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Background: Idiopathic frozen shoulder (FS) can lead to difficulties in daily 
activities and significantly impact the quality of life. Early diagnosis and 
treatment can help alleviate symptoms and restore shoulder function. 
Therefore, we aimed to explore the diagnostic biomarkers and potential 
mechanisms of FS from a transcriptomics perspective. 

Methods: Total RNA was extracted from tissue samples of 15 FS and 11 controls. 
At the outset, we conducted differential expression analysis, weighted gene co-
expression network analysis (WGCNA), and utilized the cytoHubba plugin, 
complemented by two machine learning algorithms, receiver operating 
characteristic (ROC) analysis, and expression level evaluation to identify 
biomarkers for FS. Subsequently, a nomogram was constructed based on the 
biomarkers. Additionally, we conducted enrichment and immune infiltration 
analyses to explore the mechanisms associated with these biomarkers. Finally, 
we confirmed the expression patterns of the biomarkers at the clinical level 
through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). 

Results: SNAI1, TWIST1, COL1A1, TUBB2B, and  DCN were identified as 
biomarkers for FS. The nomogram constructed based on them had a good 
predictive value for the occurrence of FS. Except for DCN, the other four genes 
were upregulated in FS samples, and the expression of SNAI1, TWIST1, and 
TUBB2B was  also observed to be significantly upregulated in RT-qPCR. 
Moreover, these genes played important roles in pathways such as “ECM 
receptor interaction” and “lysosome”. We also found that the infiltration 
abundances of 11 types of immune cells were significantly upregulated in the 
FS samples, and they were positively correlated with each other. Our biomarkers 
showed strong correlations with these immune cells; DCN generally displayed a 
negative  correlat ion,  while  the  other  four  genes  were  general ly  
positively correlated. 
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Conclusion: This study established a link between FS biomarkers that have strong 
diagnostic potential and specific immune responses, highlighting possible targets 
for diagnosing and treating FS. 
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1 Introduction 

Idiopathic frozen shoulder (FS), or adhesive capsulitis, is a 
painful, debilitating condition characterized by shoulder joint 
stiffness and functional impairment. It affects approximately 2-5% 
of the population, predominantly women and individuals aged 40 to 
60 (1, 2). FS is typically self-limiting, with most individuals 
experiencing symptom resolution within two years (2). However, 
some individuals may endure persistent symptoms and functional 
limitations. Diagnosis relies primarily on clinical evaluation (3). In 
the absence of objective diagnostic criteria, particularly in the early 
stages, diagnosing FS can be challenging (4). FS progresses through 
three phases. The freezing phase involves increasing pain and 
stiffness. The stiffness phase maintains severe stiffness with 
reduced pain. The thawing phase gradually restores mobility over 
months. The entire process typically spans 1–3 years (5). 

FS is classified as either primary (idiopathic) or secondary, with 
primary FS having an unknown etiology, while secondary FS can 
result from trauma, surgery, myocardial infarction, or conditions 
such as type I or type II diabetes, hypothyroidism, or Parkinson’s 
disease (6). Notably, Arkikila et al. (7) reported FS incidences of 
10% in individuals with type I diabetes and 22% in those with type 
II diabetes. 

The pathological characteristics of FS are thought to stem from 
a combination of inflammation and fibrosis (8). In the early stages 
of FS, inflammatory cells infiltrate the synovium, leading to synovial 
thickening and vascular hyperplasia (9–12). As the condition 
progresses, collagen deposition gradually increases in synovial 
tissues, resulting in joint capsule contracture and stiffness (10). 
During the inflammatory process, levels of pro-inflammatory 
cytokines (such as IL-1b and TNF-a) become elevated in synovial 
tissues (13, 14). These cytokines further exacerbate the 
inflammatory response and promote fibrotic processes (11). 
Concurrently, inflammatory stimuli induce fibroblast proliferation 
within the synovial tissues (15). Additionally, fibrosis of the 
shoulder joint capsule leads to restricted external rotation 
function, a phenomenon that has been clinically confirmed 
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through dynamic ultrasound imaging (16). While inflammation is 
recognized as a key factor in FS development, the underlying causes 
and molecular mechanisms remain poorly understood (1). Current 
treatment modalities for FS include conservative therapies and 
surgical interventions (5). Although some improvement is 
observed in patients, long-term follow-up reveals that many still 
experience permanent functional disabilities (17). Therefore, 
further research into the pathogenesis of FS is crucial to 
enhancing treatment strategies. 

