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Breast cancer (BC) is a predominant malignancy among women globally, with its

etiology remaining largely elusive. Diagnosis primarily relies on invasive

histopathological methods, which are often limited by sample representation

and processing time. Consequently, non-invasive imaging techniques such as

mammography, ultrasound, and Magnetic Resonance Imaging (MRI) are

indispensable for BC screening, diagnosis, staging, and treatment monitoring.

Recent advancements in imaging technologies and artificial intelligence-driven

radiomics have enhanced precisionmedicine by enabling early detection, accurate

molecular subtyping, and personalized therapeutic strategies. Despite reductions

in mortality through traditional treatments, challenges like tumor heterogeneity

and therapeutic resistance persist. Immunotherapies, particularly PD-1/PD-L1

inhibitors, have emerged as promising alternatives. This review explores recent

developments in BC imaging diagnostics and immunotherapeutic approaches,

aiming to inform clinical practices and optimize therapeutic outcomes.
KEYWORDS
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1 Introduction

Breast cancer is one of the leading female malignancies globally and the second most

prevalent cancer overall (1, 2). The etiology of BC remains unclear, with diagnoses

primarily relying on morphological pathology, where histopathological examination is

the gold standard (3). However, this invasive method faces limitations such as difficulty in

obtaining representative samples and being time-consuming. Consequently, non-invasive

imaging techniques like mammography, ultrasound, and MRI are essential for BC

screening, diagnosis, staging, and monitoring treatment efficacy. Advances in imaging

technologies and artificial intelligence have facilitated the emergence of radiomics,

enhancing precision medicine through early detection, accurate molecular subtyping,

staging, prognostic evaluations, and personalized treatment plans (4).

Traditional BC treatments include surgical removal, radiotherapy, chemotherapy,

targeted therapies, and endocrine treatments, which have collectively reduced mortality
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rates. Nevertheless, challenges such as tumor heterogeneity,

therapeutic resistance, metastasis, and disease recurrence persist,

particularly in poor prognostic subtypes like HER-2 positive and

triple-negative BC (TNBC). The five-year survival rate for advanced

BC patients remains around 20% despite comprehensive

treatments. There is an urgent need for innovative therapies, with

immunotherapies gaining prominence. PD-1/PD-L1 inhibitors

have shown effectiveness in BC immunotherapy, although

challenges remain, especially for TNBC (5, 6). This review

highlights recent advancements in imaging diagnostics and

immunotherapy for BC to inform clinical interventions and

therapeutic strategies.
2 BC imaging diagnosis

Imaging technologies are essential for the diagnosis, staging,

and treatment monitoring of BC. Mammography is the primary

screening tool, while ultrasound, including elastography and

contrast-enhanced ultrasound (CEUS), aids in assessing tumor

characteristics and lymph node involvement. MRI techniques like

dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted

imaging (DWI), provide detailed insights into the tumor’s

microenvironment, molecular subtypes, and response to therapy.

Radiomics, combined with artificial intelligence and traditional

imaging, enhances diagnostic accuracy and supports personalized

treatment strategies.
2.1 Ultrasound imaging techniques

2.1.1 Conventional ultrasound for BC detection
Conventional ultrasound is a cornerstone in BC screening, widely

adopted due to its high sensitivity and specificity (7). The assessment of

axillary lymph node metastasis is crucial for determining clinical

outcomes and patient survival (8). Key ultrasound features, including

tumor size, internal echotexture, margins, and Adler blood flow

grading, are valuable for predicting axillary node involvement.

Additionally, the longitudinal-to-transverse ratio serves as an

important indicator for malignancy risk stratification, although its

reliability in forecasting lymph node metastasis remains debated (9).

Despite its critical role in diagnosing BC, guiding biopsies, localization,

axillary evaluation, and follow-up, conventional ultrasound is

associated with a high false-positive rate, resulting in numerous

unnecessary biopsies. Studes found that recommendations for further

assessment after the addition of ultrasonography to mammography

screening approximately doubled, and biopsy recommendation rates

increased 2- to 3-fold in patients with dense breast tissue (10, 11),

potentially increasing the burden of misdiagnosis in these populations.

