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NF-kB is a crucial transcription factor in lymphocyte signaling. It is activated by

environmental cues that drive lymphocyte differentiation to combat infections

and cancer. As a key player in inflammation, NF-kB also significantly impacts

autoimmunity and transplant rejection, making it an important therapeutic target.

While the signaling molecules regulating this pathway are well-studied, the effect

of changes in NF-kB signaling levels on T lymphocyte differentiation, fate, and

function is not fully understood. Advances in computational biology and newNF-

kB-inducible animal models are beginning to clarify these questions. In this

review, we highlight recent findings related to T cells, focusing on how

environmental cues affecting NF-kB signaling levels determine T cell fate

and function.
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Introduction

Since its discovery in 1986 (1), the transcription factor NF-kB has been associated with

numerous cellular processes, including cell function, differentiation, and stemness (2–5).

NF-kB plays a crucial role in opposing cell responses like survival and cell death and

influences specific T cell differentiation paths. While subunit composition of NF-kB
heterodimers can sometimes explain these outcomes, the regulation of this transcription

factor remains complex, involving transcriptional and epigenetic levels. NF-kB is induced

via a signaling cascade converging at the IKK complex, composed of catalytic subunits

IKKa and IKKb, and the regulatory subunit NEMO (IKKg) (6). The upstream signals

activating the IKK complex vary with environmental cues (3, 7, 8). Additionally, NF-kB
alone is often insufficient for gene regulation; it relies on interactions with other

transcription factors, its affinity for binding sites at gene promoters or enhancers, and its

influence on chromatin remodeling (9). Modeling studies indicate that the timing and

levels of NF-kB signaling are critical in determining T cell responses and fate (10–13). This

review examines how environmental cues utilize NF-kB signaling to regulate T cell

lymphocytes, highlights unresolved questions, and explores implications for

therapeutic interventions.
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The NF-kB signaling pathway

NF-kB is a family of transcription factors comprised of several

members: RELA (p65/RelA), c-REL (c-Rel), RELB (RelB), NFKB1

(p105/p50), and NFKB2 (p100/p52) (Figure 1A). These members

form homo- or heterodimers via an N-terminal Rel homology

domain (RHD) (14). Canonical and non-canonical signaling

pathways enable different membrane receptors to induce NF-kB
nuclear translocation and regulate its transcriptional activity

(Figure 2). The canonical NF-kB pathway induces the formation of

p50-RelA and p50-c-Rel dimers (15, 16), which in resting cells are
Frontiers in Immunology 02
sequestered in the cytoplasm by IkB proteins (IkBa, IkBb, IkBg,
IkBe) (17–23) or regulated in the nuclei by the atypical IkB proteins

IkBNS (24, 25), IkBz (26) IkBh (27) and BCL3 (28, 29). Meanwhile,

exposure to environmental stimuli induces the activation of the

multi-subunit IkB kinase (IKK) complex which drives the

phosphorylation, polyubiquitination and degradation of IkB
proteins in the 26S proteasome (6, 30). This allows NF-kB
heterodimers to translocate to the nucleus to regulate gene

expression. In contrast to this, the non-canonical pathway induces

p52-RelB heterodimers through the activation of NF-kB-inducing
kinase (NIK), which phosphorylates IKKa dimers, leading to p100
FIGURE 1

The NF-kB signaling network. (A) NF-kB subunits or Rel Homology domain proteins of the NF-kB family. RHD or Rel homology domain determines
dimerization with other members of the NF-kB/Rel protein family; NLS or nuclear localization sequence, which also comprises the site for inhibitory
interactions with IkB. TAD, or transactivation domain. LZ or leuzin zipper. AnkR or ankyrin repeats domain. DD or death domain. Regulatory
phosphorylation sites are denoted by their position in green. Ubiquitination sites (ub) are also shown. (B) Inhibitors of the NF-kB family. The ankyrin
repeats in these proteins mediate the binding to NF-kB dimers. The N terminal part of the IkB proteins contain two Ser residues that when
phosphorylated allow for quick ubiquitination and degradation of the protein. This is true for the typical IkB proteins but not for the atypical (IkBNS,
IkBz, IkBh and BCL3). The C-terminal regions of p105 and p100 aside from the ankyrin repeats, they also have a death domain. These regions
function as IkB for their RHD domain by forming large complexes with Rel proteins. The death domain can undergo cotranslational processing by
the 26S proteosome to produce p50 or p52. DD domains also can allow binding to other proteins with complimentary DD domains enabling the
assembly of signaling complexes involved in cell death pathways. Some IkB members also have a PEST domain rich in Proline, glutamic acid, serine
and threonine. The PEST domain acts as a signal for rapid degradation. (C) The cartoon illustrates the regulation of the IKK complex by the positive
actions of signaling intermediates downstream of the T Cell Receptor (TCR) and the TNF receptor. When the TCR binds to antigen presented in the
context of MHC, it leads to the phosphorylation of tyrosines in the CD3 chains of the TCR/CD3 complex, facilitating the recruitment of the kinase
ZAP-70. ZAP-70 then phosphorylates its substrates, LAT and SLP76, forming the LAT/SLP76 signalosome. Once phosphorylated, this complex
enables the recruitment of Vav, which mediates cytoskeleton reorganization and translocation of PKCq to the membrane. At the membrane, PKCq
phosphorylates CARMA1, leading to the formation of the CBM complex (CARMA1, BCL10, and MALT1). This complex then oligomerizes and
recruits the ligase TRAF6 and the kinase TAK1. A dimer of IKKg (NEMO) binds to IKKa and IKKb to form the IKK complex. The linear and K63
polyubiquitination of NEMO allows for the activation of the IKK complex, further supported by phosphorylation by TAK1. IKK activation leads to the
phosphorylation of the NF-kB subunit p65 and the inhibitory protein IkBa. K63, K11, and M1 ubiquitination represent key processes in NF-kB
signaling that enable the formation of non-degradative ubiquitin chains, which are critical for the recruitment of various components of the NF-kB
signaling cascade. (D) Downstream of the TNF receptor, TRAF complexes recruit RIPK1. The LUBAC complex catalyzes the M1 polyubiquitination of
NEMO which allows for activation of the IKKc. Negative regulation at the level of the IKKc signalosome can occur through various mechanisms,
including dephosphorylation and deubiquitination by phosphatases such as PP2A and PP2C, or by deubiquitinases like A20 and CYLD (K63
polyubiquitin chains), and Otulin (M1 polyubiquitin chains). This figure has been created with BioRender.com.
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processing into p52 (31–33). This pathway is triggered by stimuli

such as LIGHT, TWEAK, BAFF, RANKL, and CD40L, while

canonical signaling is activated by antigens, CD28, 4-1BB, GITR

co-stimulators, TNF, and IL-1 (3, 8, 34), (Figures 1, 2). Notably, while

all these receptors share the same downstream signaling steps

following IKK complex/IKKc activation (canonical or non-

canonical), they differ upstream (Figure 2). Modulation of NF-kB
signaling levels lies both in the diversity of intermediates driving IKKc

activation and the regulated expression of antigens, TNFRs, and

cytokine receptors. It is also important to consider the distinct and

overlapping roles of canonical and non-canonical NF-kB signaling.

Activation of the canonical pathway has been classically associated

with inflammation, while activation of the non-canonical pathway

regulates cell development and organogenesis. Both pathways have

been considered to signal independently (35). However, extensive

overlap exists at the level of p50-RelA, IkBd and p100 (36, 37).

Similarly, canonical control of p52-RelB can occur via the p50-RelA

dependent expression of p100 and RelB (36, 37). At the level of NF-

kB subunit dimerization, RelA can bind to RelB and prevent its DNA
Frontiers in Immunology 03
binding (38). Upstream, crosstalk has also been reported at the level

of RIPK1 (39, 40) and NIK (41, 42).