Transcriptional research on FS has been limited. Evidence 
suggests a genetic predisposition to FS, as indicated by family 
history and racial predisposition (18). Analyzing gene expression 
changes could deepen our understanding of FS pathogenesis. For 
example, Cui et al. (8) used RNA sequencing to explore idiopathic 
FS pathogenesis by comparing tissue samples from five patients 
with FS to two individuals with acromioclavicular dislocations. 
Similarly, Hagiwara et al. (19) compared tissue samples from 12 
patients with FS to 18 individuals with rotator cuff tears, identifying 
differentially expressed genes involved in fibrosis, inflammation, 
chondrogenesis, and angiogenesis. However, transcriptomic studies 
on FS remain scarce, with small sample sizes. Furthermore, the 
diagnostic value of biomarkers and  their potential  for drug

prediction have not been sufficiently explored in current research. 
A novel transcriptomic approach could provide valuable 

insights into FS pathogenesis and lead to the identification of new 
biomarkers for diagnosis and treatment. This study investigates 
potential diagnostic biomarkers for FS and their molecular 
regulatory mechanisms through bioinformatics analysis of 
shoulder joint tissues from patients with FS and healthy controls. 
The findings offer new perspectives on the clinical diagnosis, 
prevention, and management of FS. 
2 Materials and methods 

2.1 Sample and date collection 

Biopsies were obtained from the rotator interval of the 
glenohumeral joint capsule in both control individuals and 
patients with FS. Control samples were collected from 11 
individuals undergoing elective shoulder stabilization surgeries, 
while FS samples came from 15 patients diagnosed with Stiffness-
Stage FS, defined by at least 6 months of symptoms, who underwent 
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arthroscopic capsular release (Supplementary Table 1). Patients 
with potential secondary causes of FS, including shoulder 
trauma, postoperative shoulder conditions, cerebral infarction, 
postoperative breast cancer, and diabetes, were excluded from the 
study. No statistically significant differences in age or gender were 
observed between the two groups. The relevant transcriptomic 
datasets of rheumatoid arthritis (RA) (GSE55235) and rotator cuff 
tears (RCT) (GSE199484) were obtained from the GEO database to 
verify the expression specificity of biomarkers in FS. The 20 control 
samples and 33 RA samples from GSE55235 (GPL96) were selected 
for analysis. Five disease samples and five control samples were 
selected from GSE199484 (GPL24676) for analysis. 
2.2 RNA sequencing and data 
preprocessing 

Total RNA was extracted from the tissue samples of 15 FS and 
11 controls using TRIzol (Invitrogen, CA, USA). RNA quality 
and quantity were assessed with a NanoDrop ND-1000 
spectrophotometer (Wilmington, DE, USA) and a Bioanalyzer 2100 
system (Agilent, CA, USA), respectively. RNA was then used for 
library construction with the Hieff NGS Ultima Dual-mode mRNA 
Library Prep Kit for Illumina, aiming to generate libraries with a 
target fragment size of 300 bp ± 50 bp. Sequencing was performed on 
the Illumina NovaSeq 6000 platform using the bipartite PE150 
sequencing mode. The distribution of base types was analyzed to 
check for AT/GC separation. Using the human gene annotation file 
GRCh38 (hg38) (20) as the reference gene set, the data was processed 
to generate COUNT data (Supplementary Table 2). 
2.3 Selection of differentially expressed 
genes and key module genes 

For differential expression analysis between FS and control 
samples, the DESeq2 package (v 1.38.0) (21) was employed, with 
the criteria for DEGs set as |log2Fold Change (FC)| > 1 and adj.P < 
0.05. The ggplot2 package (v 3.4.4 (22) and pheatmap package (v 
1.0.12) (23) were used to create volcano plot and heatmap, 
respectively, illustrating the top 10 upregulated and downregulated 
genes ranked by log2FC. 

Next, the WGCNA package (v 1.71) (24) was used to construct 
a co-expression network with FS as the trait to identify key module 
genes. Hierarchical clustering based on the Euclidean distance of 
expression levels was conducted to identify and remove outliers 
from the dataset. The scale-free fit index (R2) was set to exceed 0.85, 
while the mean connectivity approached zero, ensuring the optimal 
soft threshold power (b) for a scale-free gene network. Genes were 
then partitioned into modules using the dynamic tree cut algorithm, 
with a cutree parameter of 4 and a module merging threshold of 
0.25, ensuring that each module contained a minimum of 200 genes. 
The ssGSEA algorithm from the GSVA package (v 1.46.0) (24) was 
utilized to compute scores for each FS sample. The correlation 
between the modules and FS scores was analyzed using the Pearson 
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correlation function, and a heatmap was generated to visualize 
these correlations. The modules with the highest positive and 
negative correlations to FS scores were selected as key modules, 
and the genes within these modules were defined as key 
module genes. 
2.4 Enrichment analysis and protein-
protein interaction network construction 

To identify candidate genes, the intersection of DEGs and key 
module genes was analyzed using the ggvenn package (version 
0.1.9) (25). Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were performed on these candidate genes using the 
clusterProfiler package (version 4.7.1.003) (26), with a significance 
threshold of P < 0.05. The GO analysis covered biological processes, 
molecular functions, and cellular components. Candidate genes 
were entered into the STRING database (http://string-db.org) 
with an interaction score threshold of 0.9. The resulting PPI 
network was visualized using Cytoscape software (version 3.9.1) 
(27). The cytoHubba plugin was used to identify hub genes based on 
Betweenness centrality values, selecting the top 10 genes for 
further analysis. 
2.5 Identification of candidate biomarkers 
through machine learning algorithm 