2.1.2 Ultrasound elastography
Ultrasound elastography, including strain and shear wave

elastography (SWE), enhances conventional ultrasound by

assessing tissue stiffness to differentiate benign from malignant

lesions, reducing unnecessary biopsies. The method applies
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external force to deform tissue, with the probe capturing

displacement to generate grayscale or color images (12). Although

breast elastography’s accuracy versus traditional B-mode

ultrasound is debated, SWE lacks increased sensitivity for ductal/

lobular carcinomas (13). Tumor size affects outcomes, with smaller

lesions showing better sensitivity and specificity (14). Combining

elastography with conventional ultrasound improves diagnostic

performance (15, 16).
2.1.3 CEUS
CEUS visualizes tumor contrast distribution, revealing

microvascular architecture and blood supply, thereby

differentiating benign from malignant breast tumors with 100%

sensitivity and 87.5% specificity, strongly correlating with MRI

findings (17). In BC subtype classification, Wen et al. (18)

identified enhancement speed and intensity from 116 lesions as

subtype indicators. CEUS effectively evaluates axillary lymph node

malignancy. Niu et al. (19) found uniform enhancement benign and

absent/weak enhancement malignant with high sensitivity. It also

predicts sentinel lymph node metastasis (20), depicts lesion

reduction and microvascular changes (21), and forecasts

neoadjuvant chemotherapy response. Lee et al. (22) and Peng

et al. (23) demonstrated CEUS’s superiority over MRI in

predicting pathological response and residual tumor size. Thus,

CEUS enhances diagnostic accuracy, aids subtype differentiation,

evaluates lymph node status, and predicts chemotherapy outcomes,

making it essential for post-treatment BC assessment.

2.1.4 Automated breast ultrasound
volume scanning

ABUS is a 3D ultrasound technique that automatically scans the

breast from multiple angles, reducing operator dependence inherent

in handheld methods. This enhances examination reproducibility

and enables multi-planar reconstruction, with coronal views

decreasing interpretation time (24). ABUS allows clinicians to

review more images swiftly and demonstrates superior diagnostic

performance for lesions smaller than 5 mm (25). However, it excludes

axillary regions and lacks tools for assessing vascular distribution and

tissue elasticity (26). Gatta et al. (27) showed that combining digital

mammography with 3D prone-position ABUS significantly improves

BC detection in women with dense breast tissue.
2.1.5 S-detect technology
S-detect is a widely utilized AI-assisted system embedded in

ultrasound machines, leveraging deep learning algorithms for

computer-aided diagnosis. Aligned with the Breast Imaging

Reporting and Data System (BI-RADS), it autonomously

evaluates key tumor characteristics, including size, shape, depth,

margins, and internal structure, and classifies findings as either

“possibly benign” or “possibly malignant”. Applied in BC

diagnostics, S-detect enhances ultrasound accuracy and clinical

diagnostic capabilities (28, 29). When adjunctive for BI-RADS

category 4 nodules, it significantly reduces false-positive biopsy

rates, minimizing unnecessary invasive procedures (30).
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2.1.6 Ultrasound-guided percutaneous biopsy
Ultrasound-guided percutaneous biopsy employs real-time

ultrasound to precisely locate lesions and guide needle insertion

for tissue sampling, enabling accurate pathological examination.

This minimally invasive, highly accurate, and low-trauma

procedure is widely used in clinical practice (31). Pathological

data confirm BC diagnoses and provide critical information on

histological types, grading, and molecular tumor features, while also

effectively detecting metastatic lymph nodes (32). In cases of

ambiguous malignancies, surgical biopsy is often debated;

preoperative malignancy assessment could reduce surgeries and

patient burden. Girardi et al. (33) found that this technique

enhances diagnostic accuracy for uncertain malignancies, with an

upgrade rate of approximately 3%, thereby improving management

of suspicious lesions.
2.2 MRI

2.2.1 DCE-MRI
DCE-MRI employs high-resolution T1-weighted isotropic

sequences and rapid gadolinium-based contrast agent

administration via high-pressure injectors to enhance imaging. It

exploits tumor-induced angiogenesis, leading to permeable blood

vessels where contrast agents leak into the interstitial space, causing

localized signal enhancement. By analyzing time-signal intensity

curves, parameters such as Ktrans, kep, and ve differentiate

enhancement kinetics in breast lesions. Quantitative MRI

morphologies of invasive BC correlate significantly with

immunohistochemical biomarkers and subtypes (34, 35).

