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Introduction: Pancreatic cancer (PC) remains a lethal malignancy with limited

treatment options. The role of innate immune cell barrier-related genes in PC

prognosis is poorly defined. This study aimed to identify prognostic biomarkers,

develop a predictive model, and uncover novel targets for personalized therapy.

Methods: Innate immune cell barrier-related genes were curated from KEGG,

ImmPort, MSigDB, and InnateDB. Differential expression analysis was performed

using TCGA and GTEx datasets. Univariate Cox regression identified survival-

associated genes. Prognostic modeling of PC was developed using 14 machine

learning algorithms, with performance validated through long-term survival

metrics, functional enrichment, immune infiltration analysis, and drug sensitivity

profiling. Core genes were prioritized via the "mime1" package, and single-cell RNA

sequencing (scRNA-seq) data explored UBASH3B’s functional role.

Results: 352 differentially expressed genes of Innate immune cell barrier-related

were identified, with NK cell pathways linked to PC immunity. Univariate Cox analysis

revealed 8 protective and 84 risk genes. The RSF model (trained on risk genes)

showed strong 3- and 5-year survival prediction. High-risk patients exhibited

elevated tumor mutation burden (TMB), reduced NK/CD8+ T cell infiltration, and

resistance to Erlotinib/Oxaliplatin but sensitivity to 5-Fluorouracil. Five key genes

(ITGB6, COL17A1, MMP28, DIAPH3, UBASH3B) were highlighted. UBASH3B, a novel

marker, correlated negatively with NK cell activation andmediated immune signaling

and drug resistance.

Discussion: This study established the CDRG-RSF model, a robust prognostic

tool leveraging innate immune genes. UBASH3B’s dual role in immune

suppression and drug resistance highlights its potential for stratifying PC

patients into tailored treatment groups. The findings underscore the

importance of integrating machine learning with immune profiling to advance

precision oncology for PC.
KEYWORDS

ensemble machine learning, prognostic model, pancreatic cancer, innate,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559373/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559373/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1559373/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1559373&domain=pdf&date_stamp=2025-05-23
mailto:scutmedicine@scut.edu.cn
mailto:xiaojia0424@scut.edu.cn
https://doi.org/10.3389/fimmu.2025.1559373
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1559373
https://www.frontiersin.org/journals/immunology


Luo et al. 10.3389/fimmu.2025.1559373
Introduction

Pancreatic cancer (PC) is an exceptionally aggressive malignancy

with a rising incidence globally and an extremely low five-year

survival rate of approximately 10% (1, 2). This dismal prognosis

primarily stems from the lack of early symptoms, leading to most

patients being diagnosed at advanced stages when optimal treatment

opportunities have passed. Additionally, PC exhibits high resistance to

existing therapies such as surgery, chemotherapy, and radiotherapy,

further complicating treatment efficacy. The significant inter-patient

variability in response to these treatments adds another layer of

complexity to therapeutic decision-making (3). To improve patient

outcomes, there is an urgent need to identify novel biomarkers that

can guide personalized treatment strategies for PC.

The innate immune system serves as the body’s first line of

defense and plays a dual role in cancer: it can suppress tumor

development through immune surveillance mechanisms but may

also promote tumor progression via chronic inflammation (4). In

the PC microenvironment, the innate immune cell barrier

predominates (5). Specifically, monocytes/macrophages, dendritic

cells, natural killer (NK) cells, and neutrophils form a complex

barrier influencing tumor development and metastasis (6). NK cells,

in particular, play a crucial role in immune surveillance and control

of PC. Their ability to recognize and rapidly respond to abnormal

cells without prior sensitization endows them with potent anti-

tumor capabilities. In PC, patient survival rates correlate positively

with the relative frequency of NK cells in their blood, which exhibit

lower cytotoxicity compared to healthy individuals (7). Despite

numerous clinical trials targeting the innate immune system in PC,

most efforts have not yielded significant improvements (8, 9),

underscoring the need for more suitable targets to enhance

immunotherapy strategies, especially those involving NK

cell inhibitors.

UBASH3B (Ubiquitin Associated and SH3 Domain Containing

B), also known as T-cell ubiquitin ligase 1 (TULA-1), is a protein

involved in immune regulation. It participates in intracellular

signaling pathways, particularly those associated with SH3

binding domains and ubiquitin ligase activity. Research indicates

that UBASH3B can modulate T-cell receptor signaling, thereby

inhibiting T-cell activation (10). In cancer studies, UBASH3B has

been implicated in promoting tumorigenesis across various types of

cancers, including prostate cancer (11), breast cancer (12), and

leukemia (13). However, its role in PC remains largely unexplored.

Advances in machine learning technology have opened new

avenues for biomedical research. Machine learning algorithms can

process high-dimensional data and uncover hidden patterns,

making them particularly effective for identifying valuable

biomarkers from large gene expression datasets (14). Therefore,

this study leverages ensemble machine learning techniques to

explore whether genes related to the innate immune cell barrier

can serve as potential prognostic markers for PC. We aim to

construct an effective prognostic risk model and identify key

genes. By integrating the latest bioinformatics tools and clinical

data, our research seeks to provide new theoretical foundations and

technical support for precision medicine in PC.
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Materials and methods

Data collection and preprocessing

We compiled a comprehensive list of genes associated with

innate immune cell barriers, including monocytes/macrophages,

dendritic cells, NK cells, and neutrophils, from four databases:

KEGG, ImmPort Portal, MSigDB, and InnateDB. After

deduplication, this process yielded a final list of 1,356 unique genes.

We integrated datasets from The Cancer Genome Atlas (TCGA)

and the Genotype-Tissue Expression (GTEx) project, encompassing

178 PC samples and 172 normal pancreatic tissue samples. For the

validation of our machine learning models, we subsequently

collected three PC cohorts (GSE62452, GSE78229, and GSE85916)

from the Gene Expression Omnibus (GEO) database

(Supplementary Table S1). Batch effects in gene expression data

were corrected using the “removeBatchEffect” function from the

“limma” package to eliminate technical biases across datasets (15)

(Supplementary Figure S1, Supplementary Table S2).