Following the identification of hub genes, two machine learning 
algorithms were employed to screen for candidate biomarkers. The 
glmnet package (v 4.1-8) (28) was employed to perform LASSO 
regression, selecting genes with non-zero regression coefficients at the 
minimum lambda value. Additionally, the Boruta algorithm, 
implemented via the Boruta package (v 8.0.0) (29), was used to 
select genes based on their importance scores. The intersecting genes 
from both algorithms were then defined as candidate biomarkers. 
2.6 Assessment of diagnostic performance 
of biomarkers 

The candidate biomarkers were assessed using the pROC package 
(version 1.18.5) to generate ROC curves, evaluating their ability to 
differentiate between FS and control samples, and calculating the area 
under the curve (AUC). Additionally, the expression levels of the 
candidate biomarkers in both FS and control samples were analyzed. 
Genes meeting two criteria—AUC > 0.7 and significant differential 
expression (P < 0.05)  between FS and  control samples—were identified 
as biomarkers. 

Next, the biomarkers were integrated into a nomogram using 
the rms package (v 6.7-1) (30), optimizing the diagnostic value of 
these biomarkers. In the nomogram, each biomarker was assigned a 
score, and the total score was the sum of the individual scores. The 
total score could then be used to estimate the incidence rate of FS, 
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with higher scores indicating greater disease risk. To evaluate the 
predictive accuracy and performance of the nomogram, both the 
calibration curve and ROC curve were plotted separately. 
2.7 Functional and annotation analysis 

Spearman correlation analysis was performed using the psych 
package (v 2.4.1) (31) to evaluate correlations among the 
biomarkers. The correlation heatmap was created using the 
corrplot package (v 0.92) (32), with thresholds set to |cor| > 0.3 
and P < 0.05. Furthermore, the c2.cp.kegg.v7.4.symbols.gmt file 
from the Molecular Signatures Database (MSigDB) (https:// 
www.gsea-msigdb.org/gsea/msigdb) was downloaded as the 
background gene set. The correlation between each biomarker 
and other genes in the transcriptome dataset was computed. 
GSEA was performed using the clusterProfiler package to explore 
the signaling pathways associated with the biomarkers (P < 0.05). 
The enrichplot package (v 1.18.4) (32) was utilized to visualize the 
top 5 pathways linked to each biomarker. 
2.8 Immune infiltration analysis 

To assess immune microenvironment differences between FS 
and healthy individuals, the ssGSEA algorithm from the GSVA 
package was used to calculate immune cell scores for 28 immune 
cell types (33) in each sample. These scores were then compared 
between FS and control samples (P < 0.05). Additionally, Spearman 
correlation analysis was performed to explore the relationships 
among differential immune cells and their associations with 
biomarkers, with a threshold set to |cor| > 0.3 and P < 0.05. 
2.9 Construction of regulatory network 
and drug prediction analysis 

The regulatory mechanisms of the biomarkers were 
investigated. The multiMiR package (v 1.20.0) (33) was used to 
predict upstream miRNAs of the biomarkers from the miRDB 
(http://www.mirdb.org/) and TargetScan databases (https:// 
www.targetscan.org/vert_80/). The intersection of gene-miRNA 
relationships from these two databases was analyzed to obtain the 
final set of miRNAs. The starBase database was then employed to 
predict upstream lncRNAs associated with these miRNAs. A 
lncRNA-miRNA-mRNA regulatory network was constructed 
using Cytoscape software. Additionally, transcription factors 
(TFs) targeting the biomarkers were identified from the hTFtarget 
database (https://guolab.wchscu.cn/hTFtarget/#!/). The previously 
identified miRNAs were used to map the TF-mRNA-miRNA 
regulatory network in Cytoscape software. Furthermore, to 
explore potential therapeutic drugs for FS, the biomarkers were 
queried in the  DGIDB (https://dgidb.org), and the predicted 
drugs were imported into Cytoscape to visualize the drug
biomarker network. 
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2.10 Expression validation of biomarkers 

Tissue samples were collected from 15 patients with FS and 11 
healthy controls at the Ethics Committee of Taizhou Hospital in 
Zhejiang Province. All samples were analyzed via reverse 
transcription-quantitative polymerase chain reaction (RT-qPCR). 
The study received approval from the Ethics Committee of Taizhou 
Hospital (K20210708). To confirm biomarker expression, total 
RNA was extracted from 10 tissue samples using TRIzol 
(Ambion,  Austin,  USA),  following  the  manufacturer ’s 
instructions. Reverse transcription was performed using the 
SureScript First-Strand cDNA Synthesis Kit (Servicebio, Wuhan, 
China). RT-qPCR was carried out with the 2xUniversal Blue SYBR 
Green qPCR Master Mix (Servicebio, Wuhan, China). The primer 
sequences used for PCR are provided in Supplementary Table 3, 
with GAPDH as the internal reference gene. Gene expression levels 
were determined using the 2−DDCt method (34). 
2.11 Specificity verification of biomarkers 

In order to investigate whether the expression changes of 
biomarkers were specific in FS, the Wilcoxon test was used to 
analyze the differences in the expression levels of biomarkers 
between the disease samples and control samples in RA in 
GSE55235 dataset, and RCT in GSE199484 dataset, (P < 0.05). 
2.12 Statistical analysis 