Differentiating benign from malignant lesions using Ktrans, kep, and

ve achieves accuracy rates of 94.50%, 79.82%, and 87.16%, respectively,

with sensitivities up to 99% and specificities as high as 97% (36).

2.2.2 Magnetic resonance spectroscopy
MRS employs point-resolved spectroscopy or stimulated echo

acquisition mode voxel sequences to acquire spectroscopic images

for tissue chemical analysis (37). It demonstrates high diagnostic

sensitivity and stable specificity, particularly effective for early-stage

BC, small tumors, and non-mass enhancing lesions (38). Lipid

metabolites differentiate benign from malignant conditions,

enhancing MRI specificity in fat necrosis identification, reducing

unnecessary biopsies. Invasive ductal carcinoma exhibits a higher

water-to-fat ratio, indicating BC response to neoadjuvant

chemotherapy (39, 40). MRS also evaluates tumor aggressiveness,

with elevated total choline (tCho) in highly proliferative tumors and

minimal choline peaks in low-activity lobular carcinoma (41).

Despite its potential, MRS lacks widespread integration into

multiparametric MRI protocols, requiring optimization through

multicenter trials for reproducibility and accuracy.

2.2.3 DWI
DWI measures the mobility of water molecules within tissues,

indirectly reflecting pathological and physiological characteristics
Frontiers in Immunology 03
influenced by factors such as cellular density, membrane integrity,

and microstructural constraints. It is clinically recognized as a

highly sensitive method for BC detection (42). Research suggests

that DWI may also aid in predicting pathological grading (43).

Apparent Diffusion Coefficient (ADC) values are significantly

reduced in both estrogen receptor (ER)-positive and ER-negative

BC (44). Conversely, HER-2 positive BC exhibit higher ADC values

compared to HER-2 negative cases. Interestingly, lower ADC values

are observed in ER/PR-positive BC, which is atypical since ER/PR

expression is generally associated with slower-growing, lower-grade

tumors, indicating an area ripe for further investigation.

2.2.4 Intravoxel incoherent motion diffusion-
weighted imaging

IVIM imaging enhances DWI by using a bi-exponential model

to separate microcirculatory perfusion from water diffusion.

Parameters ADC, coefficient (D), pseudo-diffusion coefficient

(D*), and perfusion fraction (F) differentiate benign from

malignant breast lesions. Low b-values reflect both diffusion and

perfusion, while high b-values mainly indicate diffusion, aiding

tumor microcirculation and diffusion analysis (45). IVIM-MRI

identifies tumor types, prognostic biomarkers, and therapy

response. Lower ADC values link to aggressive invasive BC

phenotypes (46, 47). In Luminal B tumors, D and ADC are lower

than in Luminal A. ER expression correlates with ADC, D, and F,

while D* relates to Ki-67. IVIM complements dynamic contrast-

enhanced MRI for precise differentiation (48).
2.2.5 Diffusion kurtosis imaging
DKI surpasses DWI and DTI by using non-Gaussian diffusion-

weighted analysis, calculating diffusion coefficient (D) and kurtosis

(K) to quantify tissue water diffusion deviations (49). It detects

abnormal water diffusion in tissues, with invasive BC showing lower

D values than benign lesions. Ductal carcinoma in situ also has

lower D values than benign conditions. The 50th and 75th

percentile D values in invasive BC are lower than in ductal

carcinoma in situ, offering 95.7% specificity in distinguishing

benign lesions from invasive cancer (49).
2.3 Mammography

2D digital mammography (DM) remains the leading modality

for BC screening and diagnostic evaluation in recalled patients (50).

