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Interaction between
post-tumor inflammation and
vascular smooth muscle
cell dysfunction in
sepsis-induced cardiomyopathy
Rui Liu1†, Lina Jia2†, Lin Yu1, Detian Lai1, Qingzhu Li1,
Bingyu Zhang1, Enwei Guo1, Kailiang Xu1* and Qiancheng Luo1*

1Department of Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, China,
2Hebei Medical University, Shijiazhuang, China
Background: Sepsis-induced cardiomyopathy (SIC) presents a critical

complication in cancer patients, contributing notably to heart failure and

elevated mortality rates. While its clinical relevance is well-documented, the

intricate molecular mechanisms that link sepsis, tumor-driven inflammation, and

cardiac dysfunction remain inadequately explored. This study aims to elucidate

the interaction between post-tumor inflammation, intratumor heterogeneity,

and the dysfunction of VSMC in SIC, as well as to evaluate the therapeutic

potential of exercise training and specific pharmacological interventions.

Methods: Transcriptomic data from NCBI and GEO databases were analyzed to

identify differentially expressed genes (DEGs) associated with SIC. Weighted gene

co-expression network analysis (WGCNA), gene ontology (GO), and KEGG

pathway enrichment analyses were utilized to elucidate the biological

significance of these genes. Molecular docking and dynamics simulations were

used to investigate drug-target interactions, and immune infiltration and gene

mutation analyses were carried out by means of platforms like TIMER 2.0 and

DepMap to comprehend the influence of DVL1 on immune responsiveness.

Results: Through the utilization of the datasets, we discovered the core gene

DVL1 that exhibited remarkable up-regulated expression both in SIC and in

diverse kinds of cancers, which were associated with poor prognosis and

inflammatory responses. Molecular docking revealed that Digoxin could bind

to DVL1 and reduce oxidative stress in SIC. The DVL1 gene module related to SIC

was identified by means of WGCNA, and the immune infiltration analysis

demonstrated the distinctive immune cell patterns associated with DVL1

expression and the impact of DVL1 on immunotherapeutic resistance.

Conclusions: DVL1 is a core regulator of SIC and other cancers and, therefore,

can serve as a therapeutic target. The present study suggests that targeted

pharmacological therapies to enhance response to exercise regimens may be a
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novel therapeutic tool to reduce the inflammatory response during sepsis,

particularly in cancer patients. The identified drugs, Digoxin, require further in

vivo and clinical studies to confirm their effects on SIC and their potential efforts

to improve outcomes in immunotherapy-resistant cancer patients.
KEYWORDS

sepsis induced cardiomyopathy, DVL1, intratumor heterogeneity, oxidative stress, drug
therapy, immunotherapy resistance, molecular docking, exercise training
1 Background

Sepsis-induced cardiomyopathy (SIC) is a common serious

complication in critically ill cancer patients (1, 2). This condition

leads to cardiac dysfunction, which is strongly associated with multiple

organ failure, thereby increasing the risk of death (1, 2).

Epidemiological studies have shown that SIC has a high incidence in

critically ill patients, especially in cancer patients with accompanying

sepsis, where its mortal (3, 4). This may be closely related to factors

such as cancer-related chronic inflammation and immune dysfunction

(5, 6). In recent years, an increasing number of studies have focused on

the mechanisms of SIC in cancer patients, finding that the tumor

microenvironment (TME) may interact with the immune imbalance

related to sepsis, thus aggravating the development of SIC (7, 8). In

addition, immunotherapy, chemotherapy, and targeted therapy may

have an impact on the cardiovascular system and further increase the

susceptibility to SIC in cancer patients (9, 10). In recent years, with

technological advances, through RNA sequencing and spatial

transcriptomics, scientists have revealed the functions and

interactions of immune cells in the tumor microenvironment (11–

13). Therefore, the systematic investigation of the molecular

mechanisms of SIC and the exploration of potential therapeutic

strategies may have important clinical implications for improving the

prognosis of cancer patients (14). The pathomechanisms of SIC involve

systemic inflammation, oxidative stress, mitochondrial dysfunction, as

well as immune dysregulation (15, 16). In sepsis, a large number of

proinflammatory cytokines (TNF- a, IL-6, IL-1 b) are released,

triggering a cascade of inflammatory responses, leading to

cardiomyocyte damage, mitochondrial collapse, deregulation of

calcium homeostasis and, ultimately,myocardial contractile

dysfunction (4, 17). In addition, oxidative stress and overproduction

of ROS not only exacerbate cellular damage but may also further

worsen the progression of SIC by inducing the loss of mitochondrial

membrane potential and abnormal energy metabolism (18, 19).

Increasing awareness of the role of cell death and metabolic

regulation in disease progression is providing new targets and

strategies for developing drugs (20–22). In cancer patients, the

occurrence of SIC is also significantly affected by the tumor

microenvironment. Macrophage polarization is closely related to

changes in the immune microenvironment and crosstalk between
02
immune cells (23, 24). Immunosuppressive cytokines secreted by

tumors, such as TGF-b and IL-10, weaken the body’s ability to resist

infection and inhibit the normal regulation of inflammatory response,

leading to more severe sepsis-related myocardial injury (25, 26). At the

same time, patients resistant to immunotherapy may exhibit more

severe sepsis-associated cardiac damage, as TME-driven immune

escape mechanisms may further contribute to inflammatory

imbalance and immune hyperactivation in a septic setting (27, 28).

Although the molecular mechanisms of SIC have been well studied in

typical sepsis patients, the specific characteristics of SIC, immune-

metabolic interactions, and their responses to existing treatment

options in cancer patients are still underexplored (29, 30). Cancer-

induced chronic inflammation and immunosuppression may

exacerbate the development and progression of SIC, highlighting the

importance of studying the role of tumor-associated immune

regulation in the progression of sepsis-associated cardiomyopathy

(31). In particular, considering the complexity of the cancer

microenvironment, which includes different genetic, cellular, and

tissue characteristics, leading to different therapeutic responses (32, 33).

The pathogenesis of SIC is closely related to the systemic

inflammatory response, excessive cytokine release, and oxidative

stress (34, 35). Hyperactivation of the immune system during

sepsis leads to the massive release of pro-inflammatory cytokines

such as tumor necrosis factor- a (TNF- a), interleukin-6 (IL-6), and
interleukin-1 b (IL-1 b) (36, 37). These inflammatory mediators

disrupt cardiac function, induce mitochondrial damage,

dysregulation of calcium homeostasis, and promote cardiomyocyte

apoptosis (38, 39). This inflammatory cascade is more complex

in cancer patients, further exacerbated by tumor-induced

immunosuppression. Tumor cells can secrete immunosuppressive

cytokines such as transforming growth factor- b (TGF- b) and

interleukin-10 (IL-10), which can inhibit the activation of cytotoxic

immune cells and promote the formation of an immunotolerant

tumor microenvironment (40, 41). Moreover, oxidative stress is also a

key factor in the development of SIC. Reactive oxygen species (ROS)

accumulation causes cell damage and apoptosis, which further

deteriorates cardiac function and intensifies cardiac dysfunction

(42, 43). Bioinformatics technologies have played a key role in the

study of gene expression and regulatory mechanisms, providing an

essential basis for understanding biological processes (44, 45).
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The high incidence rate and the high intratumoral heterogeneity

of tumors show the high pathological characteristics of SIC in

cancer patients, as well as the high variability of treatment (46,

47). This heterogeneity is implicated by genetic variation and

phenotypic heterogeneity, directly modulating the effectiveness of

various treatment modalities, including immunotherapy. This

variation presents a barrier to consistent clinical results (2, 48).

Hence, it is crucial to understand the interaction between systemic

inflammation, genetic variation, and the tumor microenvironment

for the development of personalized treatment strategies for SIC in

cancer patients (49, 50). While SIC is commonly associated with

acute cardiac insufficiency and with symptoms such as hypotension

and arrhythmia, clinically, it is associated with a decreased survival

rate (1, 2). Continuous deterioration in cardiac function is associated

with a marked reduction in quality of life. Still, it may also enhance

the onset of complications, including chronic heart failure (CHF)

and systemic multiorgan dysfunction (SOD) (51, 52). Thus, an in-

depth understanding of the underlying pathogenic mechanisms of

SIC will contribute to the exploration of therapeutic strategies with

higher targeting and clinical applicability (53, 54). Individualized

precision medicine intervention strategy combining several factors

could be more beneficial to improve the therapeutic outcome of SIC

(55). Despite extensive research on the inflammatory response and

cellular damage mechanisms of SIC, there remain significant gaps in

understanding the role of specific cell types, such as VSMCs, in

sepsis-associated cardiac dysfunction (56). Most of the existing

studies have focused on the effects of cytokine release on

cardiomyocytes and ignored the role of VSMCs as an essential

component of the cardiovascular system in the development of SIC

(57, 58). VSMCs are mainly responsible for maintaining vascular

stability and regulating vascular tone, enabling blood vessels to adapt

to dynamic changes in blood pressure and blood flow (59,

60).VSMCs can transition from a contractile to a synthetic form in

a sepsis-induced inflammatory setting, displaying both pro-

inflammatory and pro-oxidative traits (61, 62). This pathological

remodeling not only exacerbates the vascular dysfunction but also

may further drive the progression of SIC by worsening the

myocardial microcirculation and exacerbating cardiac

inflammation (48, 63). Single-cell multi-omics analysis can analyze

the complex physiological processes at the single-cell level, facilitate

a deep understanding of the transplant immune mechanism, and

provide support for the optimization of treatment options (64, 65).

Therefore, studying the mechanism of VSMCs in sepsis-related

cardiac dysfunction will not only contribute to a deep

understanding of the pathogenesis of SIC but may also provide

new potential therapeutic targets to lay the foundation for precise

intervention of SIC.

In this study, the DVL1 protein has become a key point. DVL1 is

a core regulator of the Wnt/b -catenin signaling pathway and is

capable of regulating cell proliferation, differentiation, and apoptosis

(48, 63). In various cancers, abnormal DVL1 expression is associated

with poor prognosis, indicating its relevance in tumor biology (66).