All analyses were performed using R software (v 4.2.2). Group 
differences were assessed using the Wilcoxon test, and a P-value of 
less than 0.05 was considered statistically significant. 
3 Results 

3.1 Identification of 2,136 DEGs and 4,800 
key module genes 

Differential expression analysis identified 2,136 DEGs between 
FS and control samples, with 964 upregulated and 1,172 
downregulated genes (Figures 1A, B). FS was then used as a trait 
to construct a co-expression network, and clustering analysis 
revealed no outliers, allowing the inclusion of all samples in 
subsequent analyses (Figure 1C). The optimal soft threshold 
power (b) for constructing a scale-free network was determined 
to be 9, where the scale-free fit index (R2) reached 0.8730 and mean 
connectivity approached zero (Figure 1D). Using a cutree 
parameter of 4, a module merging threshold of 0.25, and a 
minimum of 200 genes per module, 20 co-expression modules 
were identified (Figure 1E). A correlation heatmap showed that the 
MEblue module had the strongest negative correlation with FS 
scores (cor = -0.86, P < 0.05), while the MEyellow module exhibited 
the strongest positive correlation (cor = 0.71, P < 0.05), designating 
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FIGURE 1 

Identification of DEGs and key module genes. (A) Volcano plot of differentially expressed genes. Red indicates upregulated genes, and green 
indicates downregulated genes. Each dot represents a gene. The genes marked in the volcano map were the top 10 up-regulated genes and the top 
10 down-regulated genes sorted by log2FC. (B) Heatmap of differentially expressed genes. The blue color indicated low expression, and the red 
color indicated high expression. The bluer the blue color was, the lower the expression was, and the redder the red color was, the higher the 
expression was. (C) Hierarchical clustering analysis. (D) Selection of the optimal soft threshold power value. The optimal soft threshold power was 9. 
(D-1) The left panel shows the scale-free model fit index. (D-2) The right panel shows the mean connectivity of these values. (E) Cluster dendrogram 
of genes enriched based on dissimilarity measure and assigned modules. Clustered into 20 co-expression modules. (F) Heatmap showing the 
correlation between module genes and FS. The blue color represented a negative correlation, and the red color represented a positive correlation. 
The darker the color, the stronger the correlation. 
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them as key modules (Figure 1F). These two modules collectively 
contained 4,800 key module genes. 
 

3.2 Identification of 10 hub genes with 
crucial roles in network information 
transmission 

Intersecting the 2,136 DEGs with the 4,800 key module genes 
yielded 1,298 candidate genes (Figure 2A). To explore the biological 
functions and pathways involved in the candidate genes, GO and 
KEGG analyses were performed. Enrichment analysis of these genes 
revealed 977 associated GO terms, including 783 BP, 89 CC, and 
105 MF, with a focus on extracellular matrix organization, collagen-
rich extracellular matrix, and endoplasmic reticulum (Figure 2B). 
Additionally, 41 KEGG pathways were linked to the PI3K-Akt 
signaling pathway, neuroactive ligand-receptor interactions, and 
cytokine-cytokine receptor interactions, among others (Figure 2C). 
These results provide further insight into the roles of these pathways 
in FS pathogenesis. 

We constructed a PPI network using these candidate genes to 
explore their interaction relationships at the protein level. The PPI 
network comprised 257 nodes and excluded 1,041 outlier genes. 
The network contained 300 edges, an average node degree of 0.621, 
an average local clustering coefficient of 0.188, and a PPI 
enrichment P-value of < 1 × 10-16 (Figure 2D). The cytoHubba 
plugin identified 10 hub genes based on Betweenness values: 
RUNX2, SNAI1, GJA1,  TWIST1, CDH2,  COL1A1, TUBB2B, 
TPX2, DCN, and MMP9 (Figure 2E). 
 

3.3 Selection of SNAI1, TWIST1, COL1A1, 
TUBB2B, and DCN as candidate biomarkers 

In order to further screen the candidate biomarkers, we 
performed the LASSO and Boruta analyses. LASSO analysis 
identified five genes when lambda.min = 0.08578354 and log 
(lambda) = -2.455928: SNAI1, TWIST1, COL1A1, TUBB2B, and 
DCN (Figures 3A, B). Concurrently, the Boruta method identified 
10 genes: RUNX2, SNAI1, GJA1,  TWIST1, CDH2,  COL1A1, 
TUBB2B, TPX2, DCN, and MMP9 (Figure 3C). Overlapping the 
results of these machine learning algorithms revealed five candidate 
biomarkers :  SNAI1 , TWIST1 , COL1A1 , TUBB2B , and

DCN (Figure 3D). 
3.4 Constructing a nomogram with robust 
diagnostic performance using biomarkers 

To screen out the biomarkers, ROC analysis and expression 
level analysis were conducted on the candidate biomarkers. ROC 
analysis demonstrated that the AUC values for SNAI1, TWIST1, 
COL1A1, TUBB2B, and DCN were 0.845, 0.939, 0.915, 0.915, and 
0.842, respectively, all surpassing the 0.7 threshold (Figure 4A), 
indicating their robust ability to differentiate FS from normal 
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samples and suggesting potential diagnostic value. Expression 
analysis revealed significant differences in the expression of all 
five biomarkers between FS and control samples (P < 0.05) 
(Figure 4B). With the exception of DCN, the other four genes 
were upregulated in FS samples (P < 0.05). Consequently, SNAI1, 
TWIST1, COL1A1, TUBB2B, and  DCN were identified as key 
biomarkers in this study. 