However, DM’s efficacy is hindered by tissue overlap in 2D images,

which diminishes sensitivity (70%, dropping to 30% in highly dense

breasts) (51–53) and specificity (92%), causing 8% of healthy

women to undergo unnecessary recalls (52, 54). Additionally, DM

entails slight radiation exposure from x-rays (55) and significant

patient discomfort due to required breast compression (56). Digital

breast tomosynthesis (DBT) enhances mammography by acquiring

multiple tomographic images per view, generating a “semi-3D”

mammogram. This technique produces sequential thin slices,
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reducing tissue masking, improving cancer detection, and lowering

false-positive rates (57).
2.4 Computed tomography imaging

Breast CT provides comprehensive three-dimensional imaging,

thereby reducing the interference of overlapping anatomical tissues in

breast evaluations. In this method, patients are positioned prone,

allowing the breast to naturally extend away from the chest wall

without compression. The x-ray source and flat-panel detector rotate

horizontally around the breast, capturing numerous cone-beam

projections that are subsequently reconstructed into a 3D CT

image (58). While breast CT offers enhanced visualization of mass

lesions compared to mammography (58, 59), it exhibits lower spatial

resolution (60), is less effective in detecting microcalcifications (58),

and involves a higher radiation dose.
2.5 Radiomics

Radiomics, introduced by Gillies et al. (61) extracts quantitative

features from medical images using high-throughput computing,

transforming images into multidimensional datasets for tumor

evaluation, diagnosis, and prognosis prediction (62). The

workflow includes data acquisition, tumor segmentation, feature

extraction, selection, and model development (63, 64). In BC,

radiomics applications are diverse: predicting axillary lymph node

metastasis [Cui et (65)], combining mammography and MRI for

sentinel lymph node prediction [Cheng et al. (66)], distinguishing

BC subtypes and receptor status [Fan et al. (67), Leithner et al. (68)],

assessing TILs (69), establishing immune scores [Han et al. (70)],

and enhancing neoadjuvant chemotherapy (NAC) efficacy

evaluation (71, 72). Radiomics also links MRI features with

molecular subtypes, pathological complete response (pCR), and

residual tumor burden [Choudhery et al. (73)], while predicting

axillary metastasis and recurrence risk [Yu et al. (74) and Kim et al.

(75)]. Ultrasound and PET radiomics further predict lymph node

involvement, molecular subtypes, and recurrence (76–87). These

advancements underscore radiomics’ potential as a non-invasive

biomarker for precise BC clinical decision-making (Table 1).
3 Immunotherapy in BC

Immunotherapy aims to modulate the TME by targeting

immune suppression and evasion, employing strategies such as

antigen release, PD-1/L1 inhibition, immune activation, T cell

infiltration, cancer recognition, and apoptosis induction (88–92),

synergistically eliminating BC cells (93). However, the

immunosuppressive TME remains a significant barrier to the

efficacy of these therapies, especially in aggressive subtypes

like TNBC.
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TABLE 1 Overview of imaging technique for breast cancer diagnosis.

Category Technique Advantages Disadvantages

Ultrasound
Imaging

Conventional
Ultrasound

High sensitivity
and specificity;
guides biopsies
and evaluations.

High false-positive
rate leading to
unnecessary
biopsies.

Ultrasound
Elastography

Reduces
unnecessary
biopsies;
improves
diagnostic

accuracy when
combined with
conventional
ultrasound.

Limited sensitivity
for certain

carcinoma types;
effectiveness
influenced by
tumor size.

Contrast-
Enhanced
Ultrasound
(CEUS)

High sensitivity
and specificity;
correlates well
with MRI;
superior in
certain

predictive tasks.

Not
explicitly mentioned.

Automated
Breast

Ultrasound
Volume

Scanning (ABUS)

Reduces
operator

dependence;
better for small

lesions;
enhances

detection in
dense tissue.

Does not assess
axillary regions or
tissue elasticity.

S-detect
Technology

Enhances
diagnostic
accuracy;

reduces false-
positive biopsies.

Not
explicitly mentioned.

Ultrasound-
Guided

Percutaneous
Biopsy

Minimally
invasive; highly

accurate;
provides
essential
diagnostic
information.

May still require
surgical biopsy in

some cases.

Magnetic
Resonance

Imaging (MRI)

Dynamic
Contrast-

Enhanced MRI
(DCE-MRI)

High accuracy
in distinguishing

lesions;
correlates with
molecular
biomarkers.

Requires contrast
agents; potential for

false positives.

Magnetic
Resonance
Spectroscopy

(MRS)

High sensitivity;
effective for

early-stage and
small tumors;

reduces
unnecessary
biopsies.

Limited integration
into standard

protocols; needs
further optimization.

Diffusion-
Weighted

Imaging (DWI)

Highly sensitive
for BC

detection;
provides insights

into
tumor biology.

