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Background: Heart failure (HF) represents the terminal stage of various

cardiovascular disorders, with immunogenic cell death (ICD) potentially

influencing HF progression through modulation of immune cell activity. This

study aimed to identify ICD-associated biomarkers in patients with HF and

explore their underlying mechanisms.

Methods: Data from GSE57338, GSE3586 and GSE5406 were retrieved from the

Gene Expression Omnibus (GEO) database. Differential expression analysis and

weighted gene co-expression network analysis (WGCNA) were employed to

identify candidate genes, followed by enrichment analysis and Protein-Protein

Interaction (PPI) network construction. Candidate biomarkers were selected using

twomachine learning approaches and validated for expression levels, with receiver

operating characteristic (ROC) curve analysis determining the final biomarkers. A

nomogram model was built based on the biomarkers, followed by molecular

regulatory network analysis, gene set enrichment analysis (GSEA), immune

infiltration assessment, and drug prediction. Additionally, key cells were selected

for pseudo-time and cell communication analysis using the GSE183852 dataset.

Next, pseudotemporal analysis was also performed on key cell subpopulations.

Real-time quantitative PCR (RT-qPCR) was employed to validate the biomarkers.

Results: Three biomarkers, CD163, FPR1, and VSIG4, were identified as having

significant diagnostic value for HF. GSEA revealed their enrichment in ribosomal

and immune cell-related pathways. These biomarkers were notably correlated

with CD8 T cells and M2 macrophages. Carbachol and etynodiol were predicted

to interact with all three biomarkers. Single-cell RNA sequencing identified nine

cell types, with expression of the biomarkers confined to monocytes and

macrophages. Strong cell communication was observed between these cell

types and fibroblasts. Expression of CD163 and VSIG4 decreased over time in

monocytes and macrophages, whereas FPR1 showed an upward trend. In
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addition, the expression levels of CD163 and VSIG4 increased in subpopulations

of monocytes and macrophages, whereas FPR1 showed a decreasing trend. RT-

qPCR results confirmed significant down-regulation of CD163, FPR1, and VSIG4

in patients with HF and animal models.

Conclusions: This study identified and validated three ICD-related biomarkers in

HF—CD163, FPR1, and VSIG4—offering a novel theoretical foundation for the

clinical diagnosis and treatment of HF.
KEYWORDS

immunogenic cell death, heart failure, biomarker, single-cell RNA sequencing analysis,
monocytes and macrophages
1 Introduction

Heart failure (HF), the terminal stage of various cardiovascular

diseases, affects approximately 56.2 million people worldwide (1, 2).

Despite lifestyle changes and advances in medical care that have

stabilized age-adjusted incidence rates, the prevalence and mortality

rates of HF remain high, highlighting the need for further research

to identify improved management strategies (3). Although HF was

once considered non-immune-mediated, recent studies have

demonstrated the involvement of the immune system in its

pathophysiology, and clinical trials on immune modulation

therapy for HF have been conducted (4). Consequently,

modulating immune responses to maintain stability may serve as

a promising strategy to delay HF progression.

Immunogenic cell death (ICD), a unique form of regulated cell

death that occurs as a downstream effect of tumor-specific immune

responses, has been extensively studied in cancer immunotherapy

(5, 6), with emerging research in cardiovascular diseases.

Endothelial cell ICD in atherosclerosis has been linked to the

initiation of adaptive immune responses, sustaining chronic

inflammation within plaques (7). In coronary artery disease,

stratification based on ICD-related genes (IRGs) enables the

development of risk models and immune subtypes that facilitate

treatment decisions (8). Moreover, ICD has been explored as a

diagnostic tool for ischemic stroke in elderly women, identifying
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key biomarkers for diagnosis (9). However, the mechanisms

underlying ICD in HF remain unexplored.

This study utilized machine learning techniques to identify ICD

biomarkers in HF, followed by immune infiltration analysis, targeted

drug prediction, gene set enrichment analysis (GSEA), single-cell data

clustering and annotation, cell communication analysis, and

pseudotime analysis. The findings revealed the functional and

potential molecular mechanisms of these biomarkers at both the

transcriptomic and cellular levels, providing a novel theoretical

framework for the clinical diagnosis and treatment of HF.
2 Materials and methods

2.1 Data collection

RNA data from GSE57338 (sequencing platform: GPL11532)

was obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), comprising 136 normal left

ventricular tissue samples and 177 left ventricular tissue samples

from patients with HF (10). Additionally, RNA data from GSE3586

(sequencing platform: GPL3050) was downloaded, containing 15

normal left ventricular tissue samples and 13 left ventricular tissue

samples from patients with HF (11). Moreover, the GSE5406

dataset contained 16 normal and 194 HF patients’ heart tissue

samples. The data were obtained from the GPL96 platform using

chip sequencing technology, mainly for biomarkers expression

validation. The single-cell dataset GSE183852 was retrieved from

the GEO website (sequencing platform: GPL24676), including heart

tissue samples from 5 patients with HF and 2 normal heart tissue

samples (12). A total of 34 ICD-associated genes were obtained

from the literature (13) (Additional file 1).
2.2 Differential expression analysis

Differential expression analysis was conducted using the R

package “limma” (v 3.58.1) (14), applying the screening criteria of
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|log2fold change (FC)| > 0.5 and P < 0.05 to compare HF and control

samples in the GSE57338 dataset. Volcano plots of the differentially

expressed gene (DEGs) were visualized using the R package

“ggplot2” (v 3.4.1) (15), highlighting the top 10 up- and down-

regulated DEGs. Heatmaps of the top 10 DEGs were generated

using the R package “ComplexHeatmap” (v 2.4.0) (16).
2.3 Weighted gene co-expression networks
analysis

To calculate the single-sample gene set enrichment analysis

(ssGSEA) scores for ICD-related genes across 313 samples, the

ssGSEA algorithm from the R package “GSVA” (v 1.46.0) (17) was

applied, and box plots were created using “ggplot2” (v 3.4.1).