There is still a significant gap in understanding how T cells

integrate canonical and non-canonical signals from different

receptors at the membrane level. Additionally, the ways T cells

respond to varying NF-kB signaling levels according to tissue

context and how these variations influence T cell outcomes

remain unclear. In the following sections, we will discuss

how NF-kB signaling regulates T cell development and its

resulting effects.
Mechanisms by which NF-kB signaling
regulates thymocyte development

In the thymus, immature T cells, or thymocytes, commit to the

T cell lineage and develop tolerance to self-antigens during thymic

development. T cell progenitors differentiate into CD4 and CD8

double negative thymocytes (43). They rearrange the T cell receptor
FIGURE 2

Canonical and non-canonical NF-kB signaling in T cells. Left. This cartoon illustrates the membrane receptors involved in delivering canonical NF-kB
signaling in T cells, including the T Cell Receptor (TCR) and members of the TNF receptor superfamily. TCR stimulation leads to the recruitment of
the kinase ZAP70 to the phosphorylated ITAMs of the CD3 chains within the TCR/CD3 complex. This recruitment enables ZAP70 to phosphorylate
LAT and SLP76, forming the LAT/SLP76 signalosome, which subsequently recruits the guanine exchange factor Vav and the kinase GLK. These
components contribute to the membrane translocation and activation of PKCq. Next, PKCq phosphorylates CARMA1, resulting in the formation
of the CBM complex (comprised of CARMA1, BCL10, and MALT1). The subsequent recruitment of the ligase TRAF6 and the kinase TAK1 into the
NF-kB signalosome leads to the ubiquitination of NEMO and the phosphorylation of IKKa and IKKb. The active IKK complex (NEMO-IKKa-IKKb)
phosphorylates IkBa, which retains NF-kB heterodimers (p50-RelA or p50-c-Rel) in the cytosol, targeting IkBa for degradation. This process allows
free NF-kB dimers to translocate to the nucleus and drive gene expression. TNF receptor signaling converges with TCR signaling at the level of TAK1
and the IKK complex; however, each receptor leads to the assembly of specific signalosomes where TRAF proteins play critical roles. Right. Non-
canonical NF-kB signaling differs from canonical signaling in terms of the NF-kB dimers (p52-RelB), the IKK complex (which consists of a dimer of
IKKa), the kinase activity (NIK), and the membrane receptors depicted in this cartoon. Additionally, while not included in the figure, evidence exists
for crosstalk between both pathways. This figure was created using BioRender.com.
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(TCR) beta chain and express a pre-TCR. During this phase, NF-kB
signaling regulates pre-TCR signaling, providing survival signals for

thymocytes with productive TCR beta chain rearrangements (44).

This is followed by the rearrangement of the TCR alpha chain and

the expression of CD4 and CD8 coreceptors, resulting in the

development of double-positive (DP) thymocytes (43).

DP thymocytes, in turn, recognize self-antigens and MHC

molecules (class I or class II) on the surface of cortical thymic

epithelial cells via their TCRs and undergo thymic selection. The

affinity of this interaction determines thymocyte fate. DP

thymocytes whose TCRs bind to pMHC with insufficient affinity

or excessively high affinity undergo death by neglect or are negative

selected respectively. Only those with intermediate affinity to self-

peptide-MHC (pMHC) interactions are positively selected and

further differentiate into single-positive (SP) CD4+ or CD8+

thymocytes (43). The role of NF-kB signaling in thymic

development has been investigated using transgenic mice

expressing either the super-repressor form of IkBa (Nfkbia-SR)

or the constitutively active form of IKKb (Ikbkb-CA) (45). Data

from these studies indicate that increased NF-kB signaling in

double-positive (DP) thymocytes recognizing MHC class I, skews

them towards the negative selecting threshold, resulting in their

death. Conversely, decreased NF-kB signaling prevents DP

thymocytes from reaching the positive selecting threshold, leading

them to succumb to death by neglect. Interestingly, these studies

also reported that DP thymocytes recognizing MHC class II, do not

signal through NF-kB and thus, inhibition of NF-kB signaling in

these cells do not affect thymic selection (45). Altogether, these

studies demonstrate that NF-kB signaling is crucial for establishing

the signaling thresholds that determine positive and negative

selection, particularly for the selection of CD8 SP thymocytes (45).

Other studies that used transgenic mice expressing mutant

IkBa or a conditional deletion of IKKb or NEMO/IKKg have

also showed that reduced NF-kB signaling affects CD8 SP T cells

beyond thymic selection (46–48). Specifically, inhibition of NF-kB
leads to a significant decrease in CD8 SP T cells in the thymus.

However, it remains unclear whether this defect is due to induction

of cell death or a defect in cell survival. Supporting the latter, active

NF-kB levels are much higher in CD8 than in CD4 SP thymocytes,

while the pro-survival factor Bcl2 is expressed at lower levels in CD8

SP cells (45). These data suggest that CD8 SP survival may require

different NF-kB signaling levels than CD4 SP cells, making CD8 SP

cells more susceptible to the effects of NF-kB inhibition.

NF-kB signaling intermediates upstream of the IKK complex

are also important in thymic development. The kinase TAK1

(Figure 2) specifically regulates the maturation and survival of

single-positive (SP) thymocytes, rather than their selection (49).

Hogquist’s group demonstrated that TNF-dependent TAK1→ NF-

kB signaling is essential for cell survival at the SP stage and late

thymic maturation (50). Their findings indicate that TCR-

dependent signaling is not involved in this process. This agrees

with other studies indicating that TCR-proximal NF-kB

intermediates (CARMA1, BCL10, and MALT1) do not affect

thymic development (51–53). Notably, TAK1 can also function

independently of NF-kB by mediating Type I IFN signals,
Frontiers in Immunology 04
enhancing thymocyte responsiveness to inflammatory cytokines

(50). Additionally, recent work by Seddon’s group has shown that

IKK-mediated repression of RIPK1 is a crucial link between TNF

receptor signaling and TAK1. This link is necessary to support post-

selection SP survival and maturation (54). Thus, environmental

factors beyond just antigens tightly control CD8 SP survival/

late maturation through mechanisms involving specific NF-kB

signaling intermediates, making T cells more responsive to

inflammatory signals.

Noteworthy, downstream of the IKK complex in the NF-kB

signaling cascade, recent studies using CD4cre-inducible models of

RelA and c-Rel deletion have shown that these NF-kB subunits are

not necessary for thymic development (55). Hence, while the role of

the NF-kB signaling cascade in thymic selection and SP maturation

is evident, data suggests that it does not follow conventional

transcriptional NF-kB mechanisms. Moreover, depending on the

stage of development (thymic selection versus SP maturation)

unique NF-kB signaling intermediates play predominant roles.
NF-kB signaling and T cell
homeostasis

Single positive T cells migrate to the periphery, where they can

persist for months as naive T cells. The homeostasis of these cells

relies on their survival and low turnover properties (56). The role of

NF-kB signaling in the survival and homeostasis of peripheral T

cells has been elucidated through mouse models expressing T cell-

restricted conditional transgenes. These models include those with

inactive kinase forms (achieved by replacing the serines in the

kinase activation loop with alanines to eliminate inducible IKK

activity) (57), and those expressing constitutively active forms of

IKKb (where the activation loop serine residues (Ser 177 and 181)

are substituted with glutamic acid) (58). Additionally, some models

have employed degradation-resistant or truncated forms of IkBa
(59–61). Inhibition of canonical NF-kB signaling in any of these

models leads to significant reductions in peripheral T cell

populations, including both naive and memory T cells (48).

However, it has remained unclear whether the extent of this

decrease is influenced by defects in thymic selection, inefficient

transgene expression, or specific targeting of IKKa, IKKb, or IkBa
(62). Recent investigations have revisited the role of IKKb, and NF-

kB signaling in T cell homeostasis using tamoxifen-inducible and

temporally controlled deletion of IKKb (63). These studies

indicated that IKKb expression is essential for the upregulation of

IL-7R on selected T cells as they exit the thymus (63). This report

showed that the induced expression of IL-7R via TNF and CD70/

CD27-dependent NF-kB signaling is transient but, at the same time,

crucial for recent thymic emigrants to fully mature into functional

peripheral T cells (63). Interestingly, in contrast to previous reports,

these studies found that IKKb expression did not regulate IL-7R

expression or the survival of peripheral naive T cells in

immunocompetent mice (63). This suggests that IKKb regulates

recent thymic emigrants transition into naive T cells in an antigen

receptor-independent manner, consistent with data from mice
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deficient in proximal components of TCR-dependent NF-kB
induction (48, 64).

Further studies have explored the roles of NF-kB subunits in the

survival of mature T cells. Research using p50-c-Rel double-

deficient mice found no defects in thymic development, T cell

maturation, or naive T cell homeostasis (65). This prompted further

investigations into the outcomes observed in c-Rel, p65/RelA and

RelB knockout mouse models, where multiorgan inflammation

occurs, making it unclear whether defects arise from the stroma

or the T cells themselves (66–68). More recent studies using CD4

cre-inducible models for RelA and c-Rel deletion have supported

earlier findings seen with IKKb and IkBa transgenic models (48,

59). These studies revealed a significant reduction in the

populations of peripheral naive CD4 and CD8 T cells in the

absence of RelA, while c-Rel deficiency did not have the same

effect (69). Furthermore, RelA deficiency was linked to lower levels

of Ki67-positive proliferating cells and reduced production of key

cytokines, such as IFN-g and IL-2, upon PMA/Ionomycin

stimulation (69). This regulation often works in conjunction with

AP-1 family members, like Jun and BATF, affecting crucial T cell

proteins such as CD83, ICOS, and 4-1BB (69). Overall, these

findings highlight the critical role of RelA in T cell homeostasis,
Frontiers in Immunology 05
as it regulates many genes essential for T cell activation through

transcriptional control (Figure 3B) (69).
NF-kB signaling and mature T cell
responses: cell division, apoptosis and
effector function

Naive CD4 and CD8 T cells recognize cognate antigens and

receive costimulatory signals from dendritic cells (DCs) in draining

lymph nodes, leading to their activation (70). This activation triggers

the early upregulation of CD69, a crucial factor for retaining naive T

cells in the lymph node to facilitate continued activation (70).