Advances in big data technologies and bioinformatics tools have

driven the identification and validation of disease markers, especially

in the areas of immune microenvironment, cellular signaling, and
Frontiers in Immunology 03
metabolic regulation (67, 68). In a septic setting, abnormal activation

of DVL1 may affect macrophage polarization and disrupt the balance

between proinflammatory M1 and immunosuppressive M2

macrophages, thereby exacerbating the systemic inflammatory

response and inhibiting immune recovery, accelerating SIC

progression (58). In cancer metabolism, DVL1 may regulate

glycolysis and mitochondrial bioenergetic metabolism through the

Wnt signaling pathway (58, 69). It is shown that DVL1

overexpression may enhance the metabolic plasticity of tumor-

associated immune cells and cardiomyocytes, leading to abnormal

glucose utilization and impaired oxidative phosphorylation, thus

aggravating the myocardial energy crisis in SIC (31, 70). Moreover,

DVL1 may affect cardiac dysfunction through oxidative stress

associated with mitochondrial signaling (71, 72). Studies have

shown that overexpression of DVL1 can increase reactive oxygen

species (ROS) generation, directly disrupt cardiomyocytes, and

perturb the mitochondrial membrane potential (73, 74). Wnt

signaling can also affect mitochondrial biosynthesis by interacting

with PGC-1 a, exacerbating metabolic and function decline in SIC

(75, 76). Although DVL1 is recognized as a key factor in

gastrointestinal cancer and SIC, its specific molecular roles and

pathways in sepsis, cancer metabolism,and cardiac dysfunction

have not been fully explored (70, 77). Further exploration of the

mechanism by which DVL1 regulates SIC could provide new ideas

for the treatment of SIC (69, 78).

This research seeks to examine how post-tumor inflammation

interacts with VSMC dysfunction, aiming to bridge a significant gap

in the understanding of SIC mechanisms. Subsequently, determine

potential therapeutic targets to alleviate the treatment burden of SIC

in individuals with cancer (56, 79). Paying particular attention to

the DVL1 expression pattern in gastrointestinal cancers and

evaluating the potential utility of FDA approved drugs in the

treatment of SIC(37,38). This study also combines bibliometric

analysis to judge the application trend of computer-assisted drug

design in SIC-targeted therapy, and to provide a theoretical basis for

the development of new therapeutic strategies in the future (80, 81).

The application of network pharmacology and experimental

validation methods in drug research provides new approaches

and strategies for drug research and development, such as

studying the mechanism of action and efficacy of a drug in the

treatment of new diseases (82, 83).

New technologies andmolecular researchmethods have played an

essential role in disease research and treatment (84, 85). This study

adopted a multi-level integration strategy to integrate transcriptomic

data analysis (86). Through the deep mining of a large number of

transcriptomic data, key genes and signaling pathways closely related

to various physiological and pathological processes can be screened

out, and potential targets for drug development can be identified (87,

88). Meanwhile, the key genes and signaling pathways associated with

SIC were systematically analyzed (89, 90). The study of the regulatory

mechanisms of multiple biological processes provides a basis for the

optimization of intervention strategies (91–93). In recent years,

precision-targeted intervention strategies targeting specific proteins

or gene pathways have made breakthroughs in improving treatment

specificity or clinical efficacy. The combination of transcriptomics
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with proteomics reveals key regulatory mechanisms of transcription

factor networks and protein modification in disease (94, 95). This

experimental study provides a successful experience for

the individualized treatment of SIC (96, 97). This study further

revealed the regulatory mechanism of VSMC dysfunction in SIC by

post-tumor inflammation, focusing on immune cell infiltration,

genetic heterogeneity, and its association with cardiovascular injury

and assessing the potential of pharmacological intervention to

alleviate pathological effects (98, 99). These findings enhance the

comprehension of SIC’s pathogenic mechanisms and support the

creation of personalized treatment approaches (43, 48). By integrating

bioinformatics, transcriptomics, and pharmacological techniques, we

will study the specific role of A fresh perspective on precision

treatment for SIC patients provided by DVL1 in SIC (100, 101).
2 Materials and methods

2.1 Analysis of differential gene expression
in sepsis-related cardiomyopathy

Transcriptomic datasets concerning sepsis-related cardiomyopathy

were sourced from the NCBI and GEO databases (http://

www.ncbi.nlm.nih.gov/geo/) (102, 103). For this study, two specific

datasets were chosen: GSE172270, containing 20 peripheral blood

samples from healthy individuals and 47 from patients with acute

myocardial infarction (AMI), and GSE57065, which includes 25

samples from healthy controls alongside 28 from individuals

diagnosed with sepsis (103, 104). Differential gene expression analysis

was conducted using the limma package, applying a threshold of an

adjusted P-value < 0.05 and |log2 fold change (log2FC)| > 1.00 to

identify differentially expressed genes (DEGs). Volcano plots were

employed to visualize the DEGs. To pinpoint common genes linked

to sepsis-induced cardiomyopathy, Venn diagrams were used for

comparative analysis. Subsequently, Gene Set Enrichment Analysis

(GSEA) was performed to elucidate the functional roles of gene sets

implicated in sepsis-related cardiomyopathy.
2.2 Development of a weighted gene co-
expression network

To investigate gene expression patterns associated with sepsis-

induced cardiomyopathy, genes exhibiting variance levels above the

upper quartile were initially selected (90, 105). These selected genes

were subsequently analyzed using the “WGCNA” package within R

software to establish a weighted gene co-expression network

(WGCNA) specific to sepsis-induced cardiomyopathy (55). The

optimal soft-thresholding power (b) was determined by clustering

the samples and using a scale-free network model to establish the

association network by calculating the gene connection adjacency

matrix. The topological overlap matrix (TOM) was used to

measure gene similarity and create a hierarchical clustering tree.

Dynamic tree-cutting methods were then employed to identify and

refine gene modules from a constructed gene dendrogram. After the
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cluster were calculated, followed by correlation with clinical

characteristics of the AMI patients. To calculate the correlation

between MEs and clinical traits, Pearson correlation was computed

to find a module associated most closely with AMI, which was

termed the key hub module. Further analyses were performed on

this module, including validation of differentially expressed genes

and functional enrichment. WGCNA was performed to screen hub

genes, which were then overlapped with differentially expressed

genes in sepsis-induced cardiomyopathy. This resulted in the

identification of core genes closely associated with sepsis-induced

cardiomyopathy. Using the clusterProfiler gene ontology (GO),

common target genes for sepsis-induced cardiomyopathy were

examined. R package in R and Perl. To elucidate the biological

functions of these targets, this analysis involved the main GO

categories, namely Cellular Component (CC), Molecular Function

(MF), and Biological Process (BP). KEGG pathway enrichment

analysis was also conducted using the clusterProfilerKEGG. R

package, and pathway visualization performed using the path

view package. The enrichment factor was used to assess the

relevance of core pathway enrichments, revealing biological

functions and signaling pathways that are involved in the

pathophysiology of sepsis-induced cardiomyopathy.
2.3 Screening of FDA-approved drug
library and molecular docking analysis

A library of 2,568 small molecules, all approved by the FDA

(Food and Drug Administration), was selected for screening (106,

107). The molecular structures of these compounds were retrieved in

SDF format from the DrugBank database (https://go.drugbank.com/)

(108, 109). These molecules were imported into Chem3D software,

where the structural optimization and energy minimization were

performed using the MMFF94 force field (Halgren, 1999) within the

Calculation module, and the optimized structures were saved in

mol2 format. Core protein domains in pdb format were obtained

from the PDB database (http://www.rcsb.org/), and preliminary

processing, including solvent removal, was performed using PyMol

software. Further preparations, including the addition of hydrogen

atoms and assignment of charges, were executed using

AutoDockTools, with both the protein targets and small

molecules saved in pdbqt format. Grid parameters, including

positions and dimensions, were defined, and the molecular

docking between the ligands and target proteins was performed

using Autodock-Vina. The results were analyzed using clustering

heatmaps generated in R software, and PyMol was used for

visualizing the docking interactions, yielding detailed molecular

docking model diagrams.
2.4 Molecular dynamics simulation

Molecular dynamics (MD) simulations were performed using

Gromacs version 2019.6 (110, 111). The optimal protein-ligand
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docking model, as determined from docking outcomes, was selected

as the starting conformation for the simulation, with GAPDH used

as a positive control (112, 113). The protein was modeled using the

amber14sb force field, whereas the small molecule was represented

with the Gaff2 force field. Using the TIP3P water model, the

complex system was solvated, and a water box was formed with

sodium ions to neutralize its charge. The Verlet and cg algorithms

were used for elastic simulations, with Particle-Mesh Ewald (PME)

handling electrostatic interactions. The system was subjected to

energy minimization through the steepest descent method with a set

step limit. The cutoff distances for Coulomb and van der Waals

forces were set at 1.4 nm. Equilibration was achieved through both

the constant volume (NVT) and constant pressure (NPT)

ensembles, followed by a 100 ns MD simulation under standard

temperature and pressure conditions. During the MD run, the

LINCS algorithm was used to constrain hydrogen bonds with a

two fs integration time step. PME calculations utilized a cutoff

distance of 1.2 nm, while a 10 Å cutoff was set for non-bonded

interactions. Temperature was kept at 300 K using the V-rescale

thermostat, and pressure was stabilized at 1 bar with the Berendsen

barostat. A 30 ps equilibration period was conducted under both

NVT and NPT conditions at 300 K, preceding the 100 ns MD

simulation of the protein-ligand complex. Local conformational

shifts during the simulation were assessed using the root mean

square fluctuation (RMSF) with a threshold of 0.2. The radius of

gyration (Rg) was used to evaluate the structural compactness of the

system, while RMSF offered insights into specific site fluctuations

throughout the simulation.
2.5 Expression landscape analysis of DVL1
in gastrointestinal tumors

Recognizing the close association between gastrointestinal

tumors and sepsis, this study performed a comprehensive analysis

of DVL1 expression in various gastrointestinal cancers (COAD,

ESCA, READ, and STAD) by comparing its expression in tumor

and adjacent normal tissues to elucidate its role in tumor

development (114, 115). Data from the TCGA and GTEx

databases were integrated to investigate disparities in DVL1

expression between healthy individuals and cancer patients. The

ability of DVL1 levels to distinguish between cancerous and healthy

tissues was assessed using the pROC package, which included

calculating the 95% confidence interval, the area under the curve

(AUC), and creating ROC curves. Additionally, expression patterns

of DVL1 in various cell subpopulations were analyzed using single-

cell datasets associated with gastrointestinal tumors.