Complex
interpretation of
ADC values; some
paradoxical findings.

(Continued)
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3.1 Monotherapy with PD-1/PD-
L1 inhibitors

PD-1, an immune checkpoint on activated cytotoxic T

lymphocytes in the TME, maintains immune tolerance and limits

tumor-facilitating responses (94–98). In BC, particularly in TNBC,

tumors often overexpress PD-L1, which binds PD-1, inhibiting T

cell proliferation and cytokine secretion, enabling immune evasion.

Inflammation is pivotal in disease progression (99–102). The

immunosuppressive TME, characterized by regulatory T cells

(Tregs), myeloid-derived suppressor cells (MDSCs) (103), and

tumor-associated macrophages (TAMs) secreting cytokines like

TGF-b and IL-10, further suppresses T cell responses and

promotes tumor progression (104–107). PD-1/PD-L1 inhibitors

disrupt this interaction, reactivating T cells and suppressing

MDSCs (108). However, monotherapy efficacy is limited:
Frontiers in Immunology 05
Avelumab shows 5.2% response in unselected TNBC and 22.2%

in PD-L1+ cases (109), pembrolizumab achieves 18.5% in PD-L1+

TNBC (110), and other trials report ≤10% objective response rate

(ORR) with no progression-free survival (PFS) or overall survival

(OS) benefits (111–113). MDSC accumulation in TNBC further

suppresses T cell activation, hindering PD-1/PD-L1 inhibitor

efficacy (106). Combining these inhibitors with other

immunomodulatory agents may enhance tumor antigen release,

immune cell infiltration, and reduce immunosuppressive cell

activity, potentially improving outcomes.
3.2 Combination immunotherapies

Combining ICIs, such as CTLA-4 inhibitors (e.g., ipilimumab)

and PD-1/PD-L1 inhibitors, enhances antitumor immune

responses by targeting distinct pathways. CTLA-4 inhibitors boost

early T-cell activation, while PD-1/PD-L1 inhibitors prevent T-cell

suppression in the TME (114, 115). This dual approach shows

clinical efficacy across tumors, with metastatic BC achieving a 17%

ORR (43% in TNBC, 0% in ER-positive) (116, 117). IDO inhibitors

with nivolumab are also under investigation for advanced solid

tumors, including BC (118).
3.3 Other immune-related therapies

Resistance to immunotherapy in BC often stems from the

immune system’s inability to recognize tumors due to insufficient

immunogenic neoantigens (119), which are crucial for personalized

cancer vaccines (120). Cryoablation induces cell death,

inflammation, and neoantigen exposure, enhancing immune

detection (121). A pilot study in ER-positive patients

demonstrated that ipilimumab combined with cryoablation

significantly increased CD8+ T cells and Th1 cytokines, boosting

antitumor immunity (122, 123). T cell receptor sequencing linked

TILs to expanded T cell clones, serving as biomarkers (124). Post-

translational modifications, l ike 5-azacytidine-induced

hypomethylation of immune genes (125), and preclinical studies

suggest PD-L1 upregulation (126). Histone deacetylase inhibitors

also exhibit immunomodulatory effects (127), and combining

epigenetic therapies with immunotherapies may improve

antitumor responses and efficacy (128).
3.4 Combination with chemotherapy

Combining ICIs with chemotherapy results in higher TNBC

response rates than ICI alone. Chemotherapy partially reverses the

TNBC immunosuppressive microenvironment and upregulates

PD-L1 on BC cells, creating synergy (129). A phase Ib trial of

atezolizumab with albumin-bound paclitaxel in advanced TNBC

showed a 39.4% ORR, likely due to paclitaxel-induced TLR

activation and dendritic cell stimulation (130). The I-SPY2 trial

indicated that adding anthracyclines and cyclophosphamide to
TABLE 1 Continued

Category Technique Advantages Disadvantages

Intravoxel
Incoherent
Motion

DWI (IVIM)

Distinguishes
tumor types;
identifies
prognostic
markers;

complements
DCE-MRI.

Increased
complexity in

analysis
and interpretation.

Diffusion
Kurtosis

Imaging (DKI)

High specificity
in differentiating
benign from

invasive cancer;
detects complex

diffusion
patterns.

Requires advanced
analysis techniques;
not widely adopted.