Subsequently, T cells increase the expression of the high-affinity IL-

2 receptor alpha chain (CD25) and the pro-survival cytokine IL-2

(70). These processes occur within the first 24 hours post-activation,

supporting T cell division and survival, and are influenced by NF-kB
signaling (70, 71). Indeed, naive T cells deficient in the NF-kB
subunits RelA and c-Rel exhibit impaired proliferation and

cytokine production after stimulation (72, 73), (Figure 2).

Additionally, defects in upstream signaling components, such as

IKKa, IKKb, and CARMA1 lead to inadequate T cell proliferation
FIGURE 3

Roles of NF-kB signaling intermediates in T cell differentiation. This cartoon shows the phases of CD4 and CD8 T cell differentiation in the thymus
(A, B) and the periphery (C-E) highlighting the roles of different components of the NF-kB signaling network. DN, double negative thymocyte. DP,
double positive thymocyte. SP, single positive thymocyte. tTreg refers to thymic T reg while pTreg refers to peripheral Treg. Tfh is follicular helper
CD4 T cell, Th is a CD4 T helper cell. CD8EFF is an effector CD8 T cell while CD8MEM is a memory CD8 T cell. TCM is central memory T cell. TRM
is tissue resident memory T cell. This figure has been created with BioRender.com.
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(74, 75) and increased apoptosis upon activation (76, 77). The

deletion of other members of the CBM complex, including BCL10

and MALT1, as well as PKCq, similarly hampers T cell proliferation,

particularly in CD4 T cells, These CD4 T cell proliferation defects

cannot be rescued by exogenous IL-2 (although it enhances their

survival). By contrast, in CD8 T cells, deficiency of these NF-kB early

signaling intermediates raises the threshold of TCR signaling required

for proliferation, resulting in impaired CD8 T cell proliferation even

with strong agonistic TCR stimulation (78).

Regarding apoptosis, BCL10 does not have a significant role,

whereas PKCq and CARMA1 are more prominently involved

(Figure 2). Specifically, PKCq is essential for the expression of Fas

ligand (FasL), which mediates activation-induced cell death (AICD)

(79). Conversely, the role of MALT1 is more complex. It interacts

with Caspase-8 during TCR engagement, l imiting its

autoproteolytic processing and apoptotic activity without affecting

c-Flip processing. This suggests that MALT1 contributes to both T

cell proliferation and survival through NF-kB signaling (80).

Costimulation, particularly via CD28, is crucial for T cell-

dependent NF-kB activation, which occurs through the induced

membrane recruitment and enzymatic activity of PKCq and PDK1

(81) (Figure 2). Depletion of PDK1 disrupts the synergy between

TCR and CD28 signals, leading to impaired NF-kB induction.

Specifically, the absence of PDK1 hinders PKCq activation and

prevents the formation of the CBM complex (81). However, other

functions of PKCq, such as activating the p38 MAPK, JNK, and

Calcium/NFAT pathways, remain unaffected (81). Consequently,

while certain aspects of T cell activation—including proliferation,

CD25 expression, and IL-2 production—rely on PDK1, neither

apoptosis nor survival of CD4 or CD8 T cells is significantly

compromised in its absence (81).

Additionally, the MAPK GLK is recruited to the TCR/LAT/

SLP76 signalosome, mediating the phosphorylation and activation

of PKCq (S5388), which is necessary for NF-kB induction (82),

(Figure 2). Although GLK-deficient T cells demonstrate impaired

proliferation and cytokine production, their involvement in survival

or apoptosis has not been assessed (82). Furthermore, while GLK

does not alter ERK or Calcium/NFAT signaling, the specific role of

GLK in JNK and p38 MAPK signaling remains unexamined. Thus,

similar to PDK1, GLK may not be critical for T cell survival if these

pathways remain active (82) (Figure 2).

Altogether, this body of work supports the notion that TCR and

CD28-dependent NF-kB signaling intermediates play a vital role in

regulating early T cell activation and responses related to

proliferation and cytokine-driven survival (Figure 3C).
NF-kB signaling, T cell effector
differentiation and function

CD4 T cell differentiation

As T cells proliferate, they undergo a differentiation process that

transforms them into specialized effector T cells and long-lived

memory T cells. This differentiation is crucial for establishing long-
Frontiers in Immunology 06
term protective immunity against pathogens and tumors (83).

Naive CD4 T cells initially differentiate into effector precursors in

response to antigen recognition, costimulation, and specific

cytokine signals. These three inputs drive the expression of

unique transcription factors that act as master regulators of T cell

fate decisions and guide helper T cell (Th) subset lineage

commitment (84). CD4 T cell differentiation is intricately adapted

to the type of pathogen and the innate signals it triggers. For

example, intracellular pathogens initiate Type I immune responses

characterized by the generation of Th1 CD4 effector T cells, which

secrete hallmark cytokines IFN-g, IL-2, and TNF. Naive T cells

differentiate into Th1 effectors following initial stimulation through

their TCR, CD28, and IL-12 signals (84–89). While TCR and CD28

signaling activate the transcription factors NF-kB, NFAT, and AP-

1, IL-12 signaling activates STAT4 (84–89). These transcription

factors cooperate to upregulate the expression of T-bet, the master

transcription factor of the Th1 subset, which is critical for the

expression of IFN-g and other transcription factors, including Hlx

and Runx3 (84–89). Strong TCR signaling also promotes the

expression of Blimp-1, IRF4, and the IL-2-dependent

transcription factor STAT5, facilitating the re-expression of IL-

12R and inducing the chemokine receptor CXCR3. This results in

the migration of primed Th1 cells to tissues, where they further

differentiate into committed Th1 effectors (84–89). Concurrently,

transcriptional networks that promote alternative Th cell fates (e.g.,

GATA3, RORgt, or Bcl6) are repressed (84–89). In contrast to this,

weak TCR signaling drives the expression of the master T follicular

helper (Tfh) regulator Bcl6, results in low levels of IL-2R/STAT5

signaling and supports the expression of CXCR5 (84–89). This

directs primed CD4 T cells toward the T-B border of the lymph

node, where they interact with B cells and specific DCs to receive

ICOS/ICOSL signals (84–89). In conjunction with IL-6, IL-21, and

IFNg signals, these interactions enhance Bcl6 levels while inhibiting
the expression of master transcription factors associated with other

Th subsets (84–89). Ultimately, this results in the generation of

differentiated PD-1hi germinal center Tfh cells that provide critical

assistance to B cells for isotype switching and affinity maturation

(84–89). In contrast to Type I immune responses, Type II responses

are elicited in response to extracellular parasites and allergens,

driving the generation of Th2 cells through T cell receptor (TCR)

engagement, costimulatory signals, and exposure to IL-4 (84–89).

IL-4 is essential for the expression of GATA3, the master

transcription factor that plays a critical role in the secretion of

Th2 signature cytokines, including IL-4, IL-5, and IL-13.

Extracellular bacteria and fungi, however, elicit Type III immune

responses characterized by the differentiation of Th17 cells (84–89).

This process is mediated by antigen recognition, costimulatory

signals, and exposure to cytokines such as TGF-b, IL-6, IL-21,
and IL-1b. These signals drive the expression of the Th17 master

transcription factor RORgt and STAT3, regulating the production

of IL-17 and IL-22 (84–89).

Numerous studies conducted in the late 1990s and early 2000s

established that both canonical and non-canonical NF-kB signaling

pathways were crucial for Th1 and Th2 differentiation, albeit acting

at different stages. T cells deficient in IkBa degradation, as well as
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those lacking c-Rel or RelA expression, display impaired Th1

responses, independent of T-bet expression. Instead, both NF-kB
subunits directly regulate IFNg expression, potentially in

cooperation with STAT4. Notably, p50 deficiency did not

influence T-bet or IFN-g expression in CD4 T cells, suggesting

that RelA may regulate IFNg through homo- or heterodimers with

other NF-kB subunits (90). RelB, however, is required for T-bet

expression, likely through STAT4 induction (91). Other studies

have shown that NF-kB signaling was also instrumental in Th2

differentiation (92). Specifically, p50/Rel is necessary for GATA3

induction mediated by IL-4, while RelA/p65 and c-Rel worked in

conjunction with NFAT to support IL-4 induction in a TCR-

dependent manner (90, 92–95). The roles of NF-kB subunits in

Th17 differentiation have been corroborated by various studies,

demonstrating the importance of both RelA and c-Rel in IL-17

expression, as well as for c-Rel’s transcriptional activity in

promoting RORgt expression (96). Additionally, the atypical IkB
protein IkBz (97) (Figure 1B) is involved in Th17 differentiation. It

cooperates with RORgt and RORa to drive IL17A expression, and

its deficiency causes a defect in Th17 differentiation and a resistance

to EAE (97).