For methylation analysis, emphasis was placed on the TSS1500,

TSS200, 1st Exon, and 5’ UTR regions, using Spearman correlation

analysis to examine the relationship between methylation status and

gene expression—particularly appropriate for analyzing

correlations in non-normally distributed data. Copy number

variation (CNV) analysis was carried out on 451 samples using

the GISTIC scoring method, and the results were presented through

bar charts. Chromosomal alterations were quantified, with
Frontiers in Immunology 05
indicators defined from C1 to C5. To explore expression

differences among gene subgroups, ANOVA and TukeyHSD were

employed for multiple comparisons.

Pathway activity was evaluated using the GSVA package with four

parameters—z-score, GSVA, ssGSEA, and PLAGE—standardizing

the results to Z-Score values. Differences in expression between

tumor and normal tissues were tested using the Wilcoxon Rank

Sum Test and visualized through boxplots using the ggplot2

package. The pan-cancer mutation landscape of the DVL1 gene was

illustrated using the plotmafSummary function from the maftools

package. Additionally, immune infiltration data from TCGA samples

were retrieved from the TIMER 2.0 database to evaluate the presence

of different immune cell types in the tumor microenvironment and

their correlation with DVL1 expression. Correlations between

immune cell abundance and gene expression were clearly illustrated

using bar-scatter plots, showing correlation coefficients.
2.6 Spatial transcriptomic analysis of core
genes at the single-cell level

In this paper, gene expression data obtained from the TISCH

database for rectal cancer at the single-cell level up to October 2023

were analysed (116, 117). Heatmap of Gene Expression Patterns at

the Single Cell Level in Different Cancer Types In order to detect

and preserve gene expression patterns in different types of cancers,

hierarchical clustering was performed using Euclidean distance and

Ward’s minimum variance method. Due to the use of UMAP

(Uniform Mobility Approximation and Projection) for high-

dimensional data exploration, the original data structure was

preserved as part of an algorithm designed specifically for non-

linear data. Using UMAP to elucidate biological differences in gene

expression in our cohort. The Kruskal-Wallis rank sum test was

used to determine differences in gene expression between cell types.

The Wilcoxon rank sum test is a non-parametric test used to

determine if there is a significant difference between two

independent groups. It does not assume that the data follow a

normal distribution. The AUCell score, which quantifies the

variability of pathway activity in single cells, was also used, as

well as UMAP for visualisation. This approach provides a

comprehensive view of the distribution of pathway activity and

helps to identify potential biological differences.
2.7 Cell culture

RAW 264.7 Mouse macrophages (ATCC, Rockville, USA) were

cultured in DMEM medium containing 10% heat-inactivated foetal

bovine serum (FBS), 100 U/mL penicillin, and 100 mg/mL

streptomycin at 37°C under 5% CO2. Digoxin and general HPLC

reagents were purchased from Sigma (St. Louis, MO, USA). Cell

culture media and supplements were provided by Invitrogen

(Carlsbad, USA). THP-1 human monocytes (ATCC, Rockville,

USA) were cultured in RPMI 1640 medium, which also contained

10% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin, and
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incubated under the same conditions at 37°C and 5% CO2

conditions. To induce differentiation into macrophages, THP-1

monocytes were exposed to PMA (100 ng/mL) for 5 days. To

investigate the effect of Digoxin on P-glycoprotein (P-gp) activity in

macrophages, RAW 264.7 cells were treated with 0.2 mM Digoxin

for 4 hours (118, 119). Digoxin concentrations used in the

treatments included 0, 0.025 mM (low), 0.05 mM (medium), and

0.1 mM (high).

Human colorectal cancer cell lines, including HCT116, SW480,

CX-1, SW620, LoVo, COLO 205, LS-174T, and the normal colonic

mucosa cell line FHC, were purchased from the American Typical

Culture Collection (ATCC, Manassas, VA, USA). HCT116 cells

were cultured in DMEM/F12 medium supplemented with 10% fetal

bovine serum (FBS). SW480, SW620, and LoVo cells were

maintained in DMEM containing 10% FBS. CX-1 and COLO 205

cells were grown in RPMI-1640 medium containing 10% FBS. In

contrast, LS-174T cells were grown in Eagle Minimum Essential

Medium (MEM) supplemented with 1% non-essential amino acids,

1 mM sodium pyruvate, and 10% FBS. Eagle Minimum Essential

Medium (MEM) supplemented with 1% non-essential amino acids

and 10% FBS. All cells were incubated at 37°C in a humidified

environment with 5% CO2.
2.8 Statistical analysis

All statistical analyses were carried out with the help of

GraphPad Prism 8.0 software. Descriptive statistics were used to

summarise general data (120). For quantitative data, a t-test was

used to compare means between two groups using an independent

samples t-test. One-way analysis of variance (ANOVA) was used to

assess differences in means between groups. P-values less than 0.05

were considered to indicate statistical significance.
3 Result

3.1 Core genes and pathways in sepsis-
induced myocardial dysfunction: the role
of DVL1

The transcriptome analysis of Sepsis-Induced Myocardial

Dysfunction (SIMD) across datasets, including GSE122720 for

Acute Myocardial Infarction (AMI) and GSE57065 for sepsis,

revealed significant differential expression patterns, with five core

genes (KIF11, TOP2A, DVL1, RRM2, SERPINB2) being

consistently differentially expressed across both conditions

(Figures 1A–E). The hierarchical clustering of these genes

highlighted distinct expression profiles, emphasizing their

potential role in SIMD (Figure 1C). Subsequent Gene Ontology

(GO) and KEGG pathway enrichment analyses identified key

biological processes and pathways, such as the Wnt signaling

pathway and complement cascades, which are implicated in the

disease’s pathophysiology (Figures 1D–E). Further exploration
Frontiers in Immunology 06
using Weighted Gene Co-expression Network Analysis

(WGCNA) pinpointed the MEturquoise module as significantly

correlated with SIMD, containing numerous hub genes, including

the core gene DVL1, which was consistently upregulated in SIMD

(Figures 1F–I). The relative expression analysis of DVL1 across

different patient groups further supported its potential as a

biomarker, with significant upregulation observed in SIMD cases

(Figure 1I). Supplementary analyses extended these findings to

gastrointestinal tumors, where DVL1 was linked to poor

prognosis and altered immune landscapes, reinforcing its role as a

critical gene across multiple conditions (Supplementary Figure 1).

Together, these results highlight the central role of DVL1 in SIMD

and its broader implications in disease, positioning it as a promising

target for future therapeutic strategies.
3.2 Molecular docking and dynamics
simulation of DVL1 as a drug target

The identification of DVL1 as a drug target was conducted

through a combination of molecular docking and molecular

dynamics (MD) simulations, revealing significant insights into its

interactions with FDA-approved drugs. Table 1 presents the

binding affinity and docking scores of various compounds

interacting with the DVL1 protein, as determined by molecular

docking simulations using Autodock-Vina and Discovery Studio

2019 (Table 1). As shown in Figure 2, virtual screening highlighted

small molecules with high binding affinity for DVL1, with docking

scores visualized through a heat map (Figure 2A), where red

represents strong binding affinity and blue represents weaker

interactions. Among the top candidates, Digoxin was selected for

further analysis due to its balanced docking score. Detailed

molecular docking models (Supplementary Figures 2B–G)

demonstrated the interaction of DVL1 with selected ligands,

showcasing various conformations and key molecular interactions

such as hydrogen bonds and hydrophobic contacts. MD

simulations provided additional insights, with RMSD analysis

(Figure 2H) showing fluctuations in the DVL1-Digoxin complex

around 5 ns, stabilizing after 10 ns, indicating initial instability

followed by equilibrium. The Radius of Gyration (RG) analysis

(Figure 2I) revealed significant fluctuations in DVL1-Digoxin,

suggesting transitions between unstable states, contrasting with

the more stable GAPDH-Digoxin complex. RMSF analysis

(Figure 2J) highlighted the flexibility of specific residues, with

DVL1 showing considerable conformational changes. The Solvent

Accessible Surface Area (SASA) analysis (Figure 2K) indicated a

stable decrease in SASA for the DVL1-Digoxin complex, reflecting

favorable binding and structural compactness. Finally, the

Hydrogen Bond Number (HBNUM) analysis (Figure 2L) showed

consistent hydrogen bond formation in both complexes, correlating

with their stability. Overall, these findings underscore DVL1’s

potential as a drug target, with Digoxin emerging as a promising

ligand due to its strong binding and stability, as revealed through

the comprehensive simulations.
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FIGURE 1

Identification of core genes in sepsis-induced myocardial dysfunction. (A, B) Volcano plots depicting differentially expressed genes (DEGs) in sepsis-
Induced myocardial dysfunction. (A) DEGs from the GSE122720 dataset related to Acute Myocardial Infarction (AMI). Genes with significant
upregulation (Log2 FC > 1, p < 0.05) are highlighted in red, while those significantly downregulated (Log2 FC < -1, p < 0.05) are shown in blue.
Notable genes such as SERPINH1 and RRAD are labeled. (B) DEGs from the GSE57065 dataset related to sepsis. Significant upregulated and
downregulated genes are indicated similarly, with DVL1 and SERPINH1 highlighted. (C) Heatmap of differentially expressed genes associated with
Sepsis-Induced Myocardial Dysfunction. Hierarchical clustering of DEGs shows distinct expression patterns across different patient groups, with
clustering performed on both gene expression profiles and patient samples. Key genes such as SERPINH1, TOP2A, and DVL1 are labeled, with
expression levels indicated by the color gradient (from blue to pink representing low to high expression). (D, E) GO and KEGG pathway enrichment
analysis of differentially expressed genes in Sepsis-Induced Myocardial Dysfunction. (D) GO enrichment analysis indicates significant biological
processes, cellular components, and molecular functions associated with DEGs. (E) KEGG pathway enrichment analysis showing pathways such as
Wnt signaling, complement and coagulation cascades, and nucleotide metabolism. The gene ratio indicates the proportion of DEGs involved in each
pathway, with the color gradient representing the significance level [-log10(p-value)]. (F, G) Weighted Gene Co-expression Network Analysis
(WGCNA) of Sepsis-Induced Myocardial Dysfunction. (F) Module-trait relationships identified in the AMI dataset, highlighting correlations between
gene modules and clinical traits. (G) Module-trait relationships in the sepsis dataset, identifying key gene modules associated with disease severity.
Color scale indicates the strength and direction of correlations. (H) Venn diagram illustrating the intersection of key genes identified across the
datasets (GSE122720-AMI, GSE57065-Sepsis, AMI-WGCNA, Sepsis-WGCNA). This diagram highlights the core genes common to both conditions,
emphasizing genes like DVL1 and SERPINH1 that are central to the disease process. (I) Relative expression analysis of the DVL1 gene across different
patient groups (Control, AMI, Sepsis, Normal). The bar graph shows the mean ± standard deviation of DVL1 expression, with statistical significance
denoted by p-values (e.g., p < 0.05). This analysis underscores the differential expression of DVL1 in Sepsis-Induced Myocardial Dysfunction,
suggesting its potential role as a biomarker or therapeutic target.
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3.3 Comprehensive analysis of DVL1
expression and mutation in
gastrointestinal cancers