We obtained scRNA-seq data of 61 patients with pancreatic

cancer (PC) from six GEO databases (GSE154778, GSE155698,

GSE197117, GSE212966, GSE231535, GSE242230). Raw

sequencing data were processed using the Seurat package (v4.3)

(16). Initial quality control filtered cells with low complexity

(nFeature_RNA > 200), high mitochondrial gene content

(percent.mt < 20), elevated hemoglobin expression (percent.HB <

10), or extreme ribosomal gene expression (percent.Ribo < 50). To

address technical variation, we selected 3,000 highly variable genes

(variance-stabilizing transformation), scaled the data, and performed

PCA (npcs=50) with PC quantity optimized by the Elbow method

(>90% cumulative variance; Supplementary Figure S2A). We used

the “harmony” R package to correct batch effects and integrate

multiple samples, harmonizing data across batches while preserving

biological variation (17) (Supplementary Figure S2B). Harmony-

corrected embeddings were then visualized in two dimensions using

UMAP (RunUMAP), and utilizing the first 50 Harmony dimensions

for consistency. Cell clusters were resolved using Leiden algorithm-

based graph clustering (resolution=0.5, silhouette-optimized) on

Harmony-derived SNN graphs. Annotation: Cell types were

annotated using the CellMarker database and standard cell-type

markers for accurate identification and classification.
Differential expression analysis

For the differential expression analysis, we utilized the

“DESeq2” package (18) to identify genes that are significantly

differentially expressed between PC samples and normal samples.

|log2FC| > 2 and p < 0.001.
Functional enrichment analysis

To interpret the biological significance of the DEGs, we

conducted Gene Ontology (GO) term, Kyoto Encyclopedia of
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Genes and Genomes (KEGG) pathway, and Gene Set Enrichment

Analysis (GSEA) enrichment analyses using the “clusterProfiler”

package (19).
Univariate and multivariate Cox regression
analyses

We evaluated the prognostic significance of gene sets and

clinical information in PC using univariate and multivariate Cox

regression analyses with the “survival” package. Univariate analysis

assessed the impact of individual factors on patient survival, while

multivariate analysis identified independent predictors by adjusting

for confounding variables.
Construction of machine learning
prediction models

To develop robust prognostic models for PC, we utilized 14

machine learning algorithms: Lasso, RSF, Enet, StepCox, CoxBoost,

plsRcox, superpc, gbm, survival-SVM, Ridge, obliqueRSF, xgboost,

CForest, and CTree, constructing a total of 162 models

(Supplementary Table S3).

Key prognostic genes were first identified using RSF, Lasso,

StepCox, and CoxBoost. These genes were then used to build

models with all 14 algorithms. Model performance was ranked by

the average c-index from three validation sets and further evaluated

using univariate and multivariate Cox regression, Kaplan-Meier

analysis, and ROC curve AUC.

Riskscore cutoffs were systematically defined through a three-

phase process: First, in the TCGA-PAAD training cohort, the

median risk score was selected as the primary threshold to

balance group sizes (High_risk: n = 87 vs. Low_risk: n = 87).

Second, external validation cohorts underwent removeBatchEffect

batch correction followed by cutoff application: the TCGA median

was retained unless cohort-specific median deviated beyond ±5%, in

which case adjusted thresholds were used.
Tumor Mutation Burden, ESTIMATE, and
CIBERSORT Analysis

To characterize the genomic and immune profiles of pancreatic

adenocarcinoma (PAAD) from TCGA: 1. TMB Analysis: We

obtained single-nucleotide variation data using the “TCGAbiolinks”

package (20) and analyzed mutation burdens with “Maftools”

package (21). 2. ESTIMATE Analysis: Using RNA-seq data, we

calculated ImmuneScore, StromalScore, and TumorPurity scores

with the “ESTIMATE” package (22) to assess immune and stromal

infiltration. 3. CIBERSORT Analysis: We performed deconvolution

using the “CIBERSORT” package (23) to estimate the abundance of

various immune cell subpopulations.
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Drug sensitivity analysis

To evaluate drug sensitivity across different subtypes, we

obtained the GDSC2 expression and resistance database files

(GDSC2 Expr.rds and GDSC2 Res.rds) from the Genomics of

Drug Sensitivity in Cancer (GDSC) website (24). Using the

“oncoPredict” package (25), we assessed the sensitivity of various

drugs for each subtype identified in our study.
Identification of key genes

To identify the most important genes in our prognostic model,

we employed ensemble machine learning methods using the

“mime” package (26). Specifically, we constructed a total of 18

models utilizing eight survival analysis algorithms: Lasso, Enet,

Boruta, CoxBoost, RSF, XGBoost, StepCox, and SVM-REF. Core

features were determined by ranking genes based on their frequency

of selection across these models.

The top five genes identified as most significant were further

analyzed for differential expression between normal and tumor

tissues using the GEPIA database. Additionally, we evaluated these

genes in relation to tumor stage and survival outcomes in

PC patients.
Results

Screening and enrichment analysis of
differentially expressed genes related to
the innate immune cell barrier

To investigate whether genes associated with the innate

immune cell barrier could serve as potential markers for

predicting prognosis in PC, we compiled a comprehensive list of

such genes from multiple databases including KEGG, ImmPort

Portal, MSigDB, and InnateDB. After removing duplicates, this

compilation resulted in a set of 1,356 unique genes related to

monocytes/macrophages, dendritic cells, NK cells, and

neutrophils (Supplementary Table S4).

We integrated data from TCGA and the GTEx project,

encompassing 178 PC samples and 172 normal pancreatic tissue

samples. Using the “DESeq2” package for differential expression

analysis , we identified 3,591 DEGs, comprising 1,458

downregulated (DEG-down) and 2,133 upregulated (DEG-up)

genes (Figure 1A). By intersecting these DEGs with our curated

list of innate immune cell barrier-related genes, we refined our focus

to genes specifically relevant to this study (Figure 1B).

Subsequent functional enrichment analyses using GO and

KEGG pathways revealed significant associations. GO enrichment

indicated that both Cell Barrier & DEG-down (Cell-DEG-down)

and Cell Barrier & DEG-up (Cell-DEG-up) genes were prominently

linked to leukocyte-mediated immune responses, regulation of
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immune effector processes, and myeloid leukocyte-specific

functions (Supplementary Figures S3A, B). KEGG pathway

analysis highlighted the involvement of the innate immune cell

barrier in critical aspects of PC development, including immune

escape, metabolic reprogramming, and abnormal signal

transduction. Notably, pathways such as NK cell-mediated
Frontiers in Immunology 04
cytotoxicity and chemokine signaling underscored the pivotal role

of NK cells in the innate immune barrier of PC (Figures 1C, D).