Together these foundational studies established a link between

NF-kB and CD4 T cell differentiation. However, they also had

technical limitations, such as reliance on germline or conditional

gene deletion and in vitro conditions. These factors made it difficult

to gain a clear understanding of the timing and specific

contributions of each subunit during the differentiation of T

helper subsets. To address this, the roles of c-Rel and RelA in

CD4 T cell differentiation have recently been revisited using novel

tamoxifen-inducible mouse models that specifically delete c-Rel or

RelA expression in naive CD4 T cells (69). These studies have

demonstrated that c-Rel is more critical than RelA in regulating

CD4 T cell proliferation (particularly under conditions of supra-

optimal TCR and costimulatory signaling in the absence of IL-2) as

well as in the expression of IL-2 and TNF in both human and

murine cells (69). Additionally, unlike findings from earlier studies,

this recent report shows that neither c-Rel nor RelA are essential for

the expression of T-bet, GATA3, IFNg, or IL-13, and thereby not

critical for Th1 and Th2 cell differentiation. By contrast, both NF-

kB subunits are essential for the expression of the Th17 master

transcription factor RORgt, with RelA also playing a role in

regulating IL-17 expression (Figure 3D). Surprisingly, CD4-

restricted ablation of RelA (but not c-Rel) provides protection

against experimental autoimmune encephalomyelitis (EAE),a

model of autoimmune disease that heavily relies on the presence

and function of pathogenic Th17 cells (69).

Although these elegant NF-kB -inducible models have not yet

been employed to study T follicular helper (Tfh) cell differentiation,

recent reports suggest a potential role for NF-kB signaling in this

process. For instance, patients with a truncated mutation of NFKB2

exhibit a reduced presence of Tfh and T follicular regulatory T (Tfr)

cells, along with impaired germinal center (GC) potential. It

remains unclear whether this loss is independent of associated B

cell defects caused by the truncated mutation (98). By contrast, non-

canonical NF-kB signaling plays an important role in the expression
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of proteins that facilitate Tfh differentiation, such as ICOS ligand

(ICOSL) in BAFF-stimulated B cells (99). Similarly, CD4 T cells

deficient in p50 demonstrate defects in CXCR5 expression, which is

critical for Tfh cell localization within the germinal center (100).

Despite these findings, it is still unknown whether other canonical

NF-kB subunits are essential for Tfh development, or whether NF-

kB plays a role earlier in Tfh priming and/or later during the

differentiation process in a T cell-intrinsic manner. Moreover,

significant knowledge gaps persist regarding the impact of

T cell-intrinsic NF-kB signaling on affinity maturation and

B cell fate or function. Addressing these questions will enhance

our understanding of Tfh biology and its implications for

immune responses.

While the referenced studies have established a direct

correlation between NF-kB epigenetic and transcriptional activity

and CD4 T cell effector function and differentiation, the role of

upstream intermediates in the NF-kB signaling cascade should not

be overlooked. Caution is warranted, however, as upstream

components of the NF-kB cascade often engage in significant

crosstalk with other signaling pathways (Figure 2). Investigations

using CARMA1-deficient T cells have confirmed that TCR-

proximal NF-kB signaling is crucial for the Th17 phenotype and

function (IL-17, IL-22, IL-21, IL23R, CCR6 expression) but not for

Th1 or Th2 differentiation. Interestingly, mice with CARMA1-

deficient CD4 T cells exhibit resistance to experimental

autoimmune encephalomyelitis (EAE), yet their T cells do not

show impaired expression of RORgt, Ahr, IRF4, or STAT3/

STAT5 signaling (77). This finding suggests that CARMA1-

dependent NF-kB signaling is required following the initial

priming and polarization of Th17 cells and is essential for

completing Th17 differentiation.

Other studies have also shown that a deficiency in the formation

of the CBM complex lead to defects in the induction of Th1 and

Th17 subsets. Mechanistically, this did not seem related to IKK and

NF-kB but rather to the ability of the CBM complex to facilitate

efficient glutamine uptake through ASCT2 and activation of

mTORC1 upon TCR/CD28 stimulation (101). On the other hand,

T cells expressing constitutively active MALT1 show impaired NF-

kB signaling but exhibit continuous degradation of the downstream

target Roquin-1, leading to unregulated differentiation of naive T

cells into Th1 and Th17 effector cells. Notably, MALT1-mediated

degradation of Roquin-1 and regnase-1 appears to regulate Th17

differentiation in a manner dependent on TCR signal strength (102,

103). Roquin-1 naturally represses key proteins involved in CD4

Th17 differentiation (such as IkBNS, ICOS, IRF4, and Regnase-1),

but its cleavage by MALT1 is necessary for derepression of IkBNS,
which acts on nuclear NF-kB complexes. This cleavage occurs only

under strong TCR signaling conditions (102) and similarly applies

to Regnase-1 (103). Consistent with these findings, Roquin-

deficient T cells are impaired in Th17 differentiation (103), as are

mice deficient in the atypical IkB protein IkBNS (104).
As previously mentioned, PKCq is the most proximal TCR NF-

kB signaling intermediate, phosphorylating CARMA1 to facilitate

the formation of the CBM complex. Yet, in stark contrast to other

downstream NF-kB signaling intermediates, PKCq deficiency does
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not affect Th1 differentiation but is linked to defects in Th2

differentiation (105, 106). Some reports also indicate a connection

between PKCq and Th17 differentiation, potentially via STAT3 or

by overriding Foxp3 suppression through SRC1 phosphorylation

(107, 108). Interestingly, PKCq-deficient T cells show specific

impairment in TCR-dependent NF-kB signaling while retaining

functional TNF and IL-1-driven NF-kB signaling (109). This

suggests that PKCq impacts Th differentiation at priming (when

antigen is present) either independently of NF-kB or by altering the

TCR signaling thresholds required for differentiating into specific

Th subsets.

Furthermore, recent studies have explored the role of non-

canonical NF-kB signaling in Th differentiation and illuminated the

potential roles of upstream NF-kB signaling intermediates that are

independent of the NF-kB transcription factors. For example,

studies using IkkaAA knock-in mice deficient in IKKa activation

found that nuclear IKKa selectively associates with the Il17a locus,

promoting histone H3 phosphorylation and transcriptional

activation in a NF-kB –independent manner (110). Additionally,

mice deficient in NIK or Rag deficient mice reconstituted with NIK

deficient CD4 T cells show impaired Th17 differentiation (but not

differentiation to other Th subsets) and are resistant to EAE (111).

This is in part due to their regulation of RORgt and IL-23R via the

cooperation of IL-6R and TCR signals (111). A recent report also

indicated that inhibition of IAPs (which leads to NIK stabilization

and subsequent induction of p52-RelB) impairs Th17

differentiation and favors Th2 differentiation instead (112). These

findings are consistent with a previous study reporting that p100-

deficient T cells fail to differentiate into Th17 cells (113). Thus, both

canonical and non-canonical NF-kB signaling can regulate Th

differentiation. Although it is unclear whether this is related to a

crosstalk between both pathways, inhibition of IAPs appear to shift

canonical toward non-canonical signaling in CD4 T cell

differentiation. This suggests that while non canonical NF-kB
signaling is important for the initiation of Th cell differentiation

for certain subsets (such as Th17), a shift toward non-canonical

signaling may divert CD4 T cells away from Th17 differentiation

and inflammatory IL17 or GM-CSF (114) production and toward

the generation of more regulatory Th2 and Treg subsets (112).

Regarding Tfh differentiation, there are currently no established

links between T cell-intrinsic non-canonical NF-kB signaling

intermediates and Tfh development. It is important to note that

many studies discussed above did not utilize inducible systems to

control non-canonical signaling temporally or to restrict its

activation exclusively to CD4 T cells. Given that non-canonical

NF-kB signaling regulates lymphoid organogenesis, these studies

could not rigorously exclude other non-CD4 T cell-intrinsic defects.

This complicates the interpretation of the results. Additionally, in

vitro and in vivo findings due to altering non canonical NF-kB
signaling in T cells do not often align. This highlights the potential

relevance of TNFR members (Figure 2) that are not included in in

vitro studies.

In summary, future studies should adopt more rigorous

approaches to clarify the T cell-intrinsic interplay of canonical
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and non-canonical NF-kB signaling and its relationship with TNFR

costimulatory receptors in the context of disease.
CD8 T cell differentiation

PKCq is required for CD8 effector responses in vivo,

particularly in the context of weak innate signals (115) (Figure 2).