In this study, we investigated the role of DVL1 in

gastrointestinal cancers, focusing on its expression pattern,

diagnostic potential and prognostic significance. Analysis of

DVL1 expression in four gastrointestinal tumors - COAD, STAD,

ESCA and READ - showed significant overexpression in tumor

tissues compared to normal tissues (Figure 3A, C). DVL1 gene

expression levels varied in different organs of cancer patients, and

the expression levels varied with the anatomical location of the

tumor (Figure 3B). The ROC analysis demonstrated that DVL1 has

strong diagnostic potential, with high AUC values in COAD, ESCA,

and READ (Supplementary Figures 3D–F). Kaplan-Meier survival

curves indicated that elevated DVL1 expression correlates with

poorer survival outcomes in these cancers, suggesting its value as

a prognostic marker (Supplementary Figures 3G–I). Figures 3D–I

display the related analyses of DVL1 in gastrointestinal tumors,

including ROC curves and survival curves for different tumor types.

These figures intuitively demonstrate the important roles of DVL1

in diagnosis and prognosis. Further investigation revealed

heterogeneity in DVL1 expression across different cellular

populations within tumors (Figure 3J) and significant differences

in expression across various immune subtypes (Figure 3K).

Correlation analyses between DVL1 expression and oncogenic

pathways highlighted its involvement in tumor biology

(Figure 3L). A summary of clinical data from 1181 TCGA

patients indicated that higher DVL1 expression is associated with

advanced tumor stages and poorer outcomes (Figure 3M). In

colorectal cancer, DVL1 showed a somatic mutation rate of

1.61%, with several mutation hotspots identified (Supplementary

Figure 2A). Pan-cancer analysis confirmed DVL1 as one of the most

mutated genes, emphasizing its potential role in carcinogenesis

(Supplementary Figure 2B). Additionally, DVL1 expression varied

significantly across different MSI subtypes, implicating it in MSI-

driven tumorigenesis (Supplementary Figure 2C). Protein

expression analysis using HPA data showed differential DVL1
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expression in colorectal and stomach cancer tissues, supporting

its involvement in cancer pathophysiology (Supplementary

Figure 2D). These findings collectively suggest that DVL1 is a

critical biomarker in gastrointestinal cancers, with significant

implications for its use in diagnosis and prognosis.
3.4 Expression and prognostic significance
of DVL1 in colorectal cancer

Our study reveals that DVL1 is significantly overexpressed in

colorectal cancer (COAD) tissues compared to adjacent normal

tissues, as demonstrated by both immunohistochemical staining

and RNA-seq analysis (Figures 4A–C). The ROC curves further

confirm the diagnostic and prognostic value of DVL1, with AUC

values indicating its potential to distinguish between tumor and

normal tissues, and to predict patient outcomes (Figures 4D, E).

High DVL1 expression correlates with poorer overall survival, as

shown by Kaplan-Meier survival curves and a comparative analysis

of clinical characteristics (Figures 4F–H). The observed changes in

DVL1 phosphorylation sites between normal and tumor tissues

suggest possible post-translational modifications contributing to its

oncogenic role (Figure 4I). Thermal profiling data delineate

significant covariations between DVL1 transcriptional activity and

immunological biomarkers within COAD, establishing mechanistic

insights into its regulatory potential within tumor-associated

immune landscapes (Figure 4J). Additionally, the analysis of

DVL1 expression across different tumor stages and its correlation

with various COAD-related genes indicates a strong association

with disease progression, although survival analysis did not show a

significant difference between high and low-expression groups

(Supplementary Figures 3A–G). Functional analyses, covering

CRISPR-Cas9 screening as well as pathway enrichment studies,

further highlighted the critical role of DVL1 in cancer biology, with

significant enrichment in pathways associated with tumor

progression (Supplementary Figures 4A–I). These findings suggest

that DVL1 plays a crucial role in the development of COAD and

could serve as a potential therapeutic target.
TABLE 1 Molecular docking results of selected compounds with DVL1 protein (PDB ID: 6TTK) using autodock-vina and discovery studio 2019.

Protein (Binding Site) Compound Vina (kcal·mol-1) RMSD DS (LibDockScore)

DVL1 (6TTK) Digoxin -4.5 1.619 165.304

DVL1 (6TTK) Paromomycin -3.7 2.095 158.73

DVL1 (6TTK) Cabazitaxel -4.5 1.829 152.19

DVL1 (6TTK) Paclitaxel -4.6 1.516 151.868

DVL1 (6TTK) Streptomycin -4.6 2.614 148.925

DVL1 (6TTK) Toposar -5.2 0.452 147.71
This table presents the binding affinity and docking scores of various compounds interacting with the DVL1 protein, as determined by molecular docking simulations using Autodock-Vina and
Discovery Studio 2019. The Vina score (expressed in kcal·mol-¹) reflects the binding affinity, where more negative values indicate stronger interactions between the compound and the protein.
The RMSD (Root Mean Square Deviation) values provide insight into the stability and accuracy of the binding pose, with lower values indicating a more stable interaction. The DS
(LibDockScore) from Discovery Studio 2019 represents the strength of interaction, with higher scores suggesting better binding affinity. The bold values in the table are the binding energies
calculated by autodock - vina (Vina values, in kcal·mol- ¹), the root - mean - square deviations (RMSD), and the LibDockScore values calculated in Discovery Studio, which are used to measure
the binding characteristics of compounds to the DVL1 protein.
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FIGURE 2

Molecular dynamics simulation and virtual screening of core protein DVL1. (A) Heat map representation of the virtual screening of core protein DVL1
against the FDA-approved drug library. The color gradient from red to blue represents the binding affinity, with red indicating high binding affinity
and blue indicating low binding affinity. (B-G) Molecular docking models of the core protein DVL1 with selected ligands. Each panel shows the
overall structure of DVL1 in a ribbon diagram (left), a zoomed-in view of the ligand-binding site with interacting residues highlighted (middle), and a
2D interaction diagram depicting the molecular interactions between DVL1 and the ligand (right). The models illustrate the different conformations
of DVL1 when bound to various ligands, highlighting key interactions such as hydrogen bonds, hydrophobic contacts, and electrostatic interactions.
(H-L) Molecular dynamics (MD) simulation analysis comparing DVL1 (blue) with the positive control protein GAPDH (orange). The analysis includes:
(H) Root Mean Square Deviation (RMSD) analysis over the simulation time, showing the structural stability of DVL1 and GAPDH. (I) Radius of Gyration
(RG) indicating the compactness of the protein structures. (J) Root Mean Square Fluctuation (RMSF) analysis, providing insight into the flexibility of
specific residues within the protein structures. (K) Solvent Accessible Surface Area (SASA) analysis, representing the extent of exposure of the protein
surface to the solvent. (L) Hydrogen Bond Number (HBNUM) analysis, illustrating the number of hydrogen bonds formed during the simulation,
which correlates with protein stability.
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FIGURE 3

Landscape of DVL1 expression in gastrointestinal tumors. (A, C) DVL1 gene expression levels across four types of gastrointestinal tumors (COAD,
STAD, ESCA, and READ) are depicted. Panel (A) shows a comparison between normal and tumor tissues based on data from the TCGA and GTEx
databases, demonstrating differential expression patterns with statistical significance (indicated by p-values). Panel (C) provides a summary of the
area under the curve (AUC) values for the receiver operating characteristic (ROC) analysis, reflecting the diagnostic potential of DVL1 in these
cancers. (B) Illustration of DVL1 gene expression distribution across different organs in cancer patients, highlighting the variation in expression levels
depending on the anatomical location of the tumor. (D-F) Receiver operating characteristic (ROC) curves for DVL1 gene in three types of
gastrointestinal tumors (COAD, ESCA, and READ) are presented. The curves show the diagnostic accuracy of DVL1 expression, with each panel
detailing the AUC values, sensitivity, and specificity metrics for each cancer type. (G-I) Kaplan-Meier survival curves analyzing the prognostic
significance of DVL1 expression in three types of gastrointestinal tumors (COAD, ESCA, and READ). The survival analysis indicates the correlation
between DVL1 expression levels and patient survival outcomes, with log-rank test p-values provided to denote statistical significance. (J) Heatmap
showing DVL1 gene expression across different cell subgroups in four gastrointestinal tumors. This panel illustrates the heterogeneity in DVL1
expression among various cellular populations within the tumors. (K) Violin plot depicting the expression of DVL1 across different immune subtypes
within gastrointestinal tumors. The plot demonstrates significant differences in DVL1 expression depending on the immune landscape of the tumor
(p < 0.001). (L) Scatter plots examining the relationship between DVL1 expression and 14 different tumor phenotypes. Each plot includes regression
lines and correlation coefficients, providing insight into the association between DVL1 expression and oncogenic pathways. (M) Summary of clinical
data for 1181 TCGA patients with four types of gastrointestinal tumors, classified based on DVL1 expression levels. The panel provides an overview of
clinical characteristics such as tumor stage, survival status, and molecular subtypes, highlighting the relevance of DVL1 expression in the clinical
context. The symbols *, **, and **** represent statistical significance levels corresponding to p<0.05, p<0.01, and p<0.0001.
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FIGURE 4