Furthermore, to explore the predictive ability of biomarkers for 
the occurrence probability of FS, these biomarkers were 
incorporated into a nomogram, with individual scores assigned to 
each (Figure 4C). The total score predicted the FS incidence rate, 
with higher scores indicating greater disease risk. The calibration 
curve closely aligned with the threshold line, demonstrating 
excellent predictive accuracy for the nomogram (P = 0.328) 
(Figure 4D). ROC analysis revealed that the overall AUC for the 
nomogram was 0.970, significantly surpassing that of any single 
gene (Figure 4E), further validating the nomogram’s strong

diagnostic capability for FS. 
3.5 Exploring the pathways by which 
biomarkers influence FS development 

In order to evaluate the correlations among biomarkers, 
Spearman’s correlation analysis was performed. Except for DCN 
and TUBB2B, all biomarker pairs showed moderate to strong 
correlations (|cor| > 0.3, P < 0.05). The strongest positive 
correlation was between COL1A1 and TWIST1 (cor = 0.86), while 
the most substantial negative correlation was between COL1A1 and 
DCN (cor = -0.62) (Figure 5A). GSEA identified several biological 
mechanisms and signaling pathways associated with the 
biomarkers, including “ribosome”, “lysosome”, “drug metabolism-

cytochrome P450”, “ECM receptor interaction”, “metabolism of 
xenobiotics by cytochrome P450”, and “p53 signaling pathway” 
(Figures 5B-F). These pathways encompass key biological processes 
such as protein synthesis in the ribosome, waste degradation in 
lysosomes, cytochrome P450-mediated drug and xenobiotic 
metabolism, ECM-cell interactions, and cellular stress responses 
via the p53 signaling pathway. Together, these interconnected 
processes form a complex network essential for maintaining 
cellular function and sustaining life. 
3.6 Enhanced immune cell infiltration and 
gene expression correlations in FS reveal 
potential therapeutic targets 

To explore the differences in immune cell infiltration between 
the FS samples and the control samples, an immune infiltration 
analysis was performed. Our analysis employed a stacked bar chart 
to illustrate the abundance of 28 immune cell infiltrates in FS and 
control samples (Figure 6A), while a box plot further emphasized 
the significant differences in these immune cells between the two 
groups (P < 0.05) (Figure 6B). Eleven immune cell types exhibited 
significant differences, including activated CD4 T cells, activated 
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CD8 T cells, CD56bright natural killer cells, CD56dim natural killer 
cells, central memory CD8 T cells, effector memory CD4 T cells, 
eosinophils, gamma delta T cells, natural killer T cells, type 17 T 
helper cells, and type 2 T helper cells. Notably, all 11 immune cell 
types showed higher infiltration in FS samples (P < 0.05), suggesting 
their potential involvement in the pathophysiology of FS. 
Frontiers in Immunology 07 
Further analysis revealed that these differentially infiltrating 
immune cells displayed varying degrees of positive correlation with 
one another (Figure 6C). Type 2 T helper cells exhibited the strongest 
positive correlation with activated CD4 T cells (cor = 0.85, P < 0.05), 
suggesting a possible synergistic role in FS immune responses, 
potentially contributing to inflammation or immune regulation. 
FIGURE 2 

Acquisition and enrichment analysis of candidate genes. A total of 1,298 candidate genes were screened out. (A) Identification of candidate genes. (B) GO 
enrichment analysis of candidate genes. (C) KEGG enrichment analysis of candidate genes. (D) PPI network of candidate genes. (E) Identification of hub 
genes. A total of 10 hub genes were screened out. 
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Additionally, DCN generally demonstrated a negative 
correlation with these immune cells, while the other four genes 
(SNAI1, TWIST1, COL1A1, and  TUBB2B) were positively 
correlated with these immune cells, particularly SNAI1, TWIST1, 
and TUBB2B (cor > 0.3, P < 0.05) (Figure 6D). Further investigation 
into the roles of these immune cells and the modulation of 
associated gene expression and signaling pathways could offer 
new approaches for mitigating FS symptoms and progression. 
 