WGCNA was performed on the GSE57338 dataset using the R

package “WGCNA” (v 1.72.5) (18), with ssGSEA scores as the

feature. Initial clustering of samples identified and excluded

abnormal samples. The soft threshold (power) was determined

based on an R2 > 0.85 and mean connectivity = 0. The dynamic

tree cutting algorithm, with a minimum gene number of 50 per

module and a module merging threshold of 0.3, was applied to

define gene modules. Genes were color-coded, and the “grey”

module (containing unclassified genes) was excluded. Pearson

correlation coefficients were calculated between the modules and

ssGSEA scores, with a heatmap generated to highlight modules with

significant correlation (|cor| > 0.5, P < 0.05). Genes within these

modules were identified as key module genes.
2.4 Enrichment analysis of candidate genes
and protein-protein interactions network
analysis

The R package “ggvenn” (v 1.7.3) (19) was employed to identify

the intersection between DEGs and key module genes, resulting in

the selection of candidate genes. These genes were then converted

from SYMBOL to ENTREZID using the human genome database

org.Hs.eg.db (v 3.18.0) (20). Candidate genes underwent Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analysis with the R package

“ClusterProfiler” (v 3.16.0) (21), with a threshold of P < 0.05. To

construct PPI networks, candidate genes were analyzed using the

search tool for the retrieval of interacting genes (STRING) database

(https://string-db.org) with a confidence score of 0.4. PPI networks

were then visualized with Cytoscape (v 3.10.0) (22). The Cytohubba

plugin in Cytoscape (v 3.10.0) was utilized to rank candidate genes

using six algorithms: Maximum Connectivity Component (MCC),

Minimum Network Connectivity (MNC), Degree of Minimum

Network Connectivity (DMNC), Degree, Closeness, and

Betweenness. Based on the ranking results, the top 20 genes from

each algorithm were extracted, and their intersection was used to

identify the final candidate key genes. UpSet plots were generated

using the R package (v 1.4.0) (23).
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2.5 Screening candidate biomarkers by
machine learning

Candidate key genes were further screened based on sample

grouping information from GSE57338 using the support vector

machine-recursive feature elimination (SVM-RFE) algorithm (10-

fold cross validation) (v 4.1.4) (24) to obtain feature genes. The R

package “randomForest” (v 3.2.2) (25) was used for random forest

algorithm analysis of the feature genes, incorporating sample

grouping information from GSE57338. A total of 500 decision

trees were computed using the randomForest function, and the

MeanDecreaseGini values for each feature gene were visualized in a

bar chart. The median of the MeanDecreaseGini values

(MeanDecreaseGini measures the effect of each variable on the

heterogeneity of observations at each node in the classification tree,

thus assessing the importance of the variable. The larger the value,

the higher the importance of the variable) was calculated, and genes

with values above the median were selected as candidate

biomarkers. Correlation analysis of the candidate biomarkers was

performed using the R package “corrplot” (v 0.92) (26), with

thresholds of |cor| > 0.3 and P < 0.05.
2.6 Expression validation of candidate
biomarkers

Expression differences of candidate biomarkers between HF and

normal samples were analyzed using the grouping information from

GSE3586 and GSE57338, with a threshold of P < 0.05. Box plots were

constructed using the R package “ggplot2” (v 3.4.1). Candidate

biomarkers showing differential expression between groups and

consistent trends across both datasets were selected for receiver

operating characteristic (ROC) analysis. ROC curves for candidate

biomarkers were generated using the R package “pROC” (v 1.18.0)

(27), and the area under the curve (AUC) was calculated, with

biomarkers defined as those having an AUC > 0.7. To validate

biomarkers expression, differential expression analysis was performed

in the GSE5406 dataset.
2.7 Construction of a nomogram

In the GSE57338 dataset, a nomogram was constructed using

the R package “rms” (v 5.1.4) (28) to evaluate the risk of developing

HF, based on the expression of identified biomarkers. The

predictive performance of the nomogram was assessed by plotting

the ROC curve with the R package “pROC” (v 1.18.0).
2.8 Gene set enrichment analysis

Spearman correlation analysis was performed between each

biomarker and the remaining genes across all GSE57338 samples

using the R package “psych” (v 2.2.9) (29), generating correlation
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coefficients. Genes were then ranked according to these coefficients,

yielding gene lists associated with each biomarker. GSEA was

performed using the sorted results and the R package

“ClusterProfiler” (v 3.16.0), with “c2.kegg.v7.4.symbols.gmt” and

“c5.go.v7.4.symbols.gmt” from the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) as

reference gene sets. The top 5 most significant signaling pathways

were visualized using the enrichplot package (P < 0.05 and |

Normalized Enrichment Score (NES)| > 1) (v 1.18.3) (20).
2.9 Immune infiltration analysis

The CIBERSORT algorithm (v 1.03) (30) was employed to

calculate the relative abundance of 22 immune cell types (31) in HF

and normal samples from the GSE57338 dataset. Immune cells with

a result of 0 were excluded. Differential immune cells (P < 0.05)

were identified, and box plots were constructed for visualization.