To identify genes with prognostic significance, we performed

univariate Cox regression analysis on the 352 overlapping genes.

This analysis identified 104 prognosis-associated genes (CDGs),

comprising 18 protective genes and 86 risk genes (Figure 1E).
FIGURE 1

Screening and enrichment analysis of gene sets. (A) Volcano plot depicting DEGs between normal and pancreatic cancer tissues. (B) Venn diagram
illustrating the overlap between innate immune barrier-related genes and DEGs. (C, D) Top ten KEGG pathways enriched in Cell-DEG-down and
Cell-DEG-up genes. (E) Forest plot from univariate Cox regression analysis for all genes in Cell-DEG-down and Cell-DEG-up. (F) Venn diagrams
showing the intersection of Cell-DEG-down and Cell-DEG-up with protection genes and risk genes.
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Further cross-referencing with the Cell-DEG-down or Cell-DEG-

up confirmed 8 protective genes (CDPGs) and 84 risk genes

(CDRGs) (Figure 1F; Supplementary Table S4), providing a

robust foundation for constructing subsequent prognostic models.
Development of a prognostic risk model
for PC based on the innate immune cell
barrier using machine learning integration

To develop a robust prognostic risk model based on the innate

immune cell barrier for PC, we selected CDGs, CDPGs, and CDRGs

as input features. We fitted 162 prediction models using the TCGA-

PAAD dataset and validated these models with three independent

cohorts: GSE62452, GSE78229, and GSE85916.Model performance

was evaluated by calculating the concordance index (c-index) in

each dataset. The results indicated that the RSF model, based on the

CDRG gene set, performed the best, achieving an average c-index of

0.615 across all validation datasets (Figure 2A; Supplementary

Table S5).

To further assess the clinical utility of our model, we conducted

univariate and multivariate Cox regression analyses incorporating

clinical information from the TCGA cohort with the generated

Riskscore. The results confirmed that Riskscore served as a

significant independent prognostic factor (HR=1.114, 95%CI 1.095-

1.133, p < 0.001) (Figures 2B, C). Patients were stratified into high-

risk and low-risk groups based on the median Riskscore value. As

shown in Figure 2D, there were significant differences in Riskscore

distribution, survival status, and time between the two groups.

Kaplan-Meier survival analysis demonstrated that patients in

the low-risk group exhibited significantly better overall survival

across all four cohorts (p < 0.01) (Figure 2E). Additionally, we

evaluated the predictive performance of the model using receiver

operating characteristic (ROC) curves. Figure 2F illustrates the

accuracy of the model in predicting 1-year, 3-year, and 5-year

survival rates across the four cohorts. While the AUC values for 1-

year survival were lower in the three validation cohorts, the AUC

values for 3-year and 5-year survival exceeded 0.7 in all four

cohorts, with AUC values close to or exceeding 0.9 in three of the

four cohorts (excluding GSE85916). This indicates that our model

exhibits excellent long-term predictive performance.
Function enrichment and tumor mutation
burden analysis based on risk score

To elucidate the functional differences between high-risk and

low-risk groups, we stratified the TCGA-PAAD cohort based on the

median Riskscore value into high-risk and low-risk groups. We then

compared DEGs between these two groups and performed

comprehensive functional enrichment analyses. GO analysis

revealed that molecular function differences were primarily

focused on ion balance, metabolic regulation, neural signal

transmission, and intercellular communication (Figures 3A–C).

KEGG pathway analysis further validated significant differences in
Frontiers in Immunology 05
neurological functions, affecting neural signal transmission, pain

management, reward mechanisms, and metabolic processes, all of

which are directly associated with pancreatic function and disease

status (Figure 3D).

GSEA highlighted biological process differences between the

two groups: the high-risk group was closely associated with

epithelial tissue development and differentiation processes,

including epithelial cell differentiation, keratinization, and

keratinocyte formation; whereas, the low-risk group exhibited a

greater focus on neuronal and synaptic functions, ion channel

activity, and substance transport processes (Figures 3E, F). These

findings suggest distinct cellular and tissue-level functional

differences among different risk groups.

Additionally, the high-risk group showed significantly higher

TMB compared to the low-risk group (p < 0.001) (Figure 3G),

indicating more complex genomic instability in the high-risk group.
Immune infiltration analysis and drug
sensitivity prediction based on risk score

To investigate the relationship between Riskscore and immune

infiltration, we analyzed the TCGA-PAAD cohort using the

“ESTIMATE” package. Results indicated lower immune scores (p <

0.05) and stromal scores (p > 0.05) in the high-risk group,

corresponding to increased tumor purity (p > 0.05) (Figure 4A;

Supplementary Figures S4A, B). This suggests reduced immune

infiltration in the high-risk group. Furthermore, analysis of

immunotherapy response using the TIDE algorithm revealed no

statistically significant differences between high- and low-risk groups

in TIDE scores, immune exclusion, dysfunction, or microsatellite

instability (MSI) (all p > 0.05; Supplementary Figures S4C-F).

Further analysis using the “CIBERSORT” package revealed that,

except for M0 macrophages and memory B-cells, the relative

abundance of naive B-cells, plasma cells, CD8 T-cells, and

monocytes was significantly lower in the high-risk group

compared to the low-risk group (Figure 4B). This indicates

weakened immune infiltration in the high-risk group, potentially

impacting patient prognosis.

Drug sensitivity differences between the high-risk and low-risk

groups were evaluated using the “oncoPredict” package. Among

198 predicted drugs, 100 showed significant differences between the

two groups (Supplementary Table S6). Notably, IC50 values for

Erlotinib, Oxaliplatin, and 5-Fluorouracil varied significantly.