By contrast, CARMA1 deficiency has a more profound impact on

CD4 T cells than on CD8 T cells. Supporting this notion, TCR

mutant T cells that are impaired in CBM complex formation can

still undergo normal CD8 effector differentiation during Listeria

monocytogenes infection (64). However, in the context of cancer,

one study has indicated that CARMA1 is critical for controlling

transplantable tumors (116); although, it remains unclear whether

this effect is solely due to the deficiency of CARMA1 in CD8 T cell

function or is also influenced by the lack of CARMA1-deficient

CD4 T cell help to CD8 T cells, as suggested by a recent

investigation (69). Given the limited studies using CD8-restricted

conditional or inducible BCL10, MALT1, or any of the NF-kB
subunit mouse models, the specific roles and temporal regulation

of CD8 effector differentiation remain unresolved in the

field (Figure 3D).
gd T cell differentiation

gd T cells can differentiate into Th1- or Th17-like gd T effector

cells, with gd T17 cells playing a crucial role in antibacterial

immunity (117–119). Unlike induced NKT cells, NF-kB signaling

is dispensable for the generation of gd T cells; however, it is

necessary for IL-17 production by gd T17 cells in response to

LTbR engagement. RelA regulates the expression of LT ligands in

accessory thymocytes, while RelB, acting downstream of LTbR, is
required for the expression of the transcription factors RORgt and
RORa, facilitating the differentiation of thymic precursors into gd
T17 cells (120).
NF-kB signaling, thymic and
peripheral Tregs

A substantial body of literature has established the critical role

of the NF-kB signaling cascade in the generation and function of

regulatory T cells (Tregs). Tregs can be categorized into two types:

thymic Tregs (tTregs), which arise during thymic selection (43,

121), and peripheral Tregs (pTregs), generated from conventional

CD4 T cells that attain stable Foxp3 expression in tissues such as the

gut mucosa. Additionally, a third type known as in vitro-induced

Tregs (iTregs) can be generated by differentiating conventional CD4

T cells under specific conditions. Regulatory CD4 T cells are

phenotypically characterized by high expression of the IL-2

receptor alpha chain (CD25) and the master transcription factor

Foxp3. Foxp3 directly and indirectly regulates a multitude of
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suppressive mechanisms that control inflammation and

autoreactivity. Among these mechanisms are the expression of IL-

10, Granzyme B, and CTLA-4, which hampers dendritic cell (DC)

activation. Expression of CD25, instead, acts as a sink for IL-2,

limiting the expansion and activation of CD8 T cells, natural killer

(NK) cells, and innate lymphoid cells (ILCs). Remarkably, Tregs

have also recently been recognized for their roles in tissue repair and

wound healing, employing mechanisms that are distinct from

immunosuppression [recently reviewed in (122, 123)].

The specific role of NF-kB in the generation of thymic Tregs is

well established. It predominantly relies on TCR-mediated NF-kB
signaling. Tregs that develop in the thymus are selected based on the

strength and affinity of their TCR interactions with self-peptide-

MHC complexes. Moderately strong interactions guide immature

CD4 T cells toward becoming tTregs, endowing them with

suppressive competence (43, 121). Interestingly, the selection

processes for tTregs and naive T cells do not equally dependent

on NF-kB signaling. Deficiencies in various intermediates of TCR-

dependent NF-kB signaling (such as PKCq, CARMA1, BCL10,

TAK1, and IKKb) significantly reduce the number of tTregs

without compromising the generation of conventional CD4 or

CD8 T cells. The observation that thymic Treg development is

restored in TAK1 and Carma-1 deficient mice crossed with

transgenic mice expressing a constitutively active form of IKKb
(IKKEE-Tg) further reinforces the idea that NF-kB signaling is

sufficient to support Treg development (48, 124–128). However, it is

less clear whether other stimuli (aside from antigens) driving NF-

kB signaling also support Treg development in the thymus. A study

by Mahmud et al. demonstrated that inhibition of TNFRSF

members GITR, OX40 and TNFR2 signaling abrogates tTreg

development in a TAK1-dependent manner (129). This study also

indicated that TCR signaling regulates the levels of these TNFRSF

members, allowing thymocytes to respond more efficiently to

GITRL, OX40L and TNF signal and thereby facilitating their

differentiation into tTregs (129). Importantly, this study did not

clarify whether the role of these TNFRSF members in tTreg

development is dependent on NF-kB signaling (129). Therefore, it

is possible that TAK1 regulates tTreg development in an NF-kB
-independent manner, similar to the mechanisms observed in SP

thymocytes (50).

Recent reviews underscore the critical roles of both c-Rel and

RelA in the development of Tregs within the thymus and their

stability in the periphery. RelA deficiency leads to a complete

blockade in the development of RORgt+ Treg cells (130, 131).

However, studies involving conditional deletion of c-Rel or RelA

specifically within developing and mature Tregs have revealed

distinct roles in Treg biology. These studies demonstrate that c-

Rel is critical for thymic Treg development and the expression of

GITR and CD25. In turn, p65/RelA is essential for the

differentiation of tTregs and also for peripheral Treg

differentiation and maintenance of immune tolerance (131).

Mechanistically, the NF-kB subunit c-Rel binds to the TCR-

responsive conserved non-coding enhancer sequence 3 (CNS3) in

precursor Tregs, significantly contributing to the expression of

Foxp3 (128, 132)(Figure 3A). Additional studies indicate that
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p65/RelA enhances Foxp3 functions through the kinases Stk3 and

Stk4. The group of Hongbo Chi found that both kinases are

important for Foxp3-mediated peripheral tolerance by regulating

the levels and function of peripheral (but not thymic) Tregs (133).

These kinases modulate IL-2/STAT5 signaling, which is crucial for

CD25 and Foxp3 expression, Treg lineage survival, stability, and

function (133). Furthermore, Chatila’s group showed that Stk3 and

Stk4 are integral components of a TCR/NF-kB signaling network,

wherein TCR signaling leads to the nuclear translocation of Stk4.

Stk4 forms a complex with p65/RelA and Foxp3, facilitating the

control of the Treg transcriptional program through the

phosphorylation of Foxp3 at Ser418 (134). Thus, the canonical

NF-kB pathway emerges as a master regulator of Treg development

and function.

The non-canonical NF-kB pathway has also been linked to

Tregs, albeit in an unexpected manner. Conditional deletion of

NFKB2 and/or RelB (in both total T cells and Tregs) has revealed a

critical role for NFKB2 in maintaining Treg homeostasis (135).

Specifically, NFKB2 limits the formation of RelB complexes that

regulate cell-autonomous Treg expansion in the periphery. This

uncontrolled Treg expansion is restored upon deletion of RelB

(135). In contrast to this, other studies have shown that forced

activation of the alternative pathway (through deletion of TRAF3

(Traf3−/− mice) or overexpression of NIK (NIK-transgenic [Tg]

mice)) results in an increase in Treg numbers (136, 137). These

findings suggest that the primary function of NFKB2 is to prevent

aberrant RelB activation, with little or no role in regulation of Tregs

under steady-state conditions. Given that NIK and IKKa can also

activate the canonical pathway (Figure 2), it is possible that the

effects of upstream intermediates in alternative NF-kB signaling on

Tregs primarily operate through the canonical pathway (involving

p65/c-Rel rather than through the non-canonical NF-kB subunits).

Furthermore, the specific roles of the alternative pathway in high-

inflammatory contexts, such as chronic infections where TNF

receptor superfamily members (e.g., OX40, GITR) are actively

engaged, still require further elucidation (138, 139). For instance,

unprocessed NFKB2 (p100) may be induced by acute TCR signaling

and could function as an inhibitor of RelB, thereby limiting Treg

expansion until inflammatory, TNF receptor-mediated signaling

activates the processing of p100 into p52. This processing may

enable the formation of RelB-containing complexes that promote

Treg expansion, potentially affecting their functionality (135, 139).

NF-kB signaling is also essential for the suppressive function of

Tregs. For example, conditional deficiency of PDK1 in CD4 T cells

results in reduced Treg levels and impaired function (Figure 2). This

leads to uncontrolled proliferation of TCRgd cells and expression of

IL-17, ultimately triggering colitis (140). It remains uncertain,

however, whether PDK1’s regulation of Treg function depends

exclusively on NF-kB signaling or involves other pathways, such

as mTOR. Interestingly, the downstream target of PDK1, PKCq, has
been found to inhibit Treg function (141, 142). Research indicates

that PKCq (Figure 2) localizes differently within Tregs compared to

conventional CD4 T cells at the immunological synapse, resulting in

a bias toward Treg programming over alternative Th effector fates

(141, 142). Consistent with this observation, inhibition of PKCq
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enhances the suppressive capacity of Tregs, restores the impaired

function of Tregs from rheumatoid arthritis patients, and blocks

autoimmune responses in mouse models of colitis (143).