Spearman correlation analysis was used to assess the relationships

among differential immune cells and between biomarkers and

immune cells (|cor| > 0.3 and P < 0.05). A correlation matrix was

created using the R package “corrplot” (v 0.92) (26), and a heatmap

was plotted using the R package “pheatmap” (v 1.0.12) (32).
2.10 Regulatory network analysis

MiRNAs targeting the biomarkers were predicted using the

microRNA database (miRDB, http://mirdb.org) and the starBase

database (http://starbase.sysu.edu.cn/), and the intersection of

miRNAs from both databases was extracted. Based on these

predictions, a miRNA-biomarker network was constructed using

Cytoscape (v 3.10.0). Transcription factors (TFs) related to the

biomarkers were identified using the TRRUST database (http://

www.grnpedia.org/trrust/), while the disease signatures database

(DSigDB, https://www.dsigdb.org/) was used to identify drugs

targeting the biomarkers. A biomarker-drug network was then

created and visualized.
2.11 Single-cell RNA sequencing analysis

The single-cell RNA sequencing data from GSE183852 were

processed into Seurat objects using the R package “Seurat” (v 4.4.0)

(33). Quality control was performed by applying the following

parameters: 200 < nFeature_RNA < 4,000, nCount_RNA < 10,000,

and Mt < 10%. Genes covered by fewer than three cells were removed.

Hypervariable genes were selected using variance stabilization

transformation (vst), and the highly variable genes (HVGs) were

retained for further analysis. The LabelPoints function was applied to

identify the top 10 most variable genes, and the Scale Data function was

used for normalization. Principal component analysis (PCA) was

performed on the HVGs for dimensionality reduction. The p-value

for PCs 1 to 15 was calculated using the Jackstraw function, and

variance drop values for PCs were computed using the Elbowplot
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function. Based on the elbow plot, appropriate PCs were selected for

subsequent analysis (P < 0.05). Uniform Manifold Approximation and

Projection (UMAP) clustering analysis was applied to identify cell

clusters (resolution = 0.5). Cellular annotation was performed according

to the literature (12). The Dotplot function was used to visualize the

expression of the three biomarkers in the cells, and cells expressing all

three biomarkers were selected as key cells. Enrichment analysis for

each cell subtype was conducted using the analyze_sc_clusters function

from the R package “ReactomeGSA” (v 1.12.0) (34). The pathways

function was used to extract enrichment results, and a heatmap

displayed the top ten enriched pathways in each cell subtype. Cell

subtype interactions were explored using the R package “CellChat” (v

1.6.1) (35) to conduct communication analysis. Trajectory

differentiation of key cell clusters was simulated using the R package

“Moncle” (v 2.30.1) (36). The dynamic trend of biomarker expression

during cell differentiation was plotted using the plot_pseudo-

time_heatmap function. Next, the marker genes of key cell

subpopulations were selected for annotation based on the CellMarker

2.0 database (https://ngdc.cncb.ac.cn/databasecommons/database/id/

6110), and the final key cell subpopulations were identified based

on the specific expression of these genes in different clusters. To

further explore the expression dynamics and temporal trajectories

of biomarkers in the key cells, the annotated key cell subpopulations

were analyzed by the proposed timeline trajectory analysis. Using

the R package Monocle2 (v 2.24.1) (37), the distribution of

biomarkers in each key cell subtype was projected onto a root

and multiple branches, a single-cell trajectory map was constructed,

and the dynamic trend of biomarker expression during cell

differentiation was plotted. Subsequently, in order to analyze the

relationship between differentiation states and subtypes of key cells,

stacked maps of cell subpopulations in different differentiation

states were drawn. Based on the subtype annotation results, the

proportions of cell types under different groupings were first

visualized. Wilcoxon test. Finally, the differences in the expression

of NOS2, TNF, ARG1, and MRC1 genes in Monocyte&Macrophage

between HF and control samples were analyzed and statistically

analyzed using the Wilcoxon test.
2.12 Human Subjects and Extraction of
PBMC

Patients with HF admitted to the First Hospital of Shanxi

Medical University were selected as the HF group, and a control

group was matched with the HF group based on age, gender, and

other underlying diseases besides HF. Based on the expression of

biomarkers obtained through bioinformatics, the sample size was

calculated using PASS.15, resulting in a total of 15 pairs of samples.