Expression and prognostic significance of DVL1 in colorectal cancer (COAD). (A, B) Immunohistochemical (IHC) staining for DVL1 in colorectal cancer
tissues and adjacent normal tissues demonstrats increased expression of DVL1 in tumor tissues compared to normal tissues. Representative images from
the study cohort are shown, with higher DVL1 expression observed in the tumor samples. Data were obtained using the Human Protein Atlas (HPA)
database. (C) Distribution of DVL1 gene expression in colorectal cancer versus normal tissues, analyzed using the GSE37182 dataset. The data is
presented as density plots, showing a significant upregulation of DVL1 in tumor tissues compared to normal tissues. (D) Receiver Operating
Characteristic (ROC) curve assessing the diagnostic performance of DVL1 expression in distinguishing tumor tissues from normal tissues. The area under
the curve (AUC) and the model’s discriminatory ability are shown, indicating a good diagnostic value for DVL1 expression in COAD. (E) ROC curve
evaluating the prognostic performance of DVL1 expression in predicting outcomes in colorectal cancer patients. The AUC value and the 95% confidence
interval (CI) are provided, highlighting the prognostic relevance of DVL1 expression in COAD. (F) Comparative analysis of clinical characteristics between
high and low DVL1 expression groups in COAD patients. The circular heatmap visualizes the distribution of various clinical traits (e.g., age, gender, BMI,
stage) between the two groups, illustrating significant associations with DVL1 expression. (G) Forest plot summarizing the univariate analysis of DVL1
expression across multiple datasets for COAD patients. Hazard ratios (HR) and 95% confidence intervals (CI) are depicted for each study, with a pooled
HR calculated from the meta-analysis, indicating the overall prognostic impact of DVL1. The analysis shows a significant association between high DVL1
expression and poor prognosis. (H) Kaplan-Meier survival curve comparing overall survival between high and low DVL1 expression groups in COAD
patients. The survival analysis shows a statistically significant difference (p = 0.011), with high DVL1 expression associated with worse survival outcomes.
(I) Analysis of phosphorylation site changes in the DVL1 protein between normal and tumor tissues, indicating potential post-translational modifications
that may contribute to altered function in colorectal cancer. The density plots depict the distribution of phosphorylation levels at specific sites, showing
significant differences between normal and tumor groups. (J) Correlation heatmaps show the association between DVL1 expression and various immune
markers in COAD, highlighting the positive and negative correlations with immune-related genes. The analysis provides insights into the potential role of
DVL1 in modulating the immune microenvironment in COAD. The symbols *** represent statistical significance levels corresponding to p<0. 001.
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3.5 Analysis of DVL1 in colorectal cancer

In this research, we probed into the function of the DVL1 in

COAD, concentrating on its expression patterns among tumor

stages and its connection with key cancer-related pathways.

Supplementary Figure 4A presents the distribution of DVL1

expression across four clinical stages of COAD (Stage I to IV).

Statistical analysis shows that there are no remarkable differences in

DVL1 expression levels among stages (P = 0.87). Likewise, a

comparison between the early-stage (Stage I to II) and the late-

stage (Stage III to IV) of COAD in Supplementary Figure 4B also

reveals no significant difference (P = 0.995).To further explore the

functional role of DVL1, we analyzed its dependency across various

cancer types using CRISPR-Cas9 screening data from the DepMap

database, as illustrated in Figure 4C. This analysis highlights

variable DVL1 dependency across cancer cell lines, indicating its

essential role in certain types of cancers. Next, we performed KEGG

pathway enrichment analysis (Supplementary Figure 4D), which

identified several cancer-related pathways associated with DVL1

expression, including the Wnt signaling pathway and pathways

involved in cell cycle regulation. GSEA was conducted to assess

hallmark gene sets, revealing significant enrichment in cellular

processes related to proliferation, DNA repair, and apoptosis,

particularly in the high DVL1 expression group, as shown in

Supplementary Figure 4E. Additionally, Supplementary Figure 4F

presents a LocusCompare analysis, which demonstrates specific

genetic loci correlated with DVL1 expression. Finally, functional

enrichment analysis for transcription factors associated with DVL1

expression was performed. The GO term analysis (Supplementary

Figure 4G) highlights biological processes related to transcriptional

regulation, while KEGG pathway analysis (Supplementary

Figure 4H) indicates significant involvement in pathways such as

p53 signaling and RNA polymerase activity. The Friends analysis in

Figure 4I identifies key transcription factors, such as FOXM1 and

NFKB2, which are strongly correlated with DVL1 expression and

may contribute to its regulatory network in cancer. Collectively,

these findings suggest that while DVL1 expression remains

consistent across COAD stages, its dependency and functional

interactions highlight its critical role in cancer biology,

particularly in cell survival and proliferation pathways.
3.6 Comprehensive analysis of DVL1 in
colorectal adenocarcinoma: gene
interaction, immune landscape, and
therapeutic implications

The DVL1 gene plays a critical role in COAD, as demonstrated

by a series of comprehensive analyses involving gene set

enrichment, immune landscape evaluation, and upstream

transcription factor studies. As illustrated in Figure 5A, a gene

interaction network centered on DVL1 reveals significant

associations with various genes, underscoring its involvement in
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essential cellular processes. Differential expression analysis

(Figure 5B) further highlights the extensive alteration in gene

expression associated with DVL1, implicating its pivotal role in

tumor development. Gene set enrichment analysis (GSEA) and

gene set variation analysis (GSVA) results (Supplementary

Figures 5C, E, F) show significant pathway alterations between

high and low DVL1 expression groups, particularly in hallmark

gene sets, reinforcing DVL1’s influence on tumorigenesis. The

immune response correlation (Figure 5H) and its association with

immunostimulatory genes (Figure 5I) reveal a complex relationship

between DVL1 expression and immune system activity, further

supported by the immunomodulatory landscape in COAD

(Figure 5J). Upstream transcription factors were analyzed to

uncover potential regulatory mechanisms affecting DVL1

expression, with significant correlations observed between ATAC-

Peak signals and specific transcription factors (Figure 6A). Figure

6C presents transcription factors associated with DVL1 identified

via Friends analysis, offering critical insights for exploring the

regulatory mechanisms of this signaling molecule. These

transcription factors, highlighted in the differential expression

analysis (Figure 6B) and prognostic forest plots (Supplementary

Figures 6D–G), suggest potential targets for therapeutic

intervention. The correlation of DVL1 with SMAD2 and XBP1

(Figure 6H) further suggests a collaborative role in COAD

progression. In terms of therapeutic implications, DVL1’s role in

predicting drug sensitivity and immunotherapy response is

evidenced by the ROC-AUC analysis (Supplementary Figure 5A)

and its significant correlation with drug sensitivity metrics

(Supplementary Figures 5B–D). Notably, DVL1 expression

correlated with increased sensitivity to the drug BI.2536

(Supplementary Figures 5E, F), suggesting that DVL1 could serve

as a potential biomarker of drug response. Mutation analysis

(Supplementary Figures 6K–M) provided insights into the

mutational status of DVL1 and its impact on components of the

tumor microenvironment (Supplementary Figures 6N–P), further

cementing its relevance in colorectal cancer pathogenesis and

treatment. Together, these findings highlight the importance of

DVL1 as a key player in colorectal cancer, providing valuable

insights for targeted therapy and prognostic assessment.
3.7 Comprehensive analysis of DVL1
expression in colorectal cancer using
single-cell and spatial transcriptomics

The comprehensive analysis of DVL1 expression in colorectal

cancer, combining single-cell sequencing and spatial transcriptomics,

reveals critical insights into the gene’s role within the tumor

microenvironment. Through UMAP visualization of major cell

lineages (Figure 7A), distinct clusters such as T cells, B cells,

epithelial cells, and fibroblasts were identified, with Figure 7B

highlighting varying levels of DVL1 expression across these

populations. The comparison of cell type proportions between
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FIGURE 5

DVL1 gene enrichment analysis and associated immune landscape in COAD. (A, D) DVL1 gene interaction network: A network analysis illustrating the
interactions of genes closely related to DVL1. Panel (A) shows a comprehensive gene-gene interaction network with DVL1 at the center, highlighting
both direct and indirect interactions with associated genes. Panel (D) further details the connections and functional relationships among these genes
using a circular plot. (B) Differential expression analysis of DVL1-associated genes: A volcano plot showing the differentially expressed genes associated
with DVL1. Genes are categorized into upregulated (green), downregulated (red), and non-significant (black) groups based on log2 fold changes and
statistical significance (p-value). (C) GSEA enrichment analysis of differentially expressed genes associated with DVL1: A line graph representing the Gene
Set Enrichment Analysis (GSEA) results for DVL1-related differentially expressed genes, focusing on key gene sets that show significant enrichment or
depletion. (E) Hallmark gene set enrichment analysis (GSEA): A dot plot visualizing the enrichment scores and significance levels of various hallmark gene
sets associated with DVL1 expression. The pathways are ranked based on normalized enrichment score (NES) and statistical significance. (F) GSVA
pathway enrichment scores comparing DVL1 high-expression versus low-expression groups: A bar chart depicting the difference in pathway activity
scores between high and low DVL1 expression groups, identified using Gene Set Variation Analysis (GSVA). Pathways with significantly altered activity are
color-coded based on their upregulation (blue) or downregulation (red) in high DVL1 expression groups. (G) Visualization analysis using gassocplot
package: Scatter plots displaying the association between specific genetic variants and phenotypic traits related to DVL1, across various chromosomal
locations. Points are color-coded according to their significance and categorized by variant type, with annotation of significant SNPs and genomic
regions. (H) Immune response and genome state: A heatmap representing the correlation between DVL1 expression and various immune-related genes
or pathways. Data points are color-coded to indicate the strength and direction of correlation, providing insights into the relationship between DVL1 and
immune system activity. (I) Landscape of DVL1 in immunostimulator analysis: Heatmaps illustrating the association of DVL1 expression levels with various
immunostimulatory genes across different sample sets. The analysis highlights significant correlations, with color intensities representing the degree of
association. (J) Complex heatmap of immunomodulators in COAD: A detailed heatmap depicting the expression patterns, copy number variations, and
mutation frequencies of key immunomodulatory genes in colorectal adenocarcinoma (COAD). The rows represent individual genes, and the columns
represent different patient samples or conditions. The heatmap is annotated to show expression levels, amplification, deletion frequencies, and the
presence of mutations, providing a comprehensive overview of the immunomodulatory landscape in relation to DVL1 expression in COAD. The symbols
*, **, and *** represent statistical significance levels corresponding to p<0.05, p<0.01, and p<0. 001, respectively.
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FIGURE 6