Furthermore, the Ubc13/IKK axis plays a positive role in Treg

suppressive function as conditional ablation of Ubc13 in Foxp3+

Tregs leads to multi-organ inflammation due to uncontrolled

activation of conventional T cells (Figure 2) (144). Additionally,

atypical members of the IkB family, such as Bcl3, IkBz, and IkBNS,
also contribute to Treg biology by fine-tuning the transcriptional

activity of NF-kB in the nucleus. Unlike classical IkBs, these atypical

members are not degraded but are induced upon stimulation (29).

They regulate dimer exchange, recruit histone-modifying enzymes,

and stabilize DNA-bound NF-kB dimers (29). Specifically, deletion

of Bcl3 in Tregs abrogates its interaction with p50, promotes the

formation of RORgt+ Tregs, and enhances mice’s resistance to

induced colitis (145–147). By contrast, deletion of IkBz in Tregs

results in impaired Treg function, potentially due to the inhibition

of Foxp3 promoter activation (97, 148). Taking altogether, while the

NF-kB signaling pathway is crucial for the generation and function

of Tregs, not all pathway members share identical roles. This

suggests that complex, non-redundant mechanisms are involved

in fine-tuning this important T cell subset.
NF-kB signaling, T cell memory
generation and maintenance

Memory T cells, long-lived plasma cells and memory B cells, are

essential components of protective immunity. These memory

lymphocytes have a unique ability to survive for extended periods

within the body and, respond rapidly upon re-exposure to the same

antigen that prompted their generation. This antigen can originate

from various sources, including microbes (infections), self-tissues

(autoimmunity or cancer), or foreign tissues (transplants).

Consequently, memory T cells serve not only as powerful tools

for the immune system to prevent disease but also as mediators of

autoimmune pathology and transplant rejection. Memory T cells

can recognize highly conserved antigens that are not accessible to

antibodies. Interestingly, these antigens are often less prone to

mutation when compared to epitopes recognized by antibodies or

B cell receptors (BCRs). This allows memory T cells to effectively

circumvent the immune escape of rapidly mutating pathogens (such

as influenza or SARS-CoV-2 viruses). In the context of cancer, the

generation of tumor antigen-specific memory CD8 T cells also

holds significant promise for preventing metastasis and recurrence.

Therefore, eliciting memory T cells is a desirable goal in vaccine

development and cancer immune therapies. NF-kB signaling plays

a crucial role in the development and maintenance of T cell

memory. However, the specific mechanisms and NF-kB-driven
signals that regulate these processes during immune responses are

still not well understood.

The pool of memory T cells in an individual includes various

subsets, such as central memory T cells (TCM), effector memory T

cells (TEM), resident memory T cells (TRM), lymphoid tissue-

inducible (LIP) memory cells, and virtual memory T cells (149).
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These subsets can be broadly classified based on their locations.

Circulating memory T cells reside in secondary lymphoid organs

(TCM) or move in and out of tissues via the bloodstream (TEM). In

contrast, TRM cells stay localized within specific tissues and provide

immediate protection against infections (150–153) while limiting

viral transmission (154). The presence of TRM cells in tumors and

draining lymph nodes is often associated with better cancer

outcomes (155–157). Although circulating memory T cells are

important for protective immunity and play essential roles in

certain diseases (158), understanding the generation, function,

and maintenance of both TRM and circulating memory T cells is

crucial. Elucidating these processes will help develop strategies to

enhance immune responses and improve therapeutic outcomes

across various diseases.

Early studies using genetic models, alongside analyses of human

patients with mutations suggested that NF-kB signaling played a

role in establishing long-term protective T cell memory pools (159,

160), However, the lack of inducible T cell-restricted NF-kB models

has made it difficult to determine whether the observed defects in

memory T cell levels result from early issues with T cell priming or

proliferation, or from later problems in differentiation and survival.

Likewise, these studies did not identify the environmental cues

needed for T cell memory or whether NF-kB signaling is more

important for specific memory subsets. In one of our studies, we

discovered that T cells with TCRs that poorly activate NF-kB
signaling—due to defects in forming the CBM complex—are

unable to differentiate into circulating memory CD8 T cells

during a systemic bacterial infection, despite normal effector

differentiation (64, 161). Further research revealed that NF-kB
signaling plays an unexpected role during the late phase of the

immune response, particularly during contraction as memory

precursors develop into memory cells (162). We used various

genetic tools to show that p65/RelA is crucial for generating

central memory CD8 T cells (TCM) during this phase (64). NF-kB
signaling works in a feed-forward loop with the transcription factor

Eomes and the kinase Pim1 (162). Deleting TCR-dependent NF-kB
signaling or overexpressing an inactive form of PKCq led to reduced
Pim1 expression, loss of Eomes, and lower TCM levels (162).

Additionally, the loss of Pim1 activity resulted in decreased

phosphorylated p65 NF-kB levels (162). Collectively, these

findings indicate that during the early immune response, TCR

signaling through NF-kB induces Pim1 expression. Once the

antigen is cleared, Pim1 works with Eomes and NF-kB to sustain

the necessary levels of NF-kB required for generation and

maintenance of circulating TCM cells.

The role of non-canonical NF-kB signaling in T cell memory

has been explored in two studies (163, 164). Rowe et al. utilized

NIK-deficient CD4 T cells in the context of LCMV infection and

were the first to demonstrate that NIK deficiency impairs both the

accumulation of effector and memory CD4 T cells, although it does

not affect their function (164). Notably, the memory defect was

more severe than the effector defect. Since no difference in the

generation of memory precursors was observed, it is possible that

NIK play a role in the maturation or survival of CD4 memory cells.

Similarly, Li et al. showed that NIK also regulates CD8 T cell
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memory (163). However, neither study addressed whether the

observed memory defects were due to alterations in Treg

development, lack of CD4 T cell help, impaired T cell expansion,

or differential effects on circulating and resident memory T cell

populations. Additionally, these studies did not assess whether the

memory defects were NF-kB dependent or identify any TNFRSF

members responsible for NIK activation. CD27, 4-1BB, and GITR

are TNFR family members known to play important roles in T cell

memory. 4-1BB and GITR signal through the canonical NF-kB
pathway but they regulate tissue resident memory in an mTOR-

dependent manner (165, 166). In contrast, CD27 can activate both

the canonical and non-canonical NF-kB pathways (42, 167) and

regulates Pim1 expression (168), which is critical for CD8 T cell

memory survival via the TCR (162, 168) Thus, it is possible that

TCR canonical signaling and CD27 non-canonical signaling

converge at the level of Pim1 to regulate CD8 T cell memory.

Recently, we investigated how canonical NF-kB signaling

contributes to the development and maintenance of different

memory T cell subsets during influenza infection (169). We used

two tetON IKKb inducible mouse models that allow for the

expression of both active and inactive forms of the IKKb kinase

(169). This approach enabled us to examine how NF-kB signaling

influences CD8 T cells at various stages of the immune response to

influenza. Our findings revealed distinct roles for IKKb/NF-kB
signaling in generating influenza-specific circulating memory T

cells and resident memory T cells (TRM). Higher levels of IKKb/
NF-kB signaling after day 8 post-infection were associated with an

increase in circulating memory CD8 T cells. However, this was

accompanied by a decrease in TRM in the lung, which negatively

impacted protective immunity against influenza. In contrast,

inhibiting IKKb/NF-kB signaling led to a reduction in circulating

memory T cells while increasing TRM populations in the lung (169).

We found that NF-kB signaling limits the transcriptional program

of TRM cells without affecting their recruitment to the lung, likely

due to inhibiting local TGF-b signaling (169). Additionally, TNF

acts as a driver of NF-kB signaling during influenza infection and

negatively influences TRM cell generation. Blocking TNF increased

the number of influenza-specific CD8 TRM cells in the lung and

improved TGF-b signaling along with the expression of Runx3

(169). It remains unclear whether high or chronic levels of TNF

affect CD8 TRM generation in other contexts, as TNF levels often

rise in certain infections and chronic inflammatory diseases. Other

cytokines and TNF receptor superfamily members may also

modulate NF-kB levels, influencing the size of circulating and

resident memory CD8 T cell pools.

While previous studies employing single-cell RNA sequencing

have indirectly suggested the importance of NF-kB for tissue-

resident memory (151, 170–172), our research demonstrates that

NF-kB signaling is crucial for memory diversity and T cell-

mediated immunity (169), (Figure 3E). However, the exact

mechanisms by which the transcription factor NF-kB
differentially regulates circulating and TRM cells remain to be

determined, especially regarding the involvement of NF-

kB subunits.
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Establishing an efficient CD8 T cell memory pool depends on

two key factors: effective differentiation and persistent survival. We

have discovered that NF-kB signaling also plays a crucial role in

maintaining CD8 T cell memory and positively influences both

circulating and tissue-resident memory (TRM) cells. When NF-kB
signaling is inhibited in CD8 memory T cells, both influenza-

specific circulating and lung-resident memory T cells diminish.