Specifically, IC50 values for Erlotinib and Oxaliplatin were higher

in the high-risk group (p < 0.05), while those for 5-Fluorouracil

were lower (p < 0.05) (Figure 4C). Correlation analysis confirmed

positive correlations between Riskscore and IC50 values for

Erlotinib and Oxaliplatin, and a negative correlation with 5-

Fluorouracil (p < 0.05) (Figures 4D–G). Although Riskscore

correlated positively with Oxaliplatin’s IC50, this result was not

statistically significant (p > 0.05). Overall, the high-risk group

exhibited higher drug resistance but greater sensitivity to 5-

Fluorouracil, suggesting prioritizing its use in clinical treatment

plans for high-risk patients.
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Key gene screening in the prognostic risk
model

The RSF model with the best performance did not undergo

feature screening but instead utilized all 84 genes from the CDRF set
Frontiers in Immunology 06
to directly construct the prediction model (Figure 2A). To pinpoint

the most significant genes within this model, we applied the “mime”

package, which utilized 18 algorithms based on 8 machine learning

models (Figure 5A). Based on gene selection frequency, five key

genes emerged as the most recurrent: ITGB6, COL17A1, MMP28,
FIGURE 2

Construction and validation of machine learning models based on CDRGs. (A) Top 40 machine learning models ranked by average C-index,
constructed using CDRGs as features among 162 models. (B, C) Univariate and multivariate Cox regression analysis of RiskScore predicted by the
Random Survival Forest (RSF) model, based on clinical information from the TCGA-PAAD cohort. (D) Scatter plots showing RiskScores predicted by
the RSF model in the training set (TCGA-PAAD) and three validation sets (GSE62452, GSE78229, and GSE85916). (E) Kaplan-Meier (KM) survival
curves for the training set and validation sets based on RSF-predicted RiskScores. (F) Time-dependent ROC curves for predicting 1-year, 3-year, and
5-year overall survival (OS) in the training set and validation sets.
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DIAPH3, and UBASH3B, each selected more than 16

times (Figure 5B).

We evaluated the role of these five genes in PC using the GEPIA

database and multivariate Cox regression analysis (Figures 5C–F;

Supplementary Figure S5). Our findings indicated that all five genes
Frontiers in Immunology 07
exhibited significantly higher expression levels in PC tissues

compared to normal tissues (p < 0.05). Kaplan-Meier survival

curve analysis further demonstrated a strong association between

the expression of these genes and patient overall survival rates (p <

0.05). Multivariate Cox regression confirmed that these genes are
FIGURE 3

Functional enrichment and TMB Analysis in high- and low-risk populations. Based on TCGA-PAAD cohort data. (A-C) Gene Ontology (GO)
enrichment analysis for Biological Process (BP), Molecular Function (MF), and Cellular Component (CC) categories, showing only the top 10
pathways. (D) KEGG pathway enrichment analysis, displaying only the top 10 pathways. (E, F) Gene Set Enrichment Analysis (GSEA) results, showing
the top 5 positively regulated and top 5 negatively regulated pathways. (G) Violin plot illustrating Tumor Mutational Burden (TMB) distribution
between high-risk and low-risk groups, ***p < 0.001 compared to Low_risk group.
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independent prognostic factors with a significant impact on patient

survival, unaffected by other variables (p < 0.001).

Stage staging analysis revealed that the expression levels of

ITGB6, COL17A1, and UBASH3B were significantly related to the

stage of PC (p < 0.05), suggesting their involvement in disease

progression. In contrast, MMP28 and DIAPH3 did not show

significant correlations with specific stages of PC development

(p > 0.05). Given that the intersection of innate immune cell
Frontiers in Immunology 08
barrier-related genes and differentially expressed genes in PC

primarily focuses on NK cell cytotoxicity regulation pathways

(Figures 1C, D), we speculate that NK cell cytotoxicity plays a

crucial role in PC’s occurrence and development.

To further explore the relationship between these five genes and

immune infiltration, we analyzed their correlation with 22 immune

cell subpopulations using the “CIBERSORT” package, with

particular emphasis on NK cell subpopulations (Figure 5G).
FIGURE 4

Differences in immune infiltration and drug sensitivity between high- and low-risk groups. Based on TCGA-PAAD cohort data. (A) Violin plot showing
the distribution of ImmuneScore from ESTIMATE analysis between high- and low-risk groups, *p < 0.05 compared to Low_risk group. (B) Box plots
displaying the results of CIBERSORT analysis for immune cell infiltration in high- and low-risk groups; *p < 0.05, **p < 0.01, ***p < 0.001 compared
to Low_risk group. (C) Box plots comparing the predicted IC50 values for 5-Fluorouracil-1073, Erlotinib-1168, Oxaliplatin-1089, and Oxaliplatin-
1806 between high- and low-risk groups. (D–G) Scatter plots illustrating the correlation between RiskScore and the predicted IC50 values for 5-
Fluorouracil-1073, Erlotinib-1168, Oxaliplatin-1089, and Oxaliplatin-1806.
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Notably, the expression of UBASH3B demonstrates a significant

negative correlation with NK cell activation, with a correlation

coefficient of approximately -0.24. Among the five identified genes,

UBASH3B stands out as a potential novel prognostic marker for

PC. Despite its importance, the role of UBASH3B in PC has not

been previously reported in the literature (27–30), making it a focal

point for future research and highlighting its potential significance

in understanding and predicting PC prognosis.
Frontiers in Immunology 09
Differential expression and enrichment
analysis of the UBASH3B gene

To further explore the potential mechanisms by which

UBASH3B acts as a poor prognostic factor in PC, this study

utilized RNA-seq data from the TCGA-PAAD database. Patients

were divided into high-expression and low-expression groups based

on the median UBASH3B expression level, and differential
FIGURE 5

Identification of prognostic key genes. (A) UpSet plot showing the overlap of genes filtered by different methods. (B) Top 5 prognostic genes
selected by 18 machine learning models for pancreatic cancer. (C) Box plot from the GEPIA database depicting UBASH3B gene expression levels.
(D) Kaplan-Meier (KM) survival curve for UBASH3B expression from the GEPIA database. (E) Violin plot illustrating stage-wise analysis of UBASH3B
expression from the GEPIA database. (F) Forest plot from multivariate Cox regression analysis based on UBASH3B expression data and clinical
information from the TCGA-PAAD cohort. (G) Heatmap showing the correlation between ITGB6, COL17A1, MMP28, DIAPH3, and UBASH3B with
CIBERSORT analysis results.
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expression analysis along with functional enrichment analysis

were conducted.