 

 

3.7 Unraveling regulatory networks and 
drug studies 

For the purpose of understanding the miRNAs, lncRNAs, TFs, 
and drugs targeting the biomarkers, the construction of a 
molecular regulatory network and drug prediction were carried 
out. A total of 146 miRNAs were predicted using miRDB, and 93 
miRNAs were identified through TargetScan, resulting in an 
intersection of 17 miRNAs. Subsequently, 50 upstream lncRNAs 
for these 17 miRNAs were predicted via starBase. This data 
facilitated the construction of a lncRNA-miRNA-mRNA 
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network encompassing four biomarkers (SNAI1, TWIST1, 
COL1A1, TUBB2B), 17 miRNAs, and 50 lncRNAs, revealing 
complex interaction dynamics. For example, AC005034.3 may 
regulate TUG1 via hsa-miR-30e-5p (Figure 7A). Using hTFtarget, 
37 TFs targeting COL1A1 and 29 targeting SNAI1 were identified, 
enabling  the  creation  of  a  TF-mRNA-miRNA  network  
(Figure 7B). Notably, TFs such as ERG, NFYA, SMC1A, MAZ, 
MYH11, SP4, and KLF4 were predicted to regulate both SNAI1 
and COL1A1 .  In  addition,  based  on  DGIdb,  one  drug  
(FLUOROURACIL) was identified for TWIST1, seven drugs 
(e.g., VALPROIC ACID, PAMIDRONATE) for COL1A1, four
drugs (e.g., ASCORBIC ACID, SIROLIMUS) for DCN, and  82
drugs (e.g., SAGOPILONE, SOBLIDOTIN) for TUBB2B 
(Figure 7C). No interacting drugs were predicted for SNAI1. 
3.8 Verification of biomarkers expression 

Previous studies revealed significantly higher expression levels 
of SNAI1, TWIST1, COL1A1, and TUBB2B in FS samples (P < 0.05), 
while DCN showed significantly lower expression (P < 0.05)
FIGURE 3 

Acquisition of candidate biomarkers. (A, B) Results of the LASSO analysis. Five genes were screened when lambda.min was equal to 0.08578354 and 
log(lambda) was equal to -2.455928. (C) Results of the Boruta method analysis. Ten genes were screened out. (D) Identification of candidate 
biomarkers. A total of five candidate biomarkers were obtained. 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1559422
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1559422 
(Figure 4B). To validate these findings, RT-qPCR was performed to 
measure gene expression in patients with FS. RT-qPCR results 
confirmed that SNAI1, TWIST1, and TUBB2B were expressed at 
significantly higher levels in FS samples (P < 0.05), consistent with 
prior results (Figures 7D-F). 
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3.9 The expression of biomarkers is 
specific in FS  

To explore the specificity of biomarker expression changes in FS, we 
carried out validation analyses using the datasets from RA and RCT. 
FIGURE 4 

Prognostic analysis of biomarkers. (A) ROC analysis of candidate biomarkers. (B) Expression analysis of candidate biomarkers. “**” represents P < 0.01,  and  
“***” represents P < 0.001.  (C) Construction of the nomogram. (D) Calibration curve for the nomogram. (E) ROC analysis of the nomogram. 
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The results showed that in RA, there were no significant differences in 
the expressions of TUBB2B and DCN between the RA samples and the 
control samples. SNAI1 and TWIST1 were significantly under-
expressed in the RA samples (Supplementary Figures 1A), which was 
contrary to their expression trends in FS. In RCT, the expressions of the 
five biomarkers did not show any significance between the RCT samples 
and the control samples (Supplementary Figures 1A). This indicated 
that the expressions of these five biomarkers were specific in FS.  
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4 Discussion 

Diagnosing early FS based solely on patient symptoms presents 
significant challenges, often leading to delays in both diagnosis and 
treatment due to the unclear pathogenesis of the condition (35). This 
study aimed to identify diagnostic biomarkers and explore the 
underlying mechanisms of FS from a transcriptomic perspective. The 
study identified SNAI1, TWIST1, COL1A1, TUBB2B, and  DCN as 
FIGURE 5 

Results of GSEA enrichment analysis of biomarkers. (A) Correlation between biomarkers. The blue color represented a negative correlation, and the 
red color represented a positive correlation. The darker the color, the stronger the correlation. (B) GSEA enrichment analysis results for SNAI1. 
(C) GSEA enrichment analysis results for TWIST1. (D) GSEA enrichment analysis results for COL1A1. (E) GSEA enrichment analysis results for TUBB2B. 
(F) GSEA enrichment analysis results for DCN. 
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biomarkers for FS, each demonstrating strong diagnostic potential. 
With the exception of DCN, the other four genes were upregulated in 
FS samples, a finding confirmed by RT-qPCR. These genes were 
involved in various biological processes and cellular mechanisms, 
being enriched in pathways such as “ECM receptor interaction”, 
“lysosome”, and  “p53 signaling pathway”. Furthermore, 11 immune 
cell types showed significantly different infiltration abundances 
between FS and control samples, all of which were upregulated in FS 
samples. This study highlights the association between FS biomarkers 
with robust diagnostic value and specific immune responses, providing 
potential targets for FS diagnosis and intervention. 

