSEA. (D) KEGG pathway
enrichment analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1559317
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1559317
4 Discussion

The development of biomarkers for MM is rapidly evolving,

driven by new technologies, based on a deeper understanding of the
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biological mechanisms of tumors, with the goal of personalized

patient management. Metabolic reprogramming is the key feature

of tumors, which frequently causes tumor cells to become highly

dependent on particular metabolic routes. Targeting tumor
FIGURE 8

Comparative analysis of immune background between risk subgroups. (A) Comparison of immune checkpoints between risk subgroups. (B)
Correlations of prognostic genes with immune-related pathways and functions. (C) Assessment of T-cell dysfunction and exclusion. (D) Correlation
of risk scores with mRNAsi scores. (E) Association of prognostic genes with IPS-related scores. mRNAsi, mRNA expression-based stemness index;
TIDE, tumor immune dysfunction and exclusion; IPS, immunophenotype score; MHC, antigen presentation; EC, effector cells; SC, suppressor cells;
CP, checkpoint marker; AZ, z-score. *P < 0.05; **P < 0.01; ***P < 0.001.
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metabolism has gained widespread attention in the era of precision

medicine (39).

Disulfidptosis describes a novel form of programmed cell

death. Under glucose deprivation, SLC7A11 dominates disulfide

and ROS accumulation, mediating aberrant disulfide bond

formation and F-actin collapse (10). Moreover, thiol oxidizers
Frontiers in Immunology 15
and GLUT inhibitors were shown to facilitate this process

(10). The potential effects of disulfidptosis in cancers such as

hepatocellular carcinoma (40), pancreatic ductal adenocarcinoma

(41), glioblastoma (39), and gastric cancer (42) have been

revealed. However, the specific role that disulfidptosis plays in

MM is unclear.
FIGURE 9

Targeted drug prediction and the network of mRNAs and interrelated miRNAs, TFs. (A) The results of correlation analysis and differential drug
response analysis in CTRP. (B) The results of correlation analysis and differential drug response analysis in PRISM. (C) Drug target analysis. (D) mRNA-
miRNA network. (E) mRNA-TF network. *P < 0.05; **P < 0.01; ***P < 0.001.
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In our study, we identified three subtypes based on DRGs. Liu

et al. screened out the top three suppressor hits through CRISPR-

Cas9: SLC7A11, SLC3A2 and RPN1 (10). These three genes play a

key role in disulfidptosis. They were expressed at higher levels in C1

than in C2 and C3. The expression of SLC3A2 in C2 was higher than

that in C3. Additionally, compared with C3, the upregulated
Frontiers in Immunology 16
pathways in C2 included ROS metabolism and actin binding, etc.

All these indicate that C1 and C2 are more susceptible to the

perturbation of disulfidptosis. Survival analysis showed that C2 had

a worse survival outcome than C3. Such prognostic differences may

be due to the enrichment of C2 in pathways such as HIF-1 signaling

pathway and autophagy, its resistance to doxorubicin and
FIGURE 10

Construction and evaluation of the nomogram. (A) The nomogram assembling age, ISS, and risk score. (B) Calibration curve of the nomogram. (C, D)
Time-ROC curves for 1-, 3-, and 5-year survival predictions for the nomograms compared with other clinical traits.
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lenalidomide, and its higher likelihood of T-cell dysfunction and

rejection. Meanwhile, C1 has the lowest immune score and the

highest level of T-cell exclusion. C1 and C2 were more likely to

undergo immune escape, suggesting a poorer response to

immunotherapy. However, in the future, GLUT inhibitors that

promote disulfidptosis may be an effective therapeutic strategy for

targeting C1 and C2.
Frontiers in Immunology 17
MM, characterized by high glucose consumption, has been

found to rely on multiple glucose transporters for survival (43).

Multiple inhibitors can induce apoptosis and autophagy in MM

cells through glucose deprivation, and reduce resistance to

traditional chemotherapeutic agents such as melphalan and

bortezomib (44, 45). A high synthesis rate of disulfide bond-rich

proteins is another feature of MM, depending on redox balance for
FIGURE 11

Experimental validation in cell lines (mean ± SEM). ns, no significance; *P < 0.05; **P < 0.01; ***P < 0.001. The experiments were independently
repeated 3 times.
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proper protein folding (46, 47). The upregulated Trx system in

various tumors, including MM, provides a platform for clearing

ROS interference in malignant plasma cells (14, 48, 49). The high

expression of PDI in relapsed and refractory MM endows them with

precise regulation of protein folding and further resistance to

proteasome inhibitors (PIs) (17, 18, 50). Not surprisingly, both
Frontiers in Immunology 18
Trx inhibitors and PDI inhibitors exhibited anti-MM efficacy in