The analysis identified a total of 838 DEGs, with 709 genes

being downregulated and 129 genes upregulated (Figure 6A).

Based on adjusted p-values, we ranked these genes and

highlighted the top five: C6orf58, GAST, SPINK4, SMIM32, and

UGT1A6. Notably, except for the upregulated UGT1A6, the other
Frontiers in Immunology 10
four genes (C6orf58, GAST, SPINK4, and SMIM32) were all

downregulated. Further correlation analysis revealed that

SMIM32 exhibited the highest expression correlation with

UBASH3B, with a correlation coefficient of -0.22 (p < 0.001)

(Figure 6B), indicating that SMIM32 may play a significant role

in UBASH3B-mediated biological processes, particularly within

the context of PC.
FIGURE 6

Differential genes and functional enrichment analysis of UBASH3B. Based on TCGA-PAAD cohort data. (A) Volcano plot depicting DEGs between
high and low UBASH3B expression groups. (B) Heatmap showing the correlation between UBASH3B and the expression of C6orf58, GAST, SPINK4,
SMIM32, and UGT1A6 genes; *p < 0.05, **p < 0.01, ***p < 0.001 compared to Low_risk group. (C) GO enrichment analysis for BP, MF, and CC of
DEGs. (D) KEGG pathway enrichment analysis of DEGs. (E, F) GSEA of DEGs, displaying only the top 5 positively regulated and top 5 negatively
regulated pathways.
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Functional enrichment analysis was performed on the DEGs

using GO, KEGG, and GSEA methods to uncover underlying

biological processes, pathways, and molecular functions. GO

analysis showed that biological processes primarily involved

significant changes in signal transduction and synaptic

transmission, especially in the regulation of signal release and

synaptic transmission. Cellular components were mainly

concentrated in pathways related to neuronal cell bodies and ion

channels. Molecular functions were enriched in ion channel and

transport-related pathways (Figure 6C). KEGG analysis revealed

several signaling pathways closely associated with PC, including

pancreatic secretion, neuroactive ligand-receptor interaction, protein

and fat digestion and absorption, bile secretion, nicotine addiction,

cardiac muscle contraction, calcium signaling pathway, GABAergic

synapses, and cAMP signaling pathway (Figure 6D). These findings

suggest that UBASH3B may be involved in regulating these critical

processes. GSEA enrichment analysis further demonstrated the five

most significantly upregulated and downregulated pathways.

Upregulated pathways predominantly involved multiple aspects of

the immune system, such as regulation of immune system processes,

immune responses, cell activation, adaptive immune responses, and

positive regulation of the immune system (Figure 6E), suggesting

that UBASH3B may influence the immune status within the tumor

microenvironment. Downregulated pathways were concentrated in

digestive system and protease activity, including digestive processes,

endopeptidase activity, peptidase activity, digestive system processes,

and serine hydrolase activity (Figure 6F), indicating that changes in

UBASH3B expression may interfere with normal digestive system

function and protein metabolism.
Potential role of UBASH3B in the negative
regulation of NK cells

To further investigate the potential role of UBASH3B as an

oncogene in PC, this study integrated single-cell sequencing data

from 61 PC patients available in the GEO database and conducted a

comprehensive analysis. Using known cell subpopulation marker

genes, we annotated cells within these samples and identified ten

major cell subpopulations: myeloid cells, cancer cells, B cells,

endothelial cells, stellate cells, T cells, acinar cells, fibroblasts, NK

cells, and endocrine cells (Figure 7A; Supplementary Figure S6A).

Visualization using FeaturePlot and VlnPlot revealed that

UBASH3B was significantly expressed in a subset of NK cells, T

cells, myeloid cells, and cancer cells (Figures 7B, C). Given previous

studies demonstrating UBASH3B’s inhibitory effects on T cell and

osteoclast activation (16, 17), and its enrichment in immune-related

pathways, we focused our subsequent research on NK cells.

Further analysis revealed that in the re-extracted, dimensionally

reduced, and re-clustered NK cells showed that UBASH3B expression

was primarily concentrated in cluster 6 and to a lesser extent in

cluster 7 (Supplementary Figures S6B–D). By analyzing markers such

as CD3D, NCAM1, and FCGR3A, we confirmed that clusters 3, 5, 6,

and 8 were genuine NK cells, while other clusters were predominantly

mixed with T cells (Supplementary Figures S6E–J). Subsequently, we
Frontiers in Immunology 11
performed dimensionality reduction and reclustering on these four

clusters, ultimately dividing them into nine new clusters (Figure 7D),

where UBASH3B was highly expressed in cluster 2 and slightly

expressed in cluster 5 (Figures 7E, F).

Notably, the NK cell cytotoxicity marker FCGR3A was highly

expressed in clusters 0, 1, 3, 4, 6, and 8 but almost absent in clusters

2, 5, and 7 (Figures 7G, H), contrasting sharply with the expression

pattern of UBASH3B (Figure 7J). Similarly, PRF1, a key effector

molecule involved in NK cell killing function, also exhibited low

expression in clusters 2 and 5 (Figure 7I).

Additionally, bulk RNA-seq data analysis revealed a significant

positive correlation between UBASH3B and NK cell inhibitory

regulatory factors such as KLRC1, CBLB, KIR2DL1, and

KIR2DL3 (p < 0.001) (Figures 7K, N). These findings suggest that

UBASH3B may play a role in inhibiting NK cell activity and

cytotoxicity, particularly in specific subsets of NK cells.

In summary, our comprehensive analysis provides evidence that

UBASH3B is involved in the negative regulation of NK cell function

in PC. The distinct expression patterns observed in specific NK cell

clusters and the correlations with inhibitory regulatory factors

highlight UBASH3B’s potential role in modulating the immune

response within the tumor microenvironment. This insight

underscores the importance of UBASH3B as a potential therapeutic

target for enhancing NK cell-mediated anti-tumor immunity.
Drug sensitivity analysis of the UBASH3B
gene

To investigate the relationship between UBASH3B expression

levels and sensitivity to commonly used therapeutic drugs in PC, we

analyzed the differences in IC50 values for eight clinically relevant

drugs between high- and low-expression groups of UBASH3B. The

eight drugs examined were: 5-Fluorouracil-1073, Erlotinib-1168,

Gemcitabine-1190, Irinotecan-1088, Oxaliplatin-1089, Oxaliplatin-

1806, Paclitaxel-1080, and Trametinib-1372.