In the morning of the second day after admission, venous blood was

collected into EDTA tubes, and peripheral blood lymphocytes were

isolated within 2 hours using human peripheral blood lymphocyte

separation liquid (Solarbio, China). The trial protocol was approved

by the Scientific Research Ethics Review Committee of the First

Hospital of Shanxi Medical University (NO. KYLL-2024-236), and

all patients provided written informed consent.
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2.13 Animal model (echocardiography)

SSPF-grade male Sprague-Dawley rats (180–200 g, 6–8 weeks old)

were used to establish a chronic HF model (38). HF was induced by

permanently ligating the left coronary artery in rats, while sham-

operated rats underwent the same surgical procedure without artery

ligation. Six weeks post-ligation, high-resolution echocardiography was

performed using the Vevo 770 system (Visualsonics) with a 40 MHz

RMV 704 scanhead to assess cardiac function. Rats with an ejection

fraction (EF) < 40% were considered to have successfully developed HF,

and those that did not develop HF were excluded. After completing

echocardiography, the animals were euthanized, and tissues were

collected for analysis. The experimental protocol was approved by the

Animal Experimental Center Ethics Committee of Beijing

Yongxinkangtai Science and Technology Development Co., Ltd.

(NO. YXKT2024L010).
2.14 Staining

Hearts were fixed in 4% paraformaldehyde at room temperature

for 48 hours, followed by dehydration and embedding. The samples

were sectioned at 5mm thickness, dewaxed, rehydrated, and stained

with Hematoxylin and Eosin (HE) and Masson stains. For IHC

staining, primary antibodies targeting CD163 (1:200, Selleck,

F1548) was incubated overnight at 4 °C. Then, second antibody

was incubated at 37°C for 1 hour. Chromogen development was

accomplished with DAB. Images were captured under a microscope

(Olympus, Japan).
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2.15 Real-time quantitative PCR

Following tissue homogenization, total RNA was extracted

using Trizol (Thermo Fisher Scientific, USA). cDNA synthesis was

carried out using PrimeScript RT Master Mix (Takara, Japan)

according to the manufacturer’s protocol. Real-time quantitative

PCR (qPCR) analysis was performed with SYBR Green Master

Mix (DBI Bioscience, Germany) on a QuantStudio3 real-time PCR

instrument (Thermo Fisher Scientific, USA), with GAPDH as an

internal control. Relative mRNA expression levels were quantified

using the 2-DDCt method. Primer sequences are provided

in Table 1.
2.16 Statistical analysis

Statistical analyses were conducted using R software (v 4.2.2)

and GraphPad Prism 9. Differences between two groups were

assessed using the Wilcoxon rank sum test, with statistical

significance defined as P < 0.05.
3 Results

3.1 Acquisition of key module genes

A total of 441 DEGs were identified, including 236 up-regulated

and 205 down-regulated genes in HF (Additional files 2a-b). The

ssGSEA scores for ICD-related genes significantly differed between
TABLE 1 Primer sequences for quantitative real-time PCR.

Species Target gene Primer sequence (5’to3’)

Human

VSIG4
Forward AAGCAACATCTACAGTGAAGCAGTC

Reverse ATGATGAGGATGATGGCAAAGACAG

FPR1
Forward AGTGGACATCAACTTGTTCGGAAG

Reverse ACGGTGCGGTGGTTCTGG

CD163
Forward ACAATGAAGATGCTGGCGTGAC

Reverse TCTCTGAATCTCCACCTCAACTGTC

GAPDH
Forward CGTATCGGACGCCTGGTT

Reverse AGGTCAATGAAGGGGTCGTT

Rat

VSIG4
Forward AGCTGCCGATCTTTGCCATAATC

Reverse TCCTGCTCACCTCATAGACATACTC

FPR1
Forward CCGTGAACACTTGAGGAACATACC

Reverse GGATTGGGTTGAGGCAGCTATTG

CD163
Forward GAATCACAGCATGGCACAGGTC

Reverse CACAAGAGGAAGGCAATGAGAAGG

GAPDH
Forward GACATGCCGCCTGGAGAAAC

Reverse AGCCCAGGATGCCCTTTAGT
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HF and normal samples (Additional file 2c). In the WGCNA

analysis of the GSE57338 dataset, no outlier samples were

detected (Additional file 2d). The soft threshold was determined

to be 7 (Additional file 2e). Similar modules were merged from the

co-expression matrix, resulting in 11 identified gene modules

(excluding the gray module for unclassified genes), with each

module represented by a different color (Figure 1a). The yellow

module (cor = 0.72, P = 5.8 × 10–17) demonstrated the strongest

correlation with ICD-related gene ssGSEA scores. Consequently,

the 432 genes within the yellow module were designated as key

module genes (Figure 1b).
3.2 Identification and enrichment analysis
of candidate genes and PPI

In this study, 47 candidate genes were identified through the

intersection of DEGs and key module genes (Figure 2a). The

obtained candidate genes were subject to gene ID conversion,

though FCGR1B could not be successfully converted. GO

enrichment analysis revealed 272 GO terms, comprising 224

biological processes (BP), 24 cellular components (CC), and 24

molecular functions (MF) (P < 0.05) (Figure 2b). The candidate

genes were significantly enriched in pathways such as the positive

regulation of inflammatory response, secretory granule membrane,

and RAGE receptor binding. Additionally, the candidate genes were

enriched in 26 KEGG pathways (P < 0.05), including

staphylococcus aureus infection, phagosome, and neutrophil

extracellular trap formation (Figure 2c). These results implied

that candidate genes may play important roles in antimicrobial

immunity, inflammatory response and cellular damage repair.

The candidate genes were further subjected to PPI network

construction, resulting in 42 genes, such as TLR2, FPR1, andMRC1,

and 240 gene-to-gene pairs, including TLR2-CD163 and VSIG4-

CD14 (Figure 2d).