Analysis of upstream transcription factors of DVL1 gene. (A) Spearman correlation analysis between ATAC-Peak and transcription factors. This panel
illustrates the Spearman correlation coefficients between ATAC-Peak signals and various transcription factors, providing insight into the potential
regulatory relationships affecting DVL1 expression. The analysis highlights transcription factors with significant correlations, denoted by color-coded
squares representing the strength and direction of correlation (positive in red, negative in blue). (B) Differential expression analysis of transcription
factors associated with the DVL1 gene. Box plots display the expression levels of transcription factors across different sample groups, with statistical
significance indicated for factors showing a differential expression. This analysis identifies transcription factors that are differentially regulated in
association with DVL1, highlighting potential key regulators. (C) Friends analysis of the DVL1 gene to identify correlated transcription factors. A
heatmap shows the correlation between DVL1 and selected transcription factors, identified through Friends analysis. Transcription factors with
positive and negative correlations are listed alongside their correlation coefficients (R-values). The analysis helps to pinpoint transcription factors that
may co-regulate with DVL1 or are part of the same regulatory network. (D-G) Forest plots screening prognostically relevant transcription factors
through multi-gene analysis. These panels show hazard ratios and confidence intervals for multiple transcription factors in relation to overall survival
in a cohort of cancer patients. The forest plots identify transcription factors significantly associated with prognosis, highlighting those with potential
as biomarkers or therapeutic targets in conjunction with DVL1. (H) Correlation analysis between the DVL1 gene and transcription factors SMAD2 and
XBP1. Heatmaps present the correlation strength between DVL1 and SMAD2/XBP1 across various samples, categorized into positive, moderate, weak,
and negative correlations. The analysis provides a detailed view of the interaction between DVL1 and these specific transcription factors, offering
insights into their potential collaborative roles in the biological processes studied. The symbols *, **, ***and ****represent statistical significance
levels corresponding to p<0.05, p<0.01,p<0. 001 and p<0. 0001, respectively. ns, not significant.
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FIGURE 7

Single-cell sequencing analysis of DVL1 in colorectal cancer. (A, B) UMAP visualization of major cell lineages and DVL1 single-gene expression in single
cells from colorectal cancer samples. (A) displays the distribution of the main cell lineages identified in the dataset, including T cells, B cells, epithelial
cells, fibroblasts, myofibroblasts, mast cells, and others, with distinct clusters representing each lineage. (B) shows the UMAP plot highlighting the
expression levels of the DVL1 gene across individual cells, with a gradient indicating varying expression levels. (C) Comparison of the proportions of
different cell types between DVL1-positive and DVL1-negative groups. The bar graph presents the proportion of each cell type (e.g., T cells, B cells,
fibroblasts) stratified by DVL1 expression status. The data suggest differential representation of cell types depending on DVL1 gene expression, with
statistically significant differences noted. (D) Interaction network of different cell subsets in colorectal cancer. This network diagram illustrates the
inferred interactions between various cell subsets within the tumor microenvironment, highlighting connections involving DVL1+ malignant cells and
their interactions with other cell types such as CD8+ T cells, fibroblasts, and endothelial cells. The thickness of the lines corresponds to the strength or
frequency of interactions. (E) Differential expression of DVL1 and upstream transcription factors across different cell types. The expression patterns of
DVL1 and associated transcription factors such as ATF5, E2F2, HIRA, TFAP2A, and TP73 are shown across various cell types, including malignant cells,
fibroblasts, and T cells. Each panel represents the distribution of expression levels across the cell types. (F) Variability in DVL1 expression across different
tumor cell states. Box plots illustrate the differential expression of DVL1 among various tumor cell states, indicating statistically significant differences (P <
0.001). This comparison underscores the heterogeneity of DVL1 expression in distinct tumor microenvironments. (G) Pathway differences between
DVL1-positive and DVL1-negative groups across different cell types. A dot plot shows the differential pathway activity scores between cells grouped by
DVL1 expression status, across various cell types. Each dot represents a pathway, with size and color intensity reflecting the significance and magnitude
of pathway activation differences. (H, I) Pathway enrichment differences between cell types. Heatmaps depict the enrichment of signaling pathways
across different cell types in the tumor microenvironment. (H) displays outgoing signaling pathways, while (I) focuses on incoming signaling pathways.
The data show distinct enrichment patterns, highlighting the unique roles of different cell types in signal transduction within the tumor context. (J, K)
Correlation analysis of gene expression levels. (J) presents UMAP visualizations of the co-expression patterns of two specific genes, including DVL1 and
ATF5, both individually and in combination. (K) shows a scatter plot demonstrating the correlation between the average expression levels of these two
genes, with a color-coded threshold (0.5) indicating the strength of the correlation. This analysis reveals a significant positive correlation, suggesting
potential regulatory interactions between DVL1 and ATF5.
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DVL1-positive and DVL1-negative groups (Figure 7C) underscores the

differential representation of cell types, notably a higher presence of

fibroblasts and T cells in DVL1-positive samples. Furthermore, the

interaction network in Figure 7D demonstrates the significant role of

DVL1+ malignant cells in coordinating cellular interactions,

particularly with CD8+ T cells and fibroblasts. Differential expression

analysis in Figure 7E highlights the association between DVL1 and

transcription factors like ATF5 and E2F2 across various cell types. The

variability in DVL1 expression across tumor cell states (Figure 7F) and

pathway activity differences between DVL1-positive and DVL1-

negative cells (Figure 7G) emphasize the gene’s influence on tumor

heterogeneity and pathway activation. The pathway enrichment of

different cell types in the tumor microenvironment (TME) revealed the

differential activity of pro-inflammatory and immune regulation-

related signaling pathways (e. g. Wnt/b -catenin, NF- k B, TGF- b)
in immune cells, fibroblasts and tumor cells (Figures 7H, I) Tumor-
Frontiers in Immunology 16
associated fibroblasts (CAF) showed high activity in TGF- b and ECM-

related pathways, while Treg cells were enriched in IL-10-mediated

anti-inflammatory pathways, suggesting unique roles for different cell

types in TME regulation. Correlation analysis between DVL1 and

ATF5 (Figures 7J, K) suggests a regulatory interaction, potentially

impacting tumor progression. Spatial transcriptomics provides a

refined visualization of DVL1 expression within tumor tissue,

revealing its heterogeneous spatial distribution (Figure 8A). A robust

correlation is noticed between the expression of DVL1 and key

microenvironmental constituents (Supplementary Figures 7A–D).

Spatial mapping further accentuates the enhanced expression of

DVL1 in malignant areas, indicating its potential engagement in

tumor progression and aggression (Figures 8B–D). Altogether, these

discoveries emphasize the crucial role of DVL1 in coordinating the

cellular and spatial dynamics of colorectal cancer, molding

microenvironmental interactions and influencing tumor behavior.
FIGURE 8

Spatial transcriptomics analysis of DVL1 in colorectal cancer. (A) Spatial distribution of DVL1 expression across the tissue sample. The heatmap
illustrates expression levels, with higher intensities indicating elevated DVL1 expression. (B) Spearman correlation analysis between DVL1 expression
and tumor microenvironment components. The correlation matrix represents the relationships between DVL1 and various cell types, with color
gradients reflecting positive and negative correlations. Statistically significant correlations are highlighted. (C) Comparison of DVL1 mean expression
levels among malignant, mixed, and normal tissue regions. Statistical significance is indicated by p-values. (D) Mean AUC values of a specific gene
set across different tissue compositions, highlighting significant differences in tumor microenvironment interactions.
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3.8 DVL1 expression and its role in
modulating cell proliferation and
tumor progression

The study investigated the expression of DVL1 and its impact on

cell proliferation and tumor progression across various cell lines,

including SW620, HCT116, and RAW264.7. Quantitative PCR

analysis, as shown in Figure 9A, revealed that DVL1 mRNA levels

were significantly downregulated in response to different

concentrations of Digoxin, particularly at high concentrations (p <

0.001). Among the tested cell lines, HCT116 and SW620 exhibited

the most substantial reductions in DVL1 expression, suggesting that

Digoxin effectively suppresses DVL1 expression. Additionally,

Figure 9D highlights a significant upregulation of DVL1 in

RAW264.7 cells compared to THP-1 cells (p < 0.001). To assess

the functional role of DVL1, a CCK-8 assay was performed, revealing

a dose-dependent decrease in cell viability in HCT116 and SW620

cells treated with Digoxin, with the greatest inhibition observed at

high concentrations, as illustrated in Figure 9B (p < 0.05). This

suggests that Digoxin-mediated DVL1 downregulation contributes to

reduced tumor cell proliferation. Moreover, the expression of

inflammatory cytokines was measured using qPCR across different

treatments, showing significant changes in SW620, HCT116, and

RAW264.7 cells (Figure 9C, p < 0.001), indicating a role of DVL1 in

modulating inflammatory responses. Further analysis involved DVL1

overexpression and knockdown models, where Figure 9E

demonstrated that overexpression significantly promoted cell

proliferation, whereas knockdown markedly inhibited growth (p <

0.001). The plate colony formation assay results, depicted in

Figure 9H, supported these findings, showing enhanced colony

formation with DVL1 overexpression and a reduction with

knockdown. CCK-8 proliferation assays demonstrated that DVL1

overexpression enhances cellular growth kinetics in both HCT116

and SW620 colorectal cancer models, whereas genetic silencing of

DVL1 exerted potent growth-suppressive effects (Figure 9F).

Finally, Figure 9G showed a substantial decrease in DVL1 mRNA

levels in SW620, HCT116, and RAW264.7 cells following DVL1

knockdown (p < 0.001). Collectively, these results suggest that DVL1

plays a critical role in promoting cell proliferation and tumor

progression, and that down-regulation of its expression by

pharmacological agents or gene knockdown significantly inhibits

these processes.
3.9 The effects of digoxin and DVL1
overexpression on inflammatory responses,
cell viability, migration, and protein
expression in cancer cells

This study investigated the impact of Digoxin and OE-DVL1 on

various cellular processes in SW620 and HCT116 cell lines, focusing

on inflammatory cytokine expression, EMT markers, cell viability,

migration, proliferation, apoptosis, and protein expression. qRT-

PCR analysis showed that Digoxin and OE-DVL1 significantly

reduced the expression of pro-inflammatory cytokines TNFa, IL6,
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and IL1b compared to the LPS-treated group, suggesting an anti-

inflammatory effect (Figure 10A). The expression of key EMT

markers such as CDH1, VIM, and MMP9 was modulated by the

combination of Digoxin and OE-DVL1, suggesting its role in

inhibiting EMT-related changes (Figure 10A). CCK-8

demonstrated that Digoxin, particularly at high doses,

significantly reduced the viability of SW620 and HCT116 cells,

with further decreases when combined with OE-DVL1, highlighting

their combined inhibitory effect on cell proliferation (Figure 10B).