vitro and in vivo, even against PI-resistant cells (14, 51–53). Actin-

related genes are considered candidate driver genes for MM (54–

56). Actin polymerization can mediate the homing of MM cells to

the BM ecological niche and their interactions with protective

components of the microenvironment, which is strongly
FIGURE 12

Experimental validation in patients (Control: n = 24, MM: n = 50). ***P < 0.001.
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associated with the pathogenesis, invasiveness, and drug resistance

of MM (57, 58). Furthermore, several DRGs have been found to

play important roles in MM. SLC3A2, which acts as an amino acid

exchanger, is one of the most abundant proteins on the surface of

myeloma cells (59), providing support for the secretion of copious

amounts of antibodies by MM cells (60). Its knockdown prevents B

cells from proliferating and differentiating into plasma cells (61).

Moreover, SLC3A2 has been shown to drive mTORC1 activity in

MM to increase invasiveness (62) and is a target for

immunomodulatory drug activity (63). The phosphorylation of

RPN1 contributes to the correct assembly of the 26S proteasome.

Phosphorylation blockade results in cell growth inhibition and

mitochondrial dysfunction (64). RPN1 is aberrantly activated in

MM and its mediation of aberrant endoplasmic reticulum

autophagy may be tied to the genesis and development of MM

(65, 66). RAC1 belongs to the Ras proto-oncogene superfamily and

regulates cell proliferation, cytoskeletal reorganization, and cell

migration (67, 68). RAC1 is involved in the adhesion of myeloma

cells in the BM, which contributes to drug resistance and

invasiveness (57, 69). Next, we constructed a prognostic model

based on DEGs between subtypes. In both the training and

validation sets, the high-scoring group showed a worse prognosis.

Similarly, the biological differences behind the distinct subgroups

were mainly enriched in oxidative phosphorylation, proteasome,

p53, PI3K-AKT, and JAK-STAT signaling pathways. Several studies

have revealed the associations between these pathways and the

pathogenesis of MM (70–76). In addition, we observed that T cells

in the high-scoring subgroup microenvironment were more

susceptible to rejection and had a higher likelihood of relapse.

Moreover, we performed a drug target analysis. Some predicted

drugs targeting the high-risk group have already been studied in

myeloma. There is evidence that paclitaxel has anti-MM stem cell

action (77), and synergistically interferes with mitosis and induces

apoptosis with other drugs such as dexamethasone (78, 79). In a

phase II study of relapsed refractory MM, paclitaxel showed certain

clinical benefits (77). Polo-like kinase inhibitor BI-2536 is a cell

cycle regulator and its killing effect has been validated in MM cells

and xenograft models (80, 81). The VAD regimen (vincristine,

doxorubicin, and dexamethasone) is widely recognized as the

standard initial induction regimen for MM. It induces early

tumor load reduction and less toxicity to BM stem cells (82).

Leptomycin B, an inhibitor of nuclear translocation with potent

antitumor effects, was found to increase the sensitivity of myeloma

cells to doxorubicin (83). The output protein inhibitors have shown

the effect of inducing apoptosis in MM cells, inhibiting osteolysis,

and improving survival (84, 85), and several clinical trials are

underway (84). As a KSP inhibitor, SB-743921 was discovered the

function of inducing MM cell death by blocking the NF-kB
signaling pathway (86). It is presently being researched in clinical

trials related to myeloma, leukemia, and solid tumors (87, 88).

Drug-resistant MM cells have reportedly been effectively targeted by

gemcitabine through its inhibition of DNA damage repair (89–91).

The autologous stem-cell transplant regimen consisting of

gemcitabine, busulfan, and melphalan demonstrated greater

efficacy than a high-dose melphalan regimen (92). Rigosertib has
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been identified in both CTRP and PRISM, suggesting its great

potential as a new therapeutic tool for MM. Rigosertib is a multi-

kinase inhibitor, showing high potency against a wide range of

tumors both in vivo and in vitro (93). It is being evaluated in several

clinical trials for refractory B-cell malignancies (e.g., MM and

chronic lymphocytic leukemia) (94). Although some of the

predicted drugs are not standard agents in MM treatment, the

above studies show their antitumor effects in MM. Our future

studies will further explore the potential of these drugs in

combination therapy and specific subtype-targeted therapies

through in vivo and in vitro experiments.

The miRNA/TF-mRNA network was further constructed to

clarify the regulatory interactions of the candidate genes. miR-193

inhibition was found to induce overexpression of the anti-

regulatory protein MCL-1 in MM (95). As a well-known

oncogenic cluster (96, 97), by blocking p53 and turning on the

PI3K/AKT pathway, miR-25 promotes MM proliferation (98, 99).