To optimize the screening of candidate genes, the genes were

ranked using different algorithms. The top 20 genes from each

algorithm were extracted, and the intersection of these top 20 genes
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was taken. Finally, 16 genes were identified as the candidate key

genes for further analysis (Figure 2e).
3.3 Machine learning for candidate
biomarker screening

Based on the sample grouping information from GSE57338, the

SVM-RFE algorithm was applied for screening, resulting in 13

feature genes: CD163, VSIG4, FCER1G, CCR1, CCL5, FPR1, TLR2,

C1QB, CD14, MSR1, CD68, MRC1, and CYBB (Figure 3a). The

MeanDecreaseGini values for each feature gene ranged from 0 to 30,

with notable differences observed between the genes (Figure 3b). By

calculating the median of the MeanDecreaseGini values, six genes

greater than the median were selected as candidate biomarkers:

CD163, VSIG4, FCER1G, CCR1, CCL5, and FPR1. Among these,

CCL5 showed a negative correlation with VSIG4 and CD163, while

the remaining five genes exhibited positive correlations with each

other (P < 0.01) (Figure 3c). The correlation between these genes

suggested that they may work in concert at different stages of the

immune response or in different types of immune cells.
3.4 Diagnosis and evaluation of biomarkers

In GSE57338, the six candidate biomarkers demonstrated

significant differences between HF and normal samples (P <

0.05), with CD163, FPR1, and VSIG4 showing decreased

expression in HF samples (Figure 4a). In GSE3586, only CD163,

VSIG4, CCR1, and FPR1 were expressed, with CD163, FPR1, and

VSIG4 levels significantly reduced in HF samples, consistent with

the expression patterns observed in GSE57338 (Figure 4b).

Consequently, CD163, FPR1, and VSIG4 were selected for ROC

analysis, which revealed that the AUC for all three biomarkers

exceeded 0.7 in both datasets, confirming their potential as HF

biomarkers (Figures 4c-h). Next, the expression analysis of CD163,

FPR1, and VSIG4 in the GSE5406 dataset showed that all three were

significantly under-expressed in the HF group compared to the
FIGURE 1

Acquisition of key module genes. (a) Co-expression module identification. (b) Heatmap showing the correlation between modules and phenotypes.
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normal group (Additional file 3). The expression patterns were

consistent with those in the GSE57338 and GSE3586 datasets.

The nomogram model demonstrated that these three

biomarkers could accurately predict the risk of HF occurrence.

ROC analysis of the nomogram yielded an AUC of 0.913,
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indicating that the predictive accuracy of the nomogram model

was significantly superior to single-gene predictions (Additional

file 4). It also suggested that the onset and progression of

HF may involve complex interactions of multiple genes or

biological pathways.
FIGURE 2

Identification and enrichment analysis of candidate genes and PPI. (a) Venn diagram depicting the overlap between differentially expressed genes
(DEGs) and key module genes. (b) Gene Ontology (GO) enrichment analysis results. (c) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis results. (d) Protein-Protein Interaction (PPI) network. (e) Upset plot representing the PPI network.
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3.5 Functional analysis of biomarkers

Further analysis of the signaling pathways involving CD163,

FPR1, and VSIG4 revealed that CD163 was enriched in 76

pathways, including ribosome, Parkinson’s disease, leishmania

infection, Fc gamma R-mediated phagocytosis, and B cell receptor

signaling (Figure 5a). FPR1 was enriched in 79 pathways, including

ribosome, leishmania infection, Parkinson’s disease, cytokine-

cytokine receptor interaction, and chemokine signaling

(Figure 5b). VSIG4 was enriched in 85 pathways, including

ribosome, Fc gamma R-mediated phagocytosis, B cell receptor

signaling, leishmania infection, and chemokine signaling

(Figure 5c). Notably, all three biomarkers were enriched in

pathways related to ribosome function, immune cells, and

immune factors. These findings provided a basis for further

investigation of the potential applications of biomarkers in

immunomodulation, disease diagnosis and therapy.
3.6 Analysis of immune cell infiltration

To further explore immune status differences between HF and

normal samples, immune infiltration analysis was performed on

GSE57338 samples, revealing differences in the abundance of 22

immune cell types between samples from patients with HF and

normal samples (Additional file 5). Immune cells with a result of 0

in 30% of the samples were excluded, leaving 12 immune cell types

for subsequent analysis. Five immune cell types showed significant

differences between the groups: M2 macrophages, resting mast cells,

plasma cells, CD8+ T cells, and T regulatory cells (Tregs) (P < 0.05)
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(Figure 6a). Correlation analysis among these five immune cell

types revealed a strong positive correlation between CD8+ T cells

and Tregs, while plasma cells exhibited negative correlations with

Tregs, CD8+ T cells, M2 macrophages, and resting mast cells

(|cor| > 0.3, P < 0.05) (Figure 6b). The correlation heatmap

between biomarkers and the five immune cell types showed that

VSIG4 had a strong positive correlation with M2 macrophages, and

M2 macrophages positively correlated with CD163 and FPR1. In

contrast, CD8+ T cells and plasma cells negatively correlated with

CD163, FPR1, and VSIG4, respectively. Resting mast cells

demonstrated an inverse correlation with CD163 and FPR1

(|cor| > 0.3, P < 0.05) (Figure 6c). The above results suggested

that biomarkers may be involved in disease onset and progression

by modulating immune responses and cellular functions.
3.7 Molecular regulatory network and drug
prediction