Transwell migration assays confirmed that both Digoxin and OE-

DVL1 significantly reduced cell migration, further supporting their

role in inhibiting metastatic potential (Figure 10C). Colony

formation assays showed a marked decrease in the number of

colonies formed in cells treated with Digoxin, with an additional

reduction observed when combined with OE-DVL1, suggesting

enhanced anti-proliferative effects (Figure 10D). Flow cytometry

analysis indicated increased apoptosis levels in cells treated with

Digoxin, particularly when combined with OE-DVL1, highlighting

the pro-apoptotic effects of these treatments (Figure 10E).

Immunofluorescence staining revealed decreased expression of

EMT markers ZEB2 and MMP9, as well as cell cycle regulators

CDC6 and PCNA, indicating alterations in EMT status and cell

cycle progression following treatment (Figures 10F, G).

Furthermore, Figure 11 illustrates the broader role of DVL1 in

SICand multiple cancers, with oxidative stress identified as a critical

mediator linking DVL1 to these conditions. Digoxin emerges as a

potential therapeutic agent targeting DVL1, modulating its activity

and downstream signaling pathways. The combined results from

transcriptomic analyses, drug susceptibility screening, and spatial

transcriptomics provide a comprehensive view of DVL1’s

involvement in both SIC and cancer, positioning Digoxin as a

promising therapeutic strategy for regulating these pathways.
4 Discussion

SIC is a serious complication in critically ill cancer patients and

is closely associated with heart failure and high mortality (2, 121).

TME-driven immune imbalance may exacerbate the development

and progression of SIC (122, 123). The interaction mechanisms

between tumor-associated inflammation, dysfunction of VSMC,

and myocardial injury are still poorly elucidated (56, 124).

Therefore, it is crucial to investigate the pathogenesis. In this

study, the role of DVL1 in SIC was investigated by integrating

transcriptome analysis, WGCNA, molecular docking and drug

screening, and explored the possibility of DVL1 as a potential

therapeutic target for SIC.

This study revealed the critical role of DVL1 gene in SIC in cancer

patients (2). Multiomic analysis indicates that DVL1 is significantly

upregulated in SIC and various gastrointestinal cancers, and is closely

associated with the occurrence of poor prognosis and enhanced

inflammatory response (115, 125). These findings not only highlight

the role of DVL1 in the progression of SIC, but also elucidate its

underlying mechanism in immune regulation within the tumor

microenvironment. Furthermore, these insights have important
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FIGURE 9

Analysis of DVL1 expression and its effects on cell proliferation and tumor progression across various cell lines. (A) Quantitative PCR Analysis: Relative
mRNA levels of DVL1 in SW620, HCT116, and RAW264.7 cell lines following treatment with different concentrations of Digoxin (H, High; M, Medium;
L, Low) were assessed using qPCR. The expression of DVL1 is significantly downregulated in cells treated with Digoxin, especially at high
concentrations (p < 0.001). (B) CCK-8 Assay: Cell viability analysis of HCT116 and SW620 cells treated with different concentrations of Digoxin (H, M,
L) over 48 hours using the CCK-8 assay. The results indicate a dose-dependent reduction in tumor volume in both cell lines, with Digoxin H
showing the greatest inhibitory effect on proliferation (p < 0.05). (C) Inflammatory Cytokine Expression: Quantitative PCR was used to detect the
mRNA expression levels of key inflammatory cytokines in multiple cell lines, including SW620, HCT116, and RAW264.7, treated with various
conditions. Notable changes in cytokine expression are evident across different treatments (p < 0.001). (D) DVL1 Expression in THP-1 and RAW264.7
Cells: qPCR analysis of DVL1 mRNA levels in THP-1 and RAW264.7 cell lines, highlighting significant upregulation in RAW264.7 cells compared to
THP-1 (p < 0.001). (E) DVL1 Expression in Various Cell Lines: qPCR results show the expression of DVL1 in SW620, HCT116, and RAW264.7 cells. The
data indicate distinct differences in DVL1 expression levels among cell lines, with overexpression observed in specific groups (p < 0.001). (F) Impact
of DVL1 on Cell Proliferation: The effect of DVL1 on cell proliferation in HCT116 and SW620 cells was evaluated using a CCK-8 assay. Results
indicate that overexpression of DVL1 promotes cell proliferation, whereas knockdown significantly inhibits growth in both cell lines (p < 0.001).
(G) DVL1 Expression Post-Knockdown: Quantitative PCR analysis of DVL1 expression in SW620, HCT116, and RAW264.7 cells following DVL1
knockdown. Results demonstrate a significant decrease in DVL1 mRNA levels across all tested cell lines after knockdown treatment (p < 0.001).
(H) Plate Colony Formation Assay: Assessment of DVL1’s impact on colony-forming ability in SW620 and HCT116 cells through plate cloning
experiments. Images depict colonies from control, EV (empty vector), DVL1 overexpression (OE-DVL1), and DVL1 knockdown groups (sh-DVL1). The
data suggest that DVL1 overexpression enhances colony formation, while knockdown reduces it. The symbols *, **, and *** represent statistical
significance levels corresponding to p<0.05, p<0.01, and p<0. 001, respectively. ns, not significant.
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implications for understanding the differentiated response patterns

during patient immunotherapy (63, 126). We used a variety of

experimental methods to study the function of DVL1 in SIC and

selected FDA-approved drugs such as Digoxin and paromomycin as

potential inhibitors of DVL1. Among them, Digoxin reduces the level

of sepsis-induced oxidative stress by targeting DVL1, thereby

improving the survival rate of cardiomyocytes. The results of this
Frontiers in Immunology 19
study provide a new direction for pharmacological intervention in

SIC. Approved drugs (repurposed drugs) may be used to improve

clinical outcomes in patients with SIC. Especially in cancer patients,

the impact of SIC on cardiac function may be more severe, and thus

DVL1-targeted therapies may be an important complement to

personalised immunotherapy. WGCNA further identified a

turquoise module that is closely associated with SIC. This module
FIGURE 10

The effects of digoxin and DVL1 overexpression on inflammatory cytokine expression, cell viability, migration, proliferation, apoptosis, and key
protein expression in SW620 and HCT116 cell lines. (A) Relative mRNA expression levels of inflammatory cytokines (TNFa, IL6, IL1b) and key EMT
markers (CDH1, VIM, CDK1A, CDKN1, BCL2, BIRC5, MMP9, MMP2, b-catenin) were assessed in SW620 and HCT116 cell lines under different
treatment conditions: Control group (NC), LPS, Digoxin, OE-DVL1, and the combination of LPS and Digoxin with OE-DVL1 overexpression. Data are
presented as mean ± SD, with statistical significance indicated by p-values. (B) The effects of varying concentrations of Digoxin (High, Medium, Low)
and OE-DVL1 on the viability of SW620 and HCT116 cells were measured using the CCK-8 assay. Significant decreases in viability were observed in
cells treated with Digoxin H compared to controls, with further reductions upon OE-DVL1 overexpression. (C) The migratory capacity of SW620 and
HCT116 cells was assessed using Transwell chambers. Cells treated with Digoxin H and those overexpressing DVL1 showed reduced migration
compared to the control group, highlighting the role of Digoxin and DVL1 in inhibiting cell migration. (D) Proliferative ability was evaluated by plating
SW620 and HCT116 cells. Colony formation was significantly reduced in the Digoxin H treatment group, with a further decrease in the combination
of Digoxin H and OE-DVL1, indicating the suppressive effect of these treatments on cell proliferation. (E) Apoptosis was measured using flow
cytometry in SW620 and HCT116 cells under various treatments. Increased levels of apoptosis were observed in cells treated with Digoxin H,
especially when combined with OE-DVL1, compared to untreated controls. (F, G) Immunofluorescence staining of ZEB2, MMP9, CDC6, and PCNA:
The expression of EMT marker ZEB2 and matrix metalloproteinase MMP9, as well as the cell cycle regulators CDC6 and PCNA, were visualized by
immunofluorescence in SW620 and HCT116 cells. Cells treated with Digoxin H and those overexpressing OE-DVL1 displayed significant changes in
these protein expressions, indicating alterations in EMT and cell cycle progression.
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FIGURE 11

Critical role of DVL1 in sepsis-induced cardiomyopathy (SIC) and multiple cancers. This figure illustrates the central role of DVL1 in the progression
of sepsis-induced cardiomyopathy and its association with various cancers, emphasizing the role of oxidative stress as a key mediator. The upper
part of the image depicts sepsis-induced systemic inflammation leading to increased oxidative stress, which impacts the cardiovascular system,
resulting in SIC. The illustration also highlights DVL1’s involvement in cancer development and progression through its effects on tumor
microenvironments. Positioned centrally, DVL1 acts as a crucial node that links oxidative stress responses to both cardiac dysfunction and oncogenic
processes. Digoxin is indicated as a potential therapeutic agent that targets DVL1, offering a promising approach for modulating DVL1 activity and its
downstream pathways. The lower section of the figure provides an overview of various experimental analyses related to DVL1’s function. It includes
differential expression analysis of core genes in SIC, highlighting significant alterations in gene expression (e.g., DVL1) through a volcano plot. Drug
susceptibility screening results are presented in a heatmap, identifying the responsiveness of SIC-associated cells to potential therapeutic agents.
Additionally, the figure shows DVL1 expression across different tumor types through box plots, revealing its dysregulation in multiple cancers. Gene
set enrichment analysis (GSEA) and gene set variation analysis (GSVA) further demonstrate DVL1’s involvement in critical signaling pathways.
Transcription factor analysis and single-cell sequencing provide insights into the regulatory mechanisms and cellular heterogeneity associated with
DVL1 expression. Spatial transcriptomic analysis maps the spatial distribution of DVL1 in tissue samples, while cell-based experiments validate the
functional impact of DVL1, including the effects of Digoxin treatment and DVL1 knockdown on downstream signaling and cell viability.
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contains a set of key genes that may synergistically contribute to the

ground inflammatory response during sepsis. Immune infiltration

analyses showed that increased DVL1 expression levels were closely

associated with increased infiltration of pro-inflammatory immune

cells (e.g., macrophages and T-cells), suggesting that DVL1 may

influence the susceptibility of SIC patients by modulating the

behavior of immune cells in the sepsis microenvironment. These

results suggest that SIC is, at least in part, an immune-mediated

disease and further reveal a central role for 138DVL1 in the regulation

of inflammation.