The results showed significant differences in IC50 values

between the UBASH3B high- and low-expression groups for six

of these drugs (p < 0.05), with the exceptions being Erlotinib and

Irinotecan (Figure 8A). Specifically, the low-expression group

exhibited higher sensitivity to five of the drugs but was relatively

insensitive to 5-Fluorouracil. Further correlation analysis revealed

relationships between UBASH3B expression levels and specific drug

IC50 values. UBASH3B expression was positively correlated with

the IC50 values of Oxaliplatin (1089 and 1806) (p < 0.001)

(Figures 8F, G) and negatively correlated with the IC50 value of

5-Fluorouracil (p < 0.001) (Figure 8B). No significant correlations

were observed between UBASH3B expression and IC50 values for

the other drugs (Figures 8C–E, H, I).

These findings suggest that high expression of UBASH3B may

be associated with increased drug resistance in PC patients. In

clinical decision-making, for patients with high UBASH3B

expression, treatment with 5-Fluorouracil might be prioritized;

whereas for those with low UBASH3B expression, drugs like

Oxaliplatin could be more effective options.
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Discussion

This study delves into the role of innate immune cell barrier-

related genes in PC prognosis, particularly through systematic
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differential expression analysis, enrichment analysis, and machine

learning model construction. These analyses reveal the significant

potential of innate immune cell barrier genes in predicting PC

patient outcomes. Notably, UBASH3B emerges as a novel
FIGURE 7

Expression analysis of UBASH3B in cellular subpopulations based on scRNA-seq. (A) UMAP clustering plot integrating single-cell RNA sequencing
(scRNA-seq) data from 61 pancreatic cancer samples. (B) UMAP plot visualizing the expression of the UBASH3B gene across pancreatic cancer cells.
(C) Violin plots depicting UBASH3B expression levels in various cellular subpopulations within pancreatic cancer. (D) UMAP clustering plot for NK cell
scRNA-seq data. (E) UMAP plot highlighting UBASH3B expression in NK cells. (F) Violin plots illustrating UBASH3B expression across different NK cell
subpopulations. (G) UMAP plot visualizing FCGR3A expression in NK cells. (H) Violin plots showing FCGR3A expression levels across NK cell
subpopulations. (I) Violin plots depicting PRF1 expression levels across NK cell subpopulations. (J) Dual feature expression plot comparing UBASH3B
and FCGR3A expression in NK cells. (K-N) Scatter plots from the GEPIA database demonstrating the correlation between UBASH3B and inhibitory
regulatory factors in NK cells, including KLRC1, CBLB, KIR2DL1, and KIR2DL3.
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prognostic marker for PC, playing a critical role in negatively

regulating NK cells and correlating with drug sensitivity.

Importantly, while bulk RNA-seq analysis may obscure cell-type-

specific contributions, our integrative approach—combining

deconvolution (CIBERSORT), single-cell validation, and survival
Frontiers in Immunology 13
modeling—ensured that UBASH3B’s prognostic value reflects

intrinsic tumor biology and functionally critical immune subsets

rather than confounding cellular heterogeneity.

The innate immune system serves as the host’s first line of

defense, comprising physical and chemical barriers along with
FIGURE 8

Drug sensitivity analysis based on UBASH3B expression levels. (A) Box plots comparing the predicted IC50 values for eight chemotherapeutic drugs
between high and low UBASH3B expression groups. The drugs include 5-Fluorouracil-1073, Erlotinib-1168, Gemcitabine-1190, Irinotecan-1088,
Oxaliplatin-1089, Oxaliplatin-1806, Paclitaxel-1080, and Trametinib-1372 (B-I) Scatter plots showing the correlation between UBASH3B expression
levels and the predicted IC50 values for each drug, specifically: (B) 5-Fluorouracil-1073, (C) Erlotinib-1168, (D) Gemcitabine-1190, (E) Irinotecan-
1088, (F) Oxaliplatin-1089, (G) Oxaliplatin-1806, (H) Paclitaxel-1080, (I) Trametinib-1372.
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various immune cells equipped with pattern recognition receptors.

These components work together to nonspecifically eliminate

abnormal cells or activate adaptive immune responses, thereby

delaying tumor development. The cellular barrier primarily

includes monocytes/macrophages, neutrophils, NK cells, and

dendritic cells, which play a dominant role in innate immunity

(4). Ideally, all tumor cells would be cleared by the host immune

system; however, tumor cells can evade immune destruction by

reducing immunogenicity or releasing immunosuppressive factors

(31). Therefore, targeting the tumor immune system appears

promising for cancer therapy. Immunotherapies like checkpoint

inhibitors and adoptive cell therapies have been widely applied in

clinical settings, including anti-PD-1/PD-L1 (32), anti-CTLA-4

(33), and CAR-T therapies (33) targeting the adaptive immune

system. However, these treatments have not met expectations for

most solid tumors, especially PC (34, 35). Consequently, targeting

the innate immune system in PC has gained attention, with studies

showing that innate immune-related cells dominate the PC

microenvironment (5). While targeting cells like neutrophils (36)

and tumor-associated macrophages (37) has shown promise in

mouse models, clinical trials have not achieved expected results

(8, 9). Thus, a deeper understanding of mechanisms inhibiting

innate immune cell function and the roles of related genes in PC is

crucial. This study investigated the potential of innate immune cell

barrier-related genes as prognostic biomarkers for PC and used

machine learning to develop a robust risk prediction model. By

integrating data from KEGG, ImmPort Portal, MSigDB, and

InnateDB, we identified 1,356 genes associated with the innate

immune barrier. Analyzing TCGA and GTEx datasets, which

included 178 PC samples and 172 normal pancreatic tissue

samples, we identified 3,591 DEGs, intersecting these with the

innate immune genes to select those with potential prognostic value.