Prediction of miRNA interactions with the three biomarkers

revealed that VSIG4 was regulated by four miRNAs, including hsa-

miR-665; CD163 was regulated by 11 miRNAs, including hsa-miR-

4262; while no miRNA regulatory relationships were found for

FPR1 (Figure 7a). TFs regulating the biomarkers were also analyzed,

revealing that no TFs regulated VSIG4 or FPR1, but eight TFs,

including SOX9, were found to regulate CD163 (Figure 7b). These

findings provided important clues for further understanding of

immune markers and their regulatory networks in HF.

A total of 74 biomarker-drug/compound relationships were

identified. The network analysis suggested that carbachol and
FIGURE 3

Machine learning for candidate biomarker screening. (a) Results of the Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model.
(b) Bar chart depicting the MeanDecreaseGini scores for candidate genes. (c) Correlation analysis of candidate biomarkers. *P < 0.05, ***P < 0.001.
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etynodiol may have potential effects on all three biomarkers.

Additionally, six compounds were shared between CD163 and

FPR1—prednisolone, flunisolide, fludroxycortide, halcinonide,

ribavirin, and isoflupredone—while five compounds were shared

between FPR1 and VSIG4, including anisomycin, trichostatin A,

cephaeline, emetine, and beclometasone (Figure 7c). By

understanding the role of these drugs in regulating the expression

of immune markers, more effective therapeutic strategies may be

developed in the future.
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3.8 Single-cell RNA sequencing analysis

Following quality control, 23,963 genes and 49,042 cells were

identified (Additional file 6). The top 2000 HVGs were selected, and

the 10 genes exhibiting the greatest variation were identified

(Additional file 7a). PCA was performed on the selected HVGs,

and the top 10 principal components (PCs) were chosen for further

analysis (P < 0.05) (Additional files 7b-c). UMAP clustering analysis

was conducted prior to cell annotation, resulting in the
FIGURE 4

Diagnosis and evaluation of biomarkers. (a) Expression levels of candidate genes in the training set, with the horizontal axis representing genes and
the vertical axis indicating gene expression levels (Wlicoxon rank sum test, ****P < 0.0001). (b) Expression levels of candidate genes in the validation
set, with similar axis labels and significance markers (Wlicoxon rank sum test, *P < 0.05, **P < 0.01, ns: P > 0.05). (c) ROC curve analysis of the VSIG4
biomarker in the validation set. (d) ROC curve analysis of the CD163 biomarker in the training set. (e) ROC curve analysis of the FPR1 biomarker in
the training set. (f) ROC curve analysis of the VSIG4 biomarker in the training set. (g) ROC curve analysis of the FPR1 biomarker in the validation set.
(h) ROC curve analysis of the CD163 biomarker in the validation set.
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identification of 14 distinct cell clusters (Additional file 7d). Nine

cell types and their corresponding markers were extracted for

annotation based on the reference (12). Subsequently, cell

annotation revealed eight distinct cell types: endothelium,

fibroblasts, pericytes, monocytes and macrophages, natural killer

and T lymphocytes (NK&T cells), neurons, B cells, and smooth
Frontiers in Immunology 10
muscle cells (Figure 8a; Additional file 8). Monocytes and

macrophages expressing all three biomarkers were designated as

key cells (Figure 8b). To explore the biological pathways and

functions of these cell subtypes in HF development, enrichment

analysis revealed that pericytes and smooth muscle cells were

significantly associated with ATP-sensitive potassium channels
FIGURE 5

Functional analysis of biomarkers. (a) GSEA enrichment analysis of the CD163 gene. (b) GSEA enrichment analysis of the FPR1 gene. (c) GSEA
enrichment analysis of the VSIG4 gene.
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and BDNF activation of NTRK2 (TRKB) signaling, while NK&T

cells and B cells were predominantly enriched for activation of Na-

permeable kainate receptors and hydroxycarboxylic acid-binding

receptors (Figure 8c). The above results implied that these cell types

act synergistically through multiple mechanisms and may provide

new targets and ideas for the treatment of HF.

Analysis of cell communication between the eight cell types

showed that fibroblasts and neurons exhibited the highest number

of ligand-receptor pairs, indicating the strongest interaction

between these two cell types. Fibroblasts also demonstrated a

higher probability of communication with monocytes and

macrophages, NK&T cells, and B cells (Figures 9a, b; a: plot of

probability of cellular communication, b: plot of number of cellular

communications). The high-frequency interaction of fibroblasts

with these immune cells suggested that they may play an

important role in tissue repair and remodeling in immune

responses, and inflammation.
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Monocytes and macrophages were projected onto a root with 9

branches, traversing 9 nodes along their developmental trajectory.

Clusters 0 and 3 marked the initial stages of monocyte and

macrophage development, while clusters 4 and 6 were primarily

located at the final stages of cellular differentiation (Figures 9c, d).

This dynamic developmental trajectory may reflected how immune

cells progressively differentiate and regulate their functions in the

body according to different needs.