This loss is likely due to decreased levels of survival factors like Bcl-2

and IL-15R (CD122) (169). On the other hand, increasing IKKb/
NF-kB signaling in memory T cells increases the levels of Bcl-2 and

IL-15R, which enhances both TRM and central memory (TCM)

populations (169). These findings, altogether, indicate that

canonical NF-kB signaling regulates the generation and

maintenance of memory CD8 T cells in distinct ways; although,

the specific mechanisms still need further investigation.

In summary, NF-kB signaling is critical for forming and

maintaining memory T cells. Its role is complex and varies

depending on the level of NF-kB activation and the stage of T

cell differentiation. The studies we discussed provide insights into

how tuning NF-kB signaling can aid to independently regulate the

levels of circulating and resident memory CD8 T cells. This

approach could be particularly useful in certain diseases, allowing

to selectively deplete TRM while preserving circulating memory

cells. Such a strategy may help reduce pathogenicity without

sacrificing protective immunity.
NF-kB signaling and T cell exhaustion
or dysfunction

T cell exhaustion or dysfunction refers to effector T cells that are

persistently stimulated by antigens and costimulatory signals,

typically in chronic infections, cancer, or autoimmunity (173).

Exhausted T cells gradually lose their effector functions, such as

cytokine secretion and the ability to kill target cells. This decline is

caused by an accumulation of inhibitory signals, marked by high

levels of inhibitory costimulatory molecules like PD-1, CTLA-4,

Tim-3, LAG-3, TIGIT, and 2B4 (173). Immune checkpoint

blockade (ICB) is a therapeutic strategy that uses antibodies to

inhibit PD-1 and CTLA-4 signaling. This approach reduces

inhibitory signals and helps rejuvenate exhausted T cells,

restoring their effector functions (174). However, ICB is not

equally effective for all patients. It works best in T cells that have

not reached terminal exhaustion, particularly in stem-like or Ly108

+ progenitor exhausted T cells located in draining lymph nodes, and

CX3CR1 effectors migrating to tumors (175). Recent studies that

employed single-cell RNA sequencing have shown that the NF-kB
family (including REL, RELB, NFKB1, and NFKB2) is more active

in Ly108+ T progenitors of exhausted T cells (176, 177). This

suggests that NF-kB signaling is crucial for the development and

maintenance of these cells (177). Additionally, different SWI/SNF

complexes epigenetically regulate the various stages of T cell

exhaustion. The BAF complex promotes the differentiation of

exhausted T cell progenitors into an effector-like subset, while the
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PBAF complex prevents terminal exhaustion, helping to maintain T

cell progenitors. Although the exact mechanisms behind the

balance between BAF and PBAF are not completely clear, it is

likely that NF-kB signaling connects these processes with T

progenitors (178, 179). Further research is essential to explore

these possibilities and elucidate the complex dynamics of NF-kB
signaling in T cell exhaustion.

The potential for NF-kB signaling to regulate T cell exhaustion

is significant, but no study has definitively established its role. It’s

still unclear which specific components of the NF-kB signaling

pathway are critical and how they might function during the

differentiation of exhausted T cells. Recent research suggests that

4-1BB-dependent NF-kB signaling can help T progenitors

differentiate into effector-like cells and promote their proliferation

through RelA and c-Rel signaling. Notably, using 4-1BB therapy

alongside anti-PD-1 treatment (but not before treatment or in

established tumors) led to reduced tumor burden and longer

survival (180). If future studies confirm that NF-kB signaling is

essential for maintaining tumor-specific T cells at low exhausted

stages (i.e. progenitors of exhausted T cells) this could open new

avenues for treatment strategies.
NF-kB signaling, transcriptional,
epigenetic and metabolic regulation

NF-kB signaling plays a crucial role in T cell responses at the

transcriptional, epigenetic, and metabolic levels (15, 181–183). T

cell differentiation involves changes in chromatin structure, which

affect gene accessibility. Each transition between naive, effector, and

memory T cells includes chromatin remodeling, shifting from

compacted (silent) to active states (184–186). This remodeling is

controlled by chemical modifications to histones and DNA. Various

enzymes act as “writers” (which add acetyl or methyl groups),

“erasers” (which remove them), and “readers” (which bind to

modified chromatin). Chromatin modifications generally precede

gene transcription and are influenced by epigenetic regulators (9,

187–190). Typically, histone acetylation promotes transcription,

while methylation is linked to gene silencing.

NF-kB family members are key players in chromatin

remodeling. They can recruit and position chromatin modifiers to

specific genes (191, 192). For example, GITR-dependent NF-kB
signaling helps induce Tregs to become Th9 cells by allowing p50 to

recruit deacetylases HDAC1 and Sirt1 to the Foxp3 locus. This

process leads to the closure of the Foxp3 locus, enabling induced

Tregs to differentiate into inflammatory Th9 cells (193). Research

shows that RelB also aids in regulating chromatin in activated T

cells. In Th17 conditions, OX40 stimulation represses IL-17

expression by directing RelB to the IL-17 locus, leading to the

trimethylation of H3K9 and the closure of the IL-17 locus (192).

Conversely, RelB can promote Th19 differentiation by recruiting

acetyltransferase p300/CBP to the IL-10 locus (194).

Mounting evidence also suggest that the specific partners of NF-

kB subunits can separate their epigenetic and transcriptional tasks

(195). However, the mechanisms behind these separations and the
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modifiers are still unclear. New techniques like ATAC-seq,

CUT&RUN, and CUT&Tag offer great promise for advancing our

understanding in this area. Recent research using single-cell ATAC-

seq has shown that the collaboration of RelA or c-Rel with IRF-3

and MAPK factors during TLR4 responses enhances remodeling

selectivity at specific genomic regions (196).

T cell metabolism is essential for T cell differentiation, and NF-

kB signaling plays a significant role in this process (197, 198). For

example, NIK-deficient tumor-infiltrating CD8 T cells do not shift

toward glycolysis, which leads to a loss of effector function and

impaired tumor control. Notably, NIK operates independently of

NF-kB subunits by regulating levels of intracellular reactive oxygen

species (ROS) (199). While there is limited information on how

other NF-kB signaling intermediates affect T cell metabolism, some

studies suggest a link between NF-kB signaling and mTOR in

regulating metabolic changes critical for T cell differentiation

(197, 198). mTORC1, which senses nutritional cues, is essential

for naive CD8 T cells to transition to glycolysis, ensuring they have

enough energy for effector functions. Research by Kane’s group has

found that CARMA-1 and MALT1, in addition to activating IKKb,
also contribute to mTORC1 activation, which is vital for CD4 T cell

proliferation (200). Moreover, Pearce et al. demonstrated that T

cells lacking TRAF6—a ligase important for IKKb activation in

response to antigen, TNF, and IL-1R stimulation—fail to

differentiate into memory T cells due to impairments in fatty acid

metabolism after IL-2 withdrawal during maturation. They found

that treatment with metformin and rapamycin could help recover

this memory defect (201). However, it remains unclear whether

TRAF6 functions independently of NF-kB signaling in this context.

It’s also worth noting that mTOR signaling can influence NF-kB
activity (202). Given the significant role of NF-kB signaling in

regulating metabolism in other cell types, it is highly likely that NF-

kB also plays a crucial role in the metabolic shifts necessary in T cell

function and differentiation. Further investigation to fully elucidate

the underlying mechanisms (Figure 4).
Dynamics of NF-kB signaling and their
impact in T cell fate decisions

How does the NF-kB signaling network inform a T cell’s

decisions, such as committing to a specific fate, secreting certain

cytokines over others, or surviving for extended periods? This is a

complex question with many unanswered aspects. T cells may

encounter a variety of NF-kB signaling triggers some of which

may converge on the same canonical or non-canonical pathway.

Both the level and timing of these signals, along with other

transcriptional and epigenetic factors, are important. Additionally,

T cells at different developmental stages may respond differently to

the same stimuli (Figure 4).