In a broader biological context, this study revealed DVL1 as a

key molecular link between sepsis, cancer, and cardiac dysfunction

(31, 127).DVL1 is a core regulator of the Wnt signaling pathway

and plays important roles in biological processes such as cell

proliferation, differentiation, and migration (128, 129). Through

bioinformatics analysis and experimental verification, studying the

association of signaling pathways and diseases has become an

important direction of current medical research, among which

the research on the Wnt signaling pathway has yielded fruitful

results (130).These studies provide new targets and ideas of disease

treatment, further highlighting the significance for SIC therapy in

the research focusing on DVL1 and the Wnt signaling

pathway.DVL1, as a central mediator of the Wnt signaling

pathway, modulates downstream signaling upon Wnt signaling

activation by interacting with the frizzled receptor as well as

Lrp5/6. It promotes the accumulation of b-cyclins by inhibiting

GSK-3b and bringing it into the nucleus, which ultimately affects

the expression of downstream genes (131, 132). Aberrant activation

of the Wnt signaling pathway may promote pathological

remodeling of cardiac tissue associated with SIC, especially in

cancer patients in a hyperinflammatory state (133, 134). Because

to the central role of Wnt signaling in immune regulation, this

mechanism can help to understand the emergence of

immunotherapy resistance in certain cancer subtypes.

This study also explored the epigenetic mechanisms of DVL1

transcriptional regulation, combined with ATAC-seq data. The

methods of this study borrowed and combineed advanced technology

and experimental procedures of several documents (135–137). In this

process, big data and bioinformatics technologies play a key role. Their

use in biomarker identification is increasingly important to aid in the

diagnosis and prognostic assessment of the disease (138). We found

that the open chromatin state of the DVL1 promoter and enhancer

regions is closely associated with the binding of multiple transcription

factors, including key transcriptional regulators such as MYC, NF- k B

and STAT 3. These transcription factors all play important roles in the

inflammatory response, tumor progression, and immune regulation.

The abnormal activation of MYC may aggravate the inflammatory

response in the tumor microenvironment by enhancing DVL1

expression, and the synergistic action of NF- k B and STAT 3 may

further drive the pathological progression of SIC. It has been shown

that the open state of chromatin not only determines gene accessibility,

but also affects the extent to which tumor cells respond to

immunotherapy. In the study of cancer immunotherapy, new

mechanisms of immune cells have been explored from the aspects of

epigenetic modification, metabolic regulation and intercellular
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communication to provide a theoretical basis for the optimization of

cancer immunotherapy strategies (139). These studies highlight the

important role of bioinformatics and transcriptomic approaches in

resolving the tumor immune microenvironment and provide new

perspectives for the development of future targeted therapeutic

protocols (140, 141). This has similarities with our study on the role

of DVL1 in SIC and the therapeutic strategy. Therefore, we

hypothesized that targeted regulation of DVL1-associated epigenetic

regulatory networks may help to optimize therapeutic strategies for SIC

and related tumors. The study of biomarkers is a key link in early

disease diagnosis and precision treatment (142). Using multi-omics

analysis technology and combined with bioinformatics means it can

reveal the potential markers of diseases from the molecular level, such

as the identification of disease-related MicroRNAs, metabolic

fingerprint maps and extracellular vesicle surface proteins from

biological samples such as bile and serum, opening up a new way for

the early detection of diseases and disease monitoring (143). The open

chromatin regions revealed by ATAC-seq data can be used to screen

patients who respond to DVL1 targeted therapy to enable precision

treatment. Moreover, combined with single-cell sequencing technology,

it is expected to further investigate the role of DVL1 in different

immune cell subsets and reveal its dynamic changes in the remodeling

of the immune microenvironment. These findings provide new

perspectives for future research on targeted intervention strategies for

DVL1. Despite the importance of this study, some limitations remain.

First, we focused on the direct effect of DVL1 on cardiomyocytes, and

did not deeply investigate its specific role in VSMCs in SIC (48, 56).

VSMCs play a key role in maintaining vascular homeostasis and

vascular remodeling processes, and their response during sepsis may

influence the pathological progression of SIC (60, 144). Future studies

investigating DVL1 function in VSMCs and analyzing its effects on

vascular dysfunction should be performed to refine the mechanism of

DVL1 action in the pathogenesis of SIC. Second, although this study

explored the pharmacological intervention strategies for DVL1, its

synergy with non-pharmacological interventions (e.g., exercise) has

not been fully evaluated (145, 146). Exercise has been shown to improve

the course of SIC by modulating the Wnt signaling pathway and

reducing oxidative stress and inflammation.

In the future, further research can be made to investigate whether

exercise improves SIC by affecting the DVL1 signaling pathway and

evaluate the effect of combined exercise and drug intervention to

optimize the comprehensive treatment regimen of SIC. Moreover,

this study has some limitations in terms of sample size and dataset.

The sample size may not be sufficiently representative of all potential

patient population characteristics.The data in the database used may

also have geographical, ethnic and other bias, thus affecting the

generalizability of the study results. Future studies should also

cover a wider range of cell types and explore in-depth the

function of DVL1 in different microenvironments (e.g., tumor

microenvironment and immune system).At the same time, the

development of “off-the-shelf” gene therapy nanoparticles based on

existing drugs or the use of CRISPR technology also provides new

possibilities for clinical applications in medicine (147, 148).

Furthermore, through in-depth analysis of patient engagement and

social support systems, the investigators revealed the important
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impact of these factors on disease management and patient mental

health (149, 150). Future studies on SIC can consider including these

psychosocial factors in the research category, comprehensively

evaluate their interaction with biological factors, develop more

comprehensive and effective treatment and management programs,

and promote the overall recovery of patients.DVL1 expression is

upregulated in a variety of cancers (such as colorectal and gastric

cancers) and is closely associated with the abnormal activation of the

Wnt signaling pathway. Understanding these interactions could

provide new insights into how DVL1 mediates immune responses

in the SIC. Finally, the main conclusions of this study are based on in

vitro experiments and bioinformatics analysis, and lack support from

in vivo experimental and clinical data. In the future, mouse SIC

models should be constructed to verify the efficacy of DVL1

inhibitors (such as Digoxin) in SIC treatment and evaluate the

correlation of DVL1 expression level and the prognosis of SIC

patients combined with clinical data. The further development of

animal experiments and clinical research will provide stronger

evidence for the wide application of DVL1-targeted drugs in SIC

treatment. Although this study focuses on the interaction of post-

tumor inflammation with the dysfunction of VSMC and the

mechanism of DVL1 in sepsis-induced cardiomyopathy (SIC), the

field of medical research is broad and interconnected (43, 151). The

coding research of the biological meta-universe explores the progress

and challenges in the neural field from the macro level to the micro

level, combined with the simulation of the nervous system

information transmission, and lays the foundation for the future

development of human-computer interaction and neuroregulation

technology (152). In terms of microbial research, the study of the gut

microbiome has always been a hot topic (153, 154). Using

metagenomic sequencing technology combined with bioinformatics

data analysis to deeply explore the interactions between

microorganisms in the gut,is important for understanding the

relationship between human health and disease. Microorganisms

are also emerging in drug delivery. bacteria-based drug delivery

systems have opened up new ways for the treatment of non-

neoplastic diseases, showing unique therapeutic advantages (155).

In this study, although the microbiome-related content was not

directly involved, the microbiome combined with bioinformatics

analysis can also open up new ways for the diagnosis and

treatment of diseases (156, 157). In the future, in the study of SIC

and related diseases, we may learn from the ideas and methods of

microbial research, use bioinformatics to analyze the pathogen

genome and host immune response data, deeply explore the

relationship between microorganisms and diseases in SIC patients,

and provide multi-dimensional support for the development of more

effective treatment strategies (158, 159). This also suggests that in

future studies, we should focus on the integration of research results

in different fields and explore the pathogenesis and treatment

strategies of SIC from a broader perspective (8, 121). In conclusion,

this study reveals the critical role of DVL1 in the pathogenesis of SIC

and provides strong evidence as a novel therapeutic target, providing

important clues for precision medicine of SIC. Moreover, the

synergistic effects of pharmacological and non-pharmacological

interventions still deserve intensive investigation in the hope of
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providing more effective personalized treatment options for

patients with SIC (160).In this process, big data and bioinformatics

technologies play a pivotal role, particularly in biomarker

identification, which is increasingly important for aiding the

diagnosis and prognostic assessment of diseases (138). In the

future, combining big data analysis, bioinformatics means, and

multi-level experimental validation, it is expected to further

elucidate the regulatory network of DVL1 and optimize its targeted

intervention strategies (161, 162). The findings of this study not only

deepen the understanding of the molecular mechanisms of DVL1,

but also establish the theoretical basis for future personalized

treatment strategies for patients with SIC (163, 164). Research of

biomarkers is crucial for the early diagnosis and precise treatment of

diseases (142, 165). In this study, multi-omics analysis techniques and

bioinformatics means were used to study the DVL1 gene as a

potential biomarker (125, 166). In the future, further research is

expected to identify potential markers such as MicroRNAs, metabolic

fingerprints, and extracellular vesicle surface proteins from more

biological samples so as to provide more ways for early disease

detection and disease monitoring and promote the development of

personalized treatment for SIC and related diseases (143). With the

continuous advancement of research, DVL1 will become a new

breakthrough in the treatment of SIC and even cancer-related

cardiovascular diseases, contributing to the development of new

treatment methods (167–169).
5 Conclusion

This study highlights DVL1 as a key gene in SIC and its

association with poor outcomes in cancer, particularly in the

context of immunotherapy resistance. DVL1’s upregulation is

linked to increased inflammation and unfavorable prognosis,

suggesting its role in the complex landscape of intratumor

heterogeneity. Molecular docking identified Digoxin as a promising

candidate for targeting DVL1, with the potential to reduce oxidative

stress and modulate immune responses in SIC. WGCNA further

confirmed the central role of DVL1 in the gene network driving

disease progression. These findings underscore the potential of

targeting DVL1 to improve therapeutic outcomes in SIC and

cancer, particularly when integrated with pharmacotherapy and

exercise regimens. By addressing the challenges posed

by intratumor heterogeneity, this study offers new insights into the

molecular mechanisms underlying SIC and its overlap with cancer

progression. Further clinical research is needed to validate the

therapeutic potential of targeting DVL1, aiming to enhance

immunotherapy effectiveness and provide more personalized

treatment strategies for patients facing both SIC and cancer.
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