Given the specific expression of the biomarkers in monocytes

and macrophages, the gene expression of the three biomarkers was

analyzed across the pseudo-time series. The expression of CD163

showed a decreasing trend over time, with slight increases at certain

nodes of the developmental cycle, but overall, the expression in the

cells declined. In contrast, FPR1 exhibited an upward trend,

indicating its potential significant role in cellular development

and differentiation. The expression pattern of VSIG4 mirrored

that of CD163 (Figure 9e). This expression pattern suggested that
FIGURE 6

Analysis of immune cell infiltration. (a) Box plot illustrating immune cell infiltration differences (Wlicoxon rank sum test, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns: P > 0.05). (b) Correlation of differential immune cell types (*P < 0.05, **P < 0.01, ***P < 0.001). (c) Correlation
between biomarkers and differential immune cells (*P < 0.05, **P < 0.01, ***P < 0.001).
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their immunosuppressive or reparative functions may be gradually

replaced by other functions.

To further explore the biomarker expression of monocyte and

macrophage subpopulations at different stages of differentiation, 13

cells were first clustered and annotated into 5 subpopulations based

on marker genes (Table 2; Additional file 9a-c). Subsequently, the

five cell subpopulations were analyzed in a proposed time series. As

shown in Additional file 9d, cells gradually differentiated over time,

with darker blue representing earlier differentiation. Each cell
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subpopulation mapped to a different differentiation time and

corresponded to a different differentiation state, with darker red

indicating the earliest type of differentiation. As cells differentiated,

the expression of CD163 and VSIG4 in key cell subpopulations

gradually increased, while the expression of FPR1 slowly decreased

(Additional file 9e). Next, stacked plots of cell subpopulations in

different differentiation states (Additional file 9f) showed that M1

macrophages were distributed in all differentiation states, especially

more in state 2 and state 5; Intermediate monocytes were
FIGURE 7

Molecular regulatory network and drug prediction. (a) Regulatory network between the CD163 gene and miRNAs, where pink nodes represent
biomarkers and blue nodes represent interacting miRNAs. (b) Regulatory network between the CD163 gene and transcription factors (TFs).
(c) Diagram of drug prediction for biomarkers.
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distributed only in state 1; and Non-classical monocytes were

mainly distributed in state 1 and state 3; M2 macrophages were

concentrated in state 3 and state 4 in the later stages of

differentiation; Classical monocytes were found mainly in state 1

and state 5. Subsequently, the proportions of cell subtypes under

different groupings were visualized (Additional file 10a). By

comparing NOS2, TNF, ARG1 and MRC1 gene expression in

Monocyte&Macrophage between HF and control samples, TNF

and MRC1 were found to be significantly different between the two

groups (Additional files 10b-e). This provided important clues to a

deeper understanding of the function of monocytes and

macrophages and their role in disease.
3.9 Clinical and animal validation of Hub
genes

To validate the expression levels of ICD-related hub genes in

HF, PBMCs were extracted from 15 clinical patients with HF and

controls for RT-qPCR analysis. Results revealed significant down-

regulation of CD163, FPR1, and VSIG4 in patients with HF

(Figure 10a). Further investigation was conducted in heart tissues

using the HF rat model. Echocardiography showed reduced left

ventricular ejection fraction (LVEF) and left ventricular fractional
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shortening index (LVFS), alongside increased left ventricular end-

systolic diameter (LVIDs) and left ventricular end-diastolic

diameter (LVIDd) in HF rats (Figures 10b-c). The ratios of heart

weight to body weight and lung weight to tibia length were

significantly elevated (Figure 10d). HE staining revealed

prominent cardiomyocyte hypertrophy, with inflammatory cell

infiltration in the HF group (Figure 10e). Masson staining

indicated severe fibrosis in the HF group (Figure 10f), and the

difference in fibrosis between the two groups was significant

(Figure 10g). Cardiac tissue RT-qPCR results confirmed that

CD163, FPR1, and VSIG4 were significantly down-regulated in

HF rats (Figure 10h). The results of immunohistochemistry showed

that the expression of CD163+ cells was decreased in the myocardial

tissue of HF mice (Additional file 11). These results suggested that

down-regulation of CD163, FPR1, and VSIG4 expression in HF

patients and HF rat models may be closely associated with

dysregulation of the immune system, decreased cardiac function,

and tissue damage.
4 Discussion

Cardiac immunology has recently emerged as a focal area of

research. While some aspects of immune regulation in HF are
FIGURE 8

Single-cell RNA sequencing analysis. (a) UMAP plot for different cell types. (b) Expression profile plot of biomarkers. (c) Pathway enrichment analysis
of cell subtypes.
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understood, many questions remain to be addressed. ICD is a form

of programmed cell death induced by antigens and adjuvants,

triggering downstream immune responses. However, the role and

mechanisms of ICD in HF pathophysiology remain unclear. In this

study, three ICD-related biomarkers—CD163, FPR1, and VSIG4—

were identified in patients with HF using transcriptomic and single-

cell dataset analyses (Additional file 12). Previous studies have

shown that these three genes, as combined markers, may act

synergistically to affect the occurrence and development of HF

and non-alcoholic fatty liver disease by regulating mechanisms such
Frontiers in Immunology 14
as immune response and monocyte migration. In addition, their

association with natural killer (NK) cells and macrophages was also

found, further supporting their important role in the immune

response (39).