Mammography

2D Digital
Mammography

(DM)

Widely
available; high
specificity
(~92%).

Reduced sensitivity
in dense breasts
(~70%, down to
30%); radiation

exposure;
patient discomfort.

Digital Breast
Tomosynthesis

(DBT)

Improves
detection rates;
lowers false

positives; better
visualization in
dense breasts.

Not
explicitly mentioned.

Computed
Tomography

(CT)
Breast CT

Better
visualization of
mass lesions
compared

to
mammography.

Lower spatial
resolution; less
effective for

microcalcifications;
higher

radiation dose.

Radiomics Radiomics

Non-invasive
biomarker;
integrates
multiple
imaging

modalities;
supports precise

clinical
decisions.

Complex data
analysis; requires

specialized software
and expertise.
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paclitaxel and pembrolizumab increased efficacy from 22% to 60%,

likely via anthracycline-induced immune stimulation and antigen

presentation (131). Furthermore, KEYNOTE-355 found

pembrolizumab with chemotherapy significantly improved PFS in

PD-L1+ TNBC, especially CPS≥10 (132).
3.5 Combination with radiotherapy

By inducing antigen release, recruiting antigen-presenting cells,

and stimulating T cell responses, radiotherapy enhances synergy

with ICIs. In a BC mouse model, radiotherapy combined with PD-

L1 blockade slowed tumor growth and activated CD8+ T cells (133).

Clinical pilot studies showed partial responses and stable disease in

HER2-positive and HER2-negative BC patients treated with ICIs

and radiotherapy, with notable abscopal effects in metastatic TNBC

patients (134). Despite small sample sizes, these findings underscore

durable abscopal effects and the importance of patient selection,

prompting further investigation in subsequent trials (135).
3.6 Combination with targeted therapy

Traditional targeted therapies in BC aim to improve patient

survival by targeting oncogenes or tumor suppressor genes, though
Frontiers in Immunology 06
resistance often develops. Combining targeted therapies with

immunotherapy can remodel the TME and enhance antitumor

immune responses (136). PARP inhibitors targeting BRCA1/2

mutations elevate cytosolic DNA, activating interferon pathways

and enhancing type I interferon and T cell infiltration (137). They

also upregulate PD-L1, making them apt for immunotherapy

combinations (138). The phase II TOPACIO trial reported a 47%

response rate with niraparib and pembrolizumab (139), while

ipatasertib with atezolizumab and paclitaxel achieved a 73%

response (140). Ongoing studies assess MEK inhibitors with ICIs

in TNBC, enhancing PD-1/L1 blockade responses (141).
3.7 Adoptive cell transfer therapies

Current ACT strategies for BC include TILs, CAR-T, CAR-NK,

and TCR-T cells, each with distinct features. TILs act as prognostic

indicators for BC outcomes. CAR-T and CAR-NK cells target solid

tumors, with numerous clinical trials addressing various antigens.

For example, EGFR-CAR-T cells significantly inhibit TNBC growth

in vitro and in vivo (142), and ICAM-1-specific CAR-T cells

effectively reduce tumor growth by targeting ICAM-1-expressing

TNBC cells (143). MUCl-CAR-T therapy evaluated autologous

MUCl-CAR-T cells in relapsed or refractory TNBC (144). CAR-

NK therapies utilize NK receptors to induce apoptosis, showing

therapeutic promise (145). While CAR-T trials in TNBC are
FIGURE 1

Immunotherapy in breast cancer.
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expanding, TCR-T therapies are limited by MHC dependency

(146) (Figure 1).
4 Conclusion

The integration of advanced imaging, radiomics, and artificial

intelligence has enhanced BC diagnostics and molecular

characterization. Immunotherapies, including PD-1/PD-L1

inhibitors and combination therapies , address tumor

heterogeneity and resistance. Liquid biopsy, particularly

circulating tumor DNA (ctDNA) detection, enables treatment

monitoring and minimal residual disease detection (147).

Nanotechnology improves drug delivery, enhancing efficacy and

reducing side effects of chemotherapy and immunotherapy (148).

Targeting the TME through immune checkpoint inhibition and

immune suppression reversal offers transformative potential for BC

treatment (149). Combined with genomic sequencing and data-

driven models, these innovations promise a more precise and

effective therapeutic framework for BC.
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