In PC patients, the relative frequency of NK cells in the blood

correlates positively with survival rates, but these cells exhibit lower

cytotoxicity compared to healthy individuals (7). This suggests that

NK cells play a key role in PC development. Yang et al. further

identified a unique subtype of dysfunctional NK cells in PC patients,

indicating that prognosis depends not only on NK cell quantity but

also on functional subtypes (38). Subsequent GO and KEGG

pathway enrichment analyses revealed significant associations

between these genes and leukocyte-mediated immune responses,

immune effect process regulation, and myeloid leukocyte-specific

functions, highlighting the critical role of NK cells in the innate

immune barrier of PC. Univariate Cox regression analysis identified

8 protective and 84 risk genes, forming the basis for constructing a

robust prognostic model using RSF algorithms. The model

demonstrated excellent predictive performance with an average C-

index of 0.615 across validation datasets. To validate the clinical

utility of our model, we performed univariate and multivariate Cox

regression analyses using clinical information from the TCGA

cohort. The results demonstrated that the Riskscore serves as a

significant independent prognostic factor (p < 0.001). Patients were

divided into high-risk and low-risk groups based on the median

Riskscore value. Kaplan-Meier survival analysis revealed a significant

difference in survival status and duration between the two groups,
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multiple cohorts (p < 0.01). Furthermore, ROC curve analysis

indicated excellent performance in predicting 3-year and 5-year

survival rates, with AUC values approaching or exceeding 0.9, thus

confirming the model’s robust long-term predictive capability.

Nerve recruitment represents a defining characteristic of

malignant neoplasms, with perineural infiltration being a

particularly prominent feature in PC, where it occurs in

approximately 90% of cases (39). This neuroinvasive

phenomenon is strongly associated with increased risks of local

recurrence and metastatic progression in PC (40). Notably,

experimental models have demonstrated that neural invasion

actively promotes PC in murine systems (41). Emerging evidence

underscores the critical role of neural signaling in tumor biology, as

neoplastic-nerve crosstalk can orchestrate tumor progression

through modulation of the tumor microenvironment, enhance

metastatic potential, and influence chemoradiotherapy

responsiveness (42). Among the various neural pathways

implicated, GABAergic signaling has emerged as a key regulatory

axis in oncogenesis, with documented effects on tumor

prol i ferat ion, metastasis , s temness maintenance, and

microenvironment modulation (43). However, the precise

mechanisms governing its role in PC remain poorly understood,

representing a critical gap in current research. Functional

enrichment analysis based on Riskscore differences showed that

high-risk and low-risk groups differed significantly in molecular

functions related to ion balance and metabolic regulation, neural

signaling, and intercellular communication, particularly the

GABAergic synapse pathway. GSEA analysis further revealed

biological process differences, such as epithelial tissue

development and differentiation being more prominent in the

high-risk group, while low-risk groups focused on neuronal and

synaptic functions and material transport processes. This suggests

that neural signaling plays a crucial role in PC development.

TMB analysis indicated that the high-risk group exhibited

significantly higher TMB, reflecting greater genomic instability.

Immune infiltration analysis showed lower immune scores and

stromal scores in the high-risk group, suggesting reduced immune

infiltration. Immune cell composition analysis using the

“CIBERSORT” package found that B cells, plasma cells, CD8+T

cells, and monocytes were significantly less abundant in the high-

risk group, supporting the notion of weakened immune infiltration.

Drug sensitivity analysis revealed that the high-risk group had

higher IC50 values for Erlotinib-1168, Oxaliplatin-1089, and

Oxaliplatin-1806 but lower IC50 values for 5-Fluorouracil-1073,

indicating higher resistance overall but increased sensitivity to 5-

Fluorouracil. The differential drug sensitivity patterns, particularly

the increased 5-Fluorouracil responsiveness in high-risk patients,

carry direct therapeutic implications. This subgroup, characterized

by innate immune dysfunction and metabolic reprogramming, may

benefit from preferential use of 5-Fluorouracil-based regimens to

exploit both direct cytotoxic effects and indirect immune-

potentiating mechanisms. Notably, the standard FOLFIRINOX

regimen already includes 5-Fluorouracil, suggesting our risk

model could optimize patient selection for this intensive therapy.
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However, no current studies stratifying PC patients using innate

immune biomarkers for chemotherapy allocation - a critical gap our

findings aim to address. Future trials could leverage this risk model

to design biomarker-driven protocols comparing conventional vs.

risk-adapted 5-Fluorouracil dosing schedules.

In 2004, Nick Carpino et al. (44) first identified UBASH3B as a

negative regulator of T-cell receptors. Subsequent research confirmed

its protein tyrosine phosphatase activity and demonstrated that it

modulates T-cell activity by inhibiting proximal T-cell receptor

signaling. This discovery laid the foundation for understanding

UBASH3B’s role in immune regulation. Further studies revealed

that UBASH3B’s function extends beyond T cells; it also exerts

negative regulatory effects in macrophages (45). Additionally,

UBASH3B has been detected in dendritic cells and mast cells (46,

47), suggesting its involvement in broader immune response

mechanisms. Despite these important findings, the specific

functions and molecular mechanisms of UBASH3B remain

incompletely understood, particularly its role in NK cells, which

remains underexplored. Clinically, current research on UBASH3B

primarily focuses on autoimmune diseases and chronic inflammation,

highlighting its potential importance in immune-related disorders. In

contrast, studies on UBASH3B’s role in cancer, especially PC, are

relatively scarce (12, 48, 49), with no systematic reports available.

In this study, we screened key genes from the best-performing

RSF model and identified ITGB6, COL17A1, MMP28, DIAPH3,

and UBASH3B as the top five critical genes. Analysis using the

GEPIA database and multivariate Cox regression revealed that these

genes play significant roles in PC development and are closely

associated with patient overall survival. These genes are

mechanistically linked to hallmark pathological processes of PC,

as supported by literature and pathway analyses. For instance,

ITGB6 drives malignant behaviors in PC, with in vitro and in

vivo studies demonstrating that ITGB6 knockdown suppresses

proliferation, invasion, and migration of pancreatic cancer cells

by disrupting TGF-b signaling and epithelial-mesenchymal

transition (EMT) (27). Similarly, COL17A1 promotes tumor

aggressiveness, as COL17A1 depletion inhibits proliferation,

migration, and invasion through modulation of extracellular

matrix (ECM) remodeling and chemoresistance pathways (28).