WGCNA, LASSO, and Boruta are powerful bioinformatics and 
statistical methods for identifying key genes or biomarkers from 
complex datasets (28, 36, 37). Each method offers unique 
advantages for different aspects of data analysis. WGCNA excels 
in identifying co-expression modules and linking them to external 
traits, offering a network-based perspective on gene interactions 
(36). LASSO is particularly useful for variable selection and 
regularization, making it suitable for high-dimensional data and 
predictive modeling (28). Boruta provides comprehensive feature 
selection by identifying all relevant features and is robust against 
overfitting and false positives (37). In summary, these methods 
effectively screen and identify biomarkers. 
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This study identified five biomarkers for FS: SNAI1, TWIST1, 
COL1A1, TUBB2B, and DCN. SNAI1, a transcription factor, plays a 
pivotal role in epithelial-mesenchymal transition (EMT), a process 
in which epithelial cells acquire mesenchymal, fibroblast-like 
properties, such as enhanced migratory ability and resistance to 
apoptosis (38). EMT is critical in various physiological and 
pathological processes, including tissue fibrosis and cancer 
metastasis (39). TWIST1, similar to SNAI1, is a key transcription 
factor involved in EMT. It has been extensively studied for its roles 
in embryonic development, cancer metastasis, and fibrosis (38). 
Both SNAI1 and TWIST1 drive EMT by repressing epithelial 
markers and activating mesenchymal markers, promoting the 
transition of epithelial cells into mesenchymal-like cells with 
enhanced migratory and invasive capabilities. These mesenchymal 
cells secrete cytokines and growth factors, such as transforming 
growth factor-beta (TGF-b), which activate resident fibroblasts 
(40). Activated fibroblasts differentiate into myofibroblasts, 
significantly increasing the production of ECM components, 
including type I collagen. The gene COL1A1, which encodes the 
alpha-1 chain of type I collagen, is upregulated during this process 
and contributes to the stabilization and integrity of the ECM. FS is 
closely associated with ECM remodeling, where changes in the 
composition and structure of the ECM lead to joint capsule 
FIGURE 6 

Immune cell infiltration. (A) Abundance of 28 immune cell infiltrates in FS and control samples. (B) Differences in immune cell infiltration between FS 
and control samples. “ns” represents P > 0.05, “*” represents P < 0.05, “**” represents P < 0.01, “***” represents P < 0.001, and “****” represents P < 
0.0001. (C) Correlation between differential immune cells. “*” represents P < 0.05, “**” represents P < 0.01, “***” represents P < 0.001. (D) Correlation 
between biomarkers and differential immune cells. “*” represents P < 0.05, “**” represents P < 0.01, “***” represents P < 0.001. 
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thickening and stiffening, resulting in shoulder pain and restricted 
movement (41). 

DCN, a small leucine-rich proteoglycan, interacts with various 
types of collagen, including type I collagen, and plays a pivotal role in 
modulating collagen fibrillogenesis, ECM assembly, and tissue repair. 
DCN also has anti-fibrotic properties, inhibiting TGF-b activity (42). 
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Reduced levels or impaired function of DCN in  FS  could lead to

unchecked TGF-b activity, increasing collagen production and fibrosis. 
TUBB2B, a gene encoding a member of the beta-tubulin protein family, 
is essential for the microtubule network within cells (43). Microtubules 
are essential for the movement of fibroblasts and other cells involved in 
tissue repair and fibrosis (44). Dysregulation of TUBB2B could affect 
FIGURE 7 

Construction of molecular networks. (A) The lncRNA-miRNA-mRNA network. The yellow color represents biomarkers, the pink color represents 
target miRNAs, and the blue color represents lncRNAs. (B) Construction of the TF-mRNA-miRNA network. In the figure, the yellow color represents 
biomarkers, the pink color represents TFs, and the green color represents miRNAs. (C) Networks of biomarkers and targeted drugs. The pink color 
represents biomarkers, and the blue color represents drugs. (D-F) Results of RT-qPCR analysis of biomarkers. The error bars in the figure represent 
the standard deviation. “*” represents P < 0.05. 
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cytoskeletal dynamics, influencing fibroblast migration and invasion 
into the joint capsule (44), thus contributing to the fibrotic process in 
FS. In summary, these biomarkers, particularly SNAI1, TWIST1, 
COL1A1, and DCN, are intricately involved in fibrosis, playing 
significant roles in the development of FS. 

ROC curve analysis was performed to assess the diagnostic 
performance of five genes (SNAI1, TWIST1, COL1A1, TUBB2B, and  
DCN), yielding AUC values of 0.845, 0.939, 0.915, 0.915, and 0.842, 
respectively. These results demonstrate that these genes offer excellent 
diagnostic accuracy for FS. When these five genes were integrated into 
a nomogram model, the AUC value increased to 0.970, significantly 
surpassing the individual gene AUC values. This highlights the 
nomogram model’s exceptional diagnostic capability, enhancing 
classification accuracy and reliability. Few studies have addressed the 
early diagnosis of FS. Xu et al. (35) explored the diagnostic potential of 
superb microvascular imaging (SMI) features in the rotator cuff gap for 
FS, identifying SMI blood flow grading as a useful predictor for early FS 
stages (AUC = 0.824). Moreover, the biomarkers identified in the 
current study have not been explored in other FS biomarker research. 
Consequently, the nomogram model could serve as a powerful tool for 
early FS diagnosis and screening in future clinical applications, 
improving diagnostic precision and reducing misdiagnosis rates. 
Further research and clinical trials are necessary to optimize and 
validate this model for broader clinical use. 