A foundational study by Hoffman and Baltimore demonstrated

that NF-kB signaling operates not as a simple ON/OFF mechanism

but rather exhibits a “tidal” pattern (203, 204). This means that NF-

kB signaling creates peaks and valleys of activation in an oscillatory
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manner which the cell interprets for decision-making (203). The

IkB family serves as the primary regulator of NF-kB activation and

is also induced by NF-kB signaling. Newly synthesized IkBa binds

to p50 and p65 in the nucleus, inhibiting their transcriptional

activity and shuttling the IkBa-p50-p65 complexes into the

cytosol. This process keeps NF-kB inactive until the next

signaling burst occurs (205). Other IkB family members also play

a role in modulating the dynamics of NF-kB activity (205).The

dynamics of NF-kB can vary depending on the ligand, dosage, and

duration of cell stimulation, leading to different gene expression

profiles and epigenetic changes related to T cell outcomes. This has

not been fully demonstrated in T cells. However, studies in other

cell types have shown that prolonged TNF stimulation can lead to

oscillatory NF-kB responses (203, 204), while prolonged LPS

stimulation results in more sustained NF-kB activation with fewer

oscillations (206, 207). These differences in NF-kB dynamics impact

various epigenetic programs. For instance, sustained non-

oscillatory responses in macrophages promote chromatin

remodeling and activate latent enhancers that regulate immune

response genes. Conversely, oscillatory responses are associated
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with maturation-related genes in B cells and chemokine

production in fibroblasts (208).

Additionally, recent studies suggest that chronic TNF-derived

NF-kB signals in the lung inhibit the generation of tissue-resident

memory T cells, while sustained signals in the lymph nodes increase

the levels of circulating memory T cells (169). This raises the

question of whether these effects are linked to different NF-kB
dynamics influenced by various triggers.

Growing evidence suggests that the dynamics of NF-kB
signaling—whether oscillatory or sustained—play a crucial role in

determining the accessibility of NF-kB-dependent genes and

influencing cell fate decisions (43, 209). However, the upstream

mechanisms that govern these dynamics are not well understood.

One key factor is the balance between IKK complex activation and

inhibitory mechanisms. Molecules involved in the formation,

ubiquitination, and activation of the IKK complex are essential

for this balance, along with the activity of inhibitory proteins such

as A20. For instance, variations in stimulus dosage, such as TNF,

can affect NF-kB signaling dynamics through negative feedback

loops involving A20 and IkBa (13). A20, like IkB, is induced by NF-
FIGURE 4

NF-kB signaling triggers and NF-kB mechanisms that regulate CD8 T cell fate during a T cell immune response. This cartoon illustrates the key
triggers and mechanisms of NF-kB signaling that influence CD8 T cell fate during a T cell immune response. The primary triggers of NF-kB signaling
include antigen recognition, inflammation (including costimulation and pro-inflammatory cytokines), and local cytokines. As levels of antigen and
inflammation decrease, other factors—such as tissue cytokines, TNF receptors, and internal NF-kB forward loops established early in the response—
assume a more prominent role in determining T cell memory fate during the late phase of the immune response. The functions of NF-kB that
operate in T cells are depicted in the cartoon; however, the specific mechanisms by which these factors regulate T cell fate, either independently or
synergistically, remain largely unknown. This figure was created using BioRender.com.
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kB signaling and helps degrade upstream intermediates, including

RIP1, TRAF6, and MALT1. This degradation inhibits further

activation of the IKK complex. Additionally, other negative

regulators of the NF-kB pathway, such as CYLD and OTULIN

deubiquitinases, may also contribute to the regulation of NF-kB
signaling (210, 211) (Figures 1C, D).

Additional mechanisms for controlling NF-kB dynamics

include preventing spontaneous activation by regulating the

processing of p100 or p105 (212, 213). Temporal separation of

activation signals and their receptors can occur in endosomes

through the ESCRT pathway (213). Moreover, signaling can be

modulated by microRNAs and long non-coding RNAs (214, 215).

Thus, the field of NF-kB biology is approaching a pivotal

moment. New inducible NF-kB animal models, along with

advances in single-cell RNA sequencing (scRNA-seq) and single-

cell ATAC sequencing (scATAC-seq), will significantly enhance our

understanding. These technologies, combined with computational

and signaling network models, will help elucidate how NF-kB
signaling in T cells influences decisions that can either protect

against disease or contribute to its progression.
NF-kB, cell type and temporal
targeting and therapeutics

NF-kB signaling is vital for T cell biology, especially in the

development of T cell subsets that, when deregulated, contribute to

various diseases. As discussed throughout this review controlling

NF-kB signaling intermediates in a temporal and specific manner

presents therapeutic opportunities for treating infections, cancer,

autoimmunity, and transplantation. Selectively targeting specific

NF-kB subunits could lead to effective treatments that provide

benefits without compromising other NF-kB functions. For

example, targeting c-Rel may enhance antitumor responses

because it is crucial for creating and maintaining activated Tregs

that accumulate at tumor sites and impair the function of anti-

tumor T cells (216).

However, precise targeting of specific T cell types is essential for

effectiveness. Early deletion of c-Rel in conventional CD4 T cells can

increase tumor burden and reduce responses to checkpoint

blockade (69). In studies, deleting c-Rel during the first five days

after tumor implantation reduced CD4 T cell priming, resulting in

more naive T cells but impaired effector functions (69). While in

this study the later roles of c-Rel and RelA in the antitumor

response not explored, it is plausible that inhibiting c-Rel at later

stages may not impact conventional T cells but rather affect

activated Tregs, potentially enhancing antitumor responses. In

related research, the Mempel group found that disrupting the

CBM complex—through the genetic deletion of CARMA1 or

inhibition of MALT1—promoted Treg activation toward a Th1/

IFN-g producing phenotype. This change, combined with PD-1

blockade, led to the rejection of PD-1 resistant tumors (217).

Conversely, other studies suggest that IKKb or CARMA1

activation can limit tumor growth in a CD8-dependent manner

(116, 218, 219). Thus, when evaluating NF-kB inhibitor
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therapeutics, it is vital to consider their effects on all components

of the antitumor response and the timing of their actions. This

approach could reveal new opportunities for using multitarget

inhibitors effectively.

In autoimmune contexts, early inhibition of p65/RelA (but not

other subunits) may be beneficial. Its absence in CD4 T cells has

shown complete protection against autoimmunity in an

experimental autoimmune encephalomyelitis (EAE) mouse

model, which relies on Th17 (69). There is less information on

effectively targeting NF-kB signaling to reduce transplant rejection,

as current alternatives to broad immunosuppressive treatments

often affect multiple immune cells. The potential for selectively

activating or deactivating NF-kB subunits to manage diseases with

deregulated T cell responses—while preserving T cell memory—

also deserves further exploration.

Numerous NF-kB inhibitors are being developed and tested in

clinical trials for various treatments. Additionally, existing drugs

that affect NF-kB activity are being repurposed, broadening options

for targeting this pathway. This topic has been thoroughly reviewed

recently, and we will not discuss it further here (55, 220).

Nonetheless, it is important to mention that none of the options

have achieved considerable success due to limited effectiveness or

associated toxicity. As the field continues to clarify the specific roles

of NF-kB subunits in disease, it is important to avoid broader

inhibitions, such as those affecting proteasome activity or

deubiquitination. Optimizing the timing of NF-kB inhibitor

administration will enhance T cell response modulation and

should consider the specific tissues and T cell subsets involved in

disease progression or resolution.
Conclusion and future perspectives

After nearly 40 years of research, the study of NF-kB signaling

has not only flourished but continues to yield unexpected

discoveries. This pathway has proven crucial in cell biology,

regulating essential processes such as cell division, apoptosis,

senescence, migration and effector function. NF-kB is classically

considered a driver of inflammation and organogenesis but, for T

lymphocytes, this signaling pathway is also a ruler of their fate. With

the advent of new transgenic inducible animal models, previously

contentious issues regarding the role of NF-kB in thymic selection,

homeostasis, and CD4 T cell differentiation have been revisited.

Recent findings have unveiled surprising roles for NF-kB in

antitumor T cell responses, experimental autoimmune

encephalomyelitis (EAE), and the development of T cell memory

during infections. However, a critical question remains: how does

the NF-kB signaling network enable T cells to make specific

differentiation choices?

This may depend on how NF-kB signaling influences T cell

epigenetics and metabolism. These areas, alongside NF-kB
dynamics, are largely unexplored and require further investigation

(Figure 4). Gaining a better understanding of how environmental

triggers of NF-kB work during the immune response, along with

their mechanisms, is essential and could lead to new therapeutic
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strategies. In addition to this, distinguishing between NF-kB-
dependent and independent roles of signaling intermediates in

the NF-kB cascade may clarify current knowledge, help identify

effective therapeutic targets and anticipate potential side effects

in treatments.

While this review does not cover it, existing literature has

discussed human mutations in NF-kB pathway components and

their disease implications (3, 34, 159, 221–223). Identifying

mutations in key NF-kB molecules is an area that offers valuable

insights and can enhance the rigor and impact of research using

animal models, ultimately contributing to the development of new

treatments for human diseases.

In conclusion, although significant progress has been made in

understanding NF-kB signaling in T cell biology, many exciting

areas remain to be explored. Advances in these fields will deepen

our insights into immune responses and pave the way for innovative

therapeutic strategies to combat diseases such as cancer,

autoimmunity, and transplant rejection.
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