MMP28 facilitates tumor progression via TGF-a/EGFR axis

activation, where elevated MMP28 expression enhances TGF-a
maturation to drive oncogenic signaling and metastasis (50).

DIAPH3 sustains redox homeostasis in PC by upregulating

thioredoxin reductase 1 (TrxR1), which reduces cellular reactive

oxygen species (ROS) levels to maintain malignant phenotypes and

chemoresistance (30). Notably, our study is the first to demonstrate

the correlation between UBASH3B expression and PC prognosis.

We found that UBASH3B expression is significantly related to NK

cell infiltration, particularly showing a negative correlation with NK

cell activation. This suggests that UBASH3B may act as a negative

regulator in NK cell-mediated immune responses, deepening our

understanding of the PC immune microenvironment and providing

valuable insights for future therapeutic targets.

To further explore the potential mechanisms underlying

UBASH3B’s role as a poor prognostic factor in PC, we conducted
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using RNA-seq data from the TCGA-PAAD database. Our results

indicate that changes in UBASH3B expression may interfere with

normal digestive system function and protein metabolism,

impacting the immune state within the tumor microenvironment.

Comprehensive analysis revealed that UBASH3B likely inhibits cell

activity and cytotoxicity in specific NK cell subsets, notably those

highly expressed in cluster 2. Studies have demonstrated that

blocking the KLRC1/HLA-E pathway in PC significantly

enhances the anti-tumor activity of effector cells, thereby

suppressing tumor progression (51). KIR2DL1 and KIR2DL3,

receptors expressed on NK cells, primarily recognize HLA-C

molecules to inhibit NK cell cytotoxicity. Their high expression in

anti-tumor immunity suppresses the cytotoxic function of NK cells

(52). CBLB, an E3 ubiquitin ligase, mediates protein ubiquitination

to inhibit the activation of T cells and NK cells (53). In this study,

UBASH3B exhibited significant positive correlations with KLRC1,

CBLB, KIR2DL1, and KIR2DL3 (p < 0.001), suggesting its potential

role in suppressing NK cell cytotoxicity.

Moreover, UBASH3B expression levels correlate significantly

with sensitivity to multiple commonly used therapies, suggesting its

potential value in personalized treatment strategies for PC.

UBASH3B distinguishes itself from canonical PC biomarkers

through its unique position at the intersection of innate immune

dysfunction and therapeutic vulnerability. Unlike KRAS mutations

that reflect tumor-intrinsic signaling or CA19–9 as a nonspecific

secretory product, UBASH3B expression directly quantifies NK

cell-mediated immunosuppression while predicting differential

chemotherapy responses. This dual functionality enables risk

stratification beyond conventional TNM staging and informs

therapeutic selection. Crucially, UBASH3B’s association with

conserved immune checkpoint pathways (Figure 7) positions it as

a biomarker for emerging NK cell therapies.

In summary, this study provides new theoretical foundations

and technical support for precision medicine in PC, highlighting the

critical roles of innate immune cell barrier-related genes, especially

UBASH3B, in prognosis and treatment. Through systematic

analyses and machine learning, we identified key genes impacting

patient outcomes and developed a robust prognostic risk model.

While bulk RNA-seq has inherent limitations in resolving cellular

heterogeneity, our multi-modal approach— integrating

deconvolution, single-cell analysis, and drug sensitivity profiling—

ensured robust identification of biologically relevant targets.

However, several limitations exist: the sample size may be limited

for specific immune cell subtypes, and further mechanistic studies

are needed to fully understand the roles of these genes, particularly

UBASH3B in NK cell function. Additionally, the clinical utility of

our risk prediction model requires validation in prospective studies.

To address this question, our team plans to initiate a multicenter

observational trial to validate the model through standardized

treatment protocols in 300 consecutively enrolled patients with

PC. This study will specifically assess: 1) the model’s prognostic

accuracy at first diagnosis, and 2) its dynamic predictive value

throughout the course of a chemotherapy cycle. Future

technological advancements will integrate circulating tumor DNA
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(ctDNA) profiling and enhanced radiomic analysis of CT scans to

develop a multimodal predictive platform. Meanwhile, future work

leveraging spatial transcriptomics or NK cell-specific knockout

models will clarify UBASH3B’s spatial and functional roles in PC

progression. Addressing these limitations will enhance the

robustness and clinical relevance of our findings, paving the way

for more effective and personalized therapies for PC patients.
Conclusion

This study delves into the role of innate immune cell barrier-

associated genes in predicting patient outcomes, particularly in PC,

uncovering their significant potential in forecasting survival.

Through systematic differential expression analysis, enrichment

analysis, and the construction of machine learning models, we

have identified a set of key genes, notably UBASH3B, as novel

prognostic biomarkers. Our findings underscore UBASH3B’s

critical role in negatively regulating NK cell activity and its

association with drug sensitivity.

Our research indicates that innate immune cell barrier genes,

especially UBASH3B, may modulate the tumor microenvironment

by influencing NK cell function and infiltration, thereby impacting

the prognosis of PC patients. By integrating resources frommultiple

public databases, we developed a robust risk prediction model that

exhibits outstanding long-term predictive power. The model

confirms that the Riskscore serves as a significant independent

prognostic factor. Moreover, its ability to distinctly categorize high-

risk and low-risk patients provides a foundation for personalized

treatment strategies. Notably, the expression levels of UBASH3B are

not only inversely correlated with NK cell activation but also

associated with sensitivity to several common therapies,

suggesting its potential as a new therapeutic target in PC. Despite

limitations such as limited sample sizes for specific immune cell

subtypes, this study establishes a theoretical basis and technical

support for the advancement of precision medicine in PC,

highlighting the importance of innate immune cell barrier-related

genes in both prognostic assessment and therapeutic intervention.

Future studies should aim to validate these findings and further

explore the specific mechanisms and clinical applications of

UBASH3B and other key genes, with the goal of enhancing

diagnostic accuracy and treatment efficacy for PC patients.

Additionally, prospective studies are crucial for evaluating the

clinical utility of our risk prediction model, ultimately striving to

provide more effective and personalized medical solutions for

PC patients.
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