The five biomarkers in this study were linked to six main pathways: 
ribosome, lysosome, drug metabolism-cytochrome P450, ECM 
receptor interaction, metabolism of xenobiotics by cytochrome P450, 
and p53 signaling pathway. The ribosome, responsible for protein 
synthesis, and the lysosome, which serves as the digestive system within 
cells, are involved in a variety of biological responses and are not 
specific to FS. The p53 signaling pathway plays a critical role in fibrosis 
across multiple organs by regulating fibroblast proliferation, ECM 
synthesis and degradation, oxidative stress, and inflammation, as well 
as modulating non-coding RNAs (45). Mechanistically, p53 influences 
fibrosis by upregulating cell cycle inhibitors and pro-apoptotic genes, 
downregulating ECM synthesis genes, upregulating matrix 
metalloproteinases and antioxidant genes, inhibiting inflammatory 
pathways, and regulating miRNA and lncRNA expression (45). 
These insights offer a theoretical foundation and practical direction 
for developing new anti-fibrotic therapies. 

This study identified 11 immune cells with significantly 
different infiltration abundances between FS and control samples, 
all of which were upregulated in FS samples. Immune cell 
infiltration is crucial in fibrosis, as these cells regulate fibroblast 
activity and ECM synthesis and degradation through the release of 
pro-inflammatory or anti-inflammatory factors (46). TGF-b, 
secreted by immune cells such as macrophages and T cells, 
activates fibroblasts and promotes excessive collagen synthesis, 
thereby exacerbating fibrosis (47). Additionally, the inflammatory 
response is a hallmark of early FS stages. Immune cells like 
macrophages and T cells release pro-inflammatory substances, 
leading to localized inflammation and pain. These substances also 
stimulate fibroblasts, resulting in fibrosis and thickening of the 
shoulder joint capsule, further limiting joint mobility (48). 
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However, certain immune cells, such as M2 macrophages and 
regulatory T cells, have anti-inflammatory and pro-repair 
functions. These cells can inhibit fibrosis progression by secreting 
anti-inflammatory factors and promoting ECM-degrading enzyme 
expression (49). Thus, immune cell infiltration plays a dual role in 
FS pathogenesis, driving both inflammation and fibrosis while 
possibly aiding tissue repair. Understanding these mechanisms is 
essential for developing effective therapeutic strategies. 

Based on the biomarkers identified, several drugs were 
predicted to potentially treat FS. Valproic acid may reduce 
fibrosis by inhibiting histone deacetylase, thus regulating gene 
expression and decreasing the production of fibrosis-associated 
proteins (50). Zoledronic acid has been shown to reduce fibrosis 
by inhibiting fibroblast activity (51). Pamidronate may have anti
fibrotic potential, particularly in bone-related fibrotic diseases (52). 
Etidronic acid, primarily used to treat osteoporosis and 
hypercalcemia, may also inhibit certain types of fibrosis (52). 
However, the efficacy of these drugs for FS treatment requires 
further validation through animal studies and clinical trials. 

In summary, the five biomarkers identified in this study hold 
significant clinical implications and application potential. For 
instance, by detecting the expression levels of these biomarkers in 
patients and comparing them with baseline data from healthy 
populations, significant discrepancies could assist physicians in 
more accurately diagnosing FS. Alternatively, monitoring the 
dynamic changes in the expression levels of these five biomarkers 
might enable prediction of disease progression trends. Furthermore, 
for populations with high-risk FS factors - such as family history, 
specific genetic mutations, or prolonged exposure to relevant 
environmental factors - regular biomarker testing could facilitate 
early detection of potential pathological changes before overt 
symptoms manifest, thereby allowing timely intervention 
and treatment. 

However, there are limitations, including a small sample size 
that may affect statistical significance and generalizability. 
Additionally, the lack of systematic animal and cell experiments 
limits the ability to fully validate the diagnostic and therapeutic 
value of these biomarkers. Additionally, whether the expression 
changes of biomarkers and the differences in immune cell 
infiltration are specific to FS requires further validation. 
Therefore, we plan to expand the sample size in future analyses 
to enhance the statistical power and generalizability of the results. 
Systematic animal experiments will also be conducted to establish 
FS animal models. By modulating the expression of these 
biomarkers, we aim to observe their effects on disease progression 
and immune cell infiltration. Early-stage clinical samples will be 
analyzed to verify the detectability of these biomarkers in the initial 
phases of FS. Concurrently, cellular experiments will be performed 
to explore the mechanisms of interaction between biomarkers and 
immune cells at the cellular level, validating their diagnostic and 
therapeutic potential. Furthermore, comparative experiments will 
be designed, incorporating samples from other shoulder disorders, 
to clarify the specificity of the identified biomarkers and immune 
cell infiltration differences in FS. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1559422
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1559422 
5 Conclusion 

This study conducted transcriptome sequencing on FS samples 
and control samples, identifying five biomarkers through 
bioinformatics analysis. These biomarkers were found to be 
involved in pathways such as “drug metabolism-cytochrome 
P450” and “ECM-receptor interaction,” providing new theoretical 
references for subsequent in-depth research on FS. Furthermore, we 
plan to experimentally validate their functions and clinical 
significance in follow-up studies. 
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