Upregulation of miR-365 was reported to inhibit myeloma cell

proliferation (100). Among TFs, bromodomain-containing (BRD)-

4 is a promising therapeutic target for regulating the expression of

oncogenes such as MYC in multiple cancers, including MM (101).

Consistent with previous drug prediction analyses, bromodomain

inhibitor OTX015 has great therapeutic potential in MM with the

ability to modulate NF-kB, cell cycle, EGFR, and proliferative

signaling pathways (102). It shows strong antiproliferative

properties in vitro MM assays, promotes osteoblast differentiation

and inhibits osteoclast activity in vivo (102). Furthermore, phase I

trials demonstrated the favorable anti-MM activity and safety

profile of OTX015 (103, 104). Another TF, EP300, is one of the

most frequently altered genes in MM chromatin regulators (105).

Inhibition of EP300 BRDs leads to apoptosis, cycle arrest, and

synergistic enhancement of NK cell-mediated cytotoxicity through

inhibition of IRF4 and MYC (106, 107). A related inhibitor,

CCS1477, is also being assessed in a clinical trial (NCT04068597,

2019-08-09) that includes MM.

In the subsequent prediction of 1-, 3-, and 5-year survival, the

nomogram combining age, ISS, and risk score demonstrated higher

accuracy than R-ISS and ISS in both the training and validation

datasets. This reflects the potential feasibility of using disulfidptosis-

related scores for survival prediction in clinical practice.

The genes that make up the prognostic model are also closely

related to MM. Overexpressed in many malignancies, HK2 is a

crucial enzyme that catalyzes the initial stage of glycolysis (108–

110). Additionally, aberrant activation of HK2 is linked to poor

outcomes and PI resistance in myeloma patients (111, 112).

Targeting HK2 has emerged as a promising treatment for

myeloma (113, 114). As a crucial component of the Hippo

signaling pathway, TEAD1 regulates cell division, proliferation,

and death (115). The cytotoxicity of carfilzomib was found to be

related to a decrease in TEAD1 expression (116). KIF21B, belonging

to the kinesin family, participates in the intracellular transport of

membrane organelles. Its overexpression is an important feature of

high-risk MM (117). Extensively and abundantly expressed in

malignancies, LY6E is a GPI-anchored cell surface protein that

controls T lymphocyte activation (118). It is crucial for TGF-b,
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PI3K/Akt signaling pathway, and HIF-1 transcription (119), and is

closely associated with the progression, immune escape, stem cell-

like features, and drug resistance of multiple cancers (118, 120).

Currently, anti-LY6E antibodies have shown antitumor activity and

acceptable safety in phase I trials of refractory malignant tumors

(NCT02092792) (121). GJB2 has been found a supportive role as a

junction protein in acute myeloid leukemia, potentially linked to

development and chemotherapy sensitivity (122, 123). Encoding

lipid transfer proteins, PLTP is important in tumor growth (124–

126). The type 2 complement receptor (CR2) has recently been

redefined as an inhibitory co-receptor that mediates the inhibition

of human B lymphocyte function, including the release of cytokines

and antibodies (127). SHROOM3 is crucial for regulating

cytoskeletal proteins and has been identified as a novel coding

variant in high-risk neuroblastoma (128). DIRAS3, which encodes a

tumor suppressor factor, can mediate the inhibition of cell growth

and malignant transformation (129). Furthermore, MM endothelial

cells exhibit suppressed DIRAS3 expression, which may be related

to their high-risk excessive angiogenesis phenotype (130). FOSB is

considered a regulatory factor for cell proliferation, differentiation,

and transformation. Research has demonstrated that the BM

microenvironment can assist MM cell survival by inhibiting

FOSB (131).

Our study still has several limitations. Firstly, additional

validation of our model in a larger multicenter population is

required. The prognostic value of the model in our clinical

samples needs to be evaluated in subsequent studies. Second,

given the limited number of MM datasets in public databases, the

selected validation sets lacked important clinical information such

as R-ISS. Future studies should focus on multicenter data

integration and exploration of new prognostic markers to further

enhance the clinical value of the model. Finally, it is necessary to

improve experiments based on more samples and mechanisms in

the future.
Conclusion

Our investigation explored the heterogeneity of MM by

identifying subgroups with different prognoses based on

disulfidptosis. The disulfidptosis-related feature is significant for

predicting the survival and treatment responsiveness of MM.

Disulfidptosis is expected to become a new tool of risk

stratification and personalized targeted therapy for MM.
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