Single-cell sequencing data in this study were obtained from the

research by Koenig et al. (12). Unlike the study by Koenig, our work

systematically integrated multiomics analyses (including

transcriptomes and single-cell sequencing), machine-learning

approaches (e.g., SVM-RFE and random forests), and immune

infiltration assessments, which were not comprehensively
FIGURE 9

Cell subtype communication analysis. (a-b) Diagrams of cell communication results. (c) Results of pseudotime and state analysis in single-cell
pseudotemporal analysis. Darker colors indicate the most advanced state of development, while lighter colors indicate more mature development.
The cells were divided into 9 different periods according to their developmental state. (d) Cell pseudotime analysis of Seurat clusters. Different cell
clusters presented different positions at various nodes of the developmental trajectory. (e) Dynamic atlas of biomarkers.
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combined in their study. Furthermore, this study identified the

association of CD163, FPR1, and VSIG4 with ICD, a connection

that Koenig et al. did not investigate. Specifically, during ICD,

certain molecules, especially ANXA1, may enhance local

inflammatory responses by binding to FPR1 receptors and

activating macrophages and monocytes. At the same time, the

activation of fibroblasts may promote vascular wall structural

changes and fibrosis (40). Therefore, targeting FPR1 or ICD-

related pathways may be a potential strategy for the treatment of

ascending aortic aneurysm. When tumor cells develop ICD through
FIGURE 10

Clinical and animal validation of hub genes. (a) Expression of CD163, FPR1, and VSIG4 in peripheral blood mononuclear cells of patients with HF and
NHF individuals (Unpaired t test, **P < 0.01, ***P < 0.001). (b-c) Echocardiograms of the HF rat model and sham group (Unpaired t test,
***P < 0.001). (d) The ratios of heart weight to body weight and lung weight to tibia length in rat model (Unpaired t test, *P < 0.05). (e-f) HE and
Masson staining of rat hearts. (g) Collagen volume fraction(%) calculated by Masson staining (Unpaired t test, ***P < 0.001). (h) Expression of CD163,
FPR1, and VSIG4 in the hearts of HF and sham groups (Unpaired t test, *P < 0.05, **P < 0.01).
TABLE 2 Marker gene annotation information for key
cell subpopulations.

TNF M1 macrophage

MERTK, CD163, STAB1, MRC1 M2 macrophage

BASP1, CXCL8, GPR183 Classical monocyte

FCN1 Non-classical monocyte

FCGR3A Intermediate monocyte
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radiotherapy or other therapeutic modalities, macrophages

recognize tumor cell death signals through CD163 receptors.

CD163+ macrophages are normally in an immunosuppressive

state and help tumors evade immune surveillance by promoting

Treg cell infiltration and inhibiting effector T cell function (41). In

addition, carbon ion radiotherapy has been shown to effectively

reduce fiber deposition in scar tissue by inducing ICD of fibroblasts,

slowing their proliferation and promoting their death (42). Another

study pointed out that ICD may affect cancer-associated fibroblasts

by regulating immune responses, thereby altering tumor

progression and patient survival prognosis. Although no

association between ICD and macrophages or fibroblasts has been

found in HF, these immune cells may affect the occurrence and

development of HF through the ICD process. Additionally,

potential therapeutic targets were proposed via drug prediction,

such as carbachol and etynodiol, which target all three biomarkers.

Collectively, this study not only extends the findings of Koenig et al.

but also offers novel insights and references for future research

in HF.

CD163 (Cluster of Differentiation 163), a 130 kDa cell surface

glycoprotein, is predominantly expressed on monocytes and

macrophages. It plays significant roles in metabolic diseases and

immune regulation and is considered a promising target for drug

development (43, 44). Soluble CD163 (sCD163) is a soluble

inflammatory mediator produced through the enzymatic

hydrolysis of CD163 (45). CD163 expression tends to be low in

conditions such as non-alcoholic fatty liver (39, 46) and ischemic

cardiomyopathy (47), whereas sCD163 tends to be elevated in

hypertension (48) and diabetes (49, 50). Additionally, sCD163 has

been linked to increased cardiovascular mortality in diabetic

patients. In HF, CD163 expression is down-regulated in cardiac

tissues (39, 51), consistent with both bioinformatics and

experimental findings in this study. CD163 expression in cardiac

tissue is also associated with hyperlipidemia (52) and cellular

stemness (51). Moreover, sCD163 is highly expressed in the blood

of patients with HF (53), though the mechanisms driving this

increase remain under investigation. Some studies suggest that

sCD163 levels are influenced by left ventricular diastolic volume

(53), while others have linked sCD163 to monocyte activation,

particularly activation related to the M2 phenotype (54), which

warrants further exploration. In addition, research has

demonstrated that CD163 serves as a critical link between the

immune system, inflammatory response, and cardiovascular disease

by not only reflecting the activation of immune cells, particularly

macrophages, but also modulating immune responses (54).

Furthermore, in another study, CD163, acting as a macrophage

marker, was found to play a significant role in regulating

inflammation and the tumor microenvironment (44). This study

also found a reduction in CD163 expression in macrophages in HF,

suggesting that the progression of HF may be linked to decreased

CD163 expression in macrophages.

FPR1 (Formyl Peptide Receptor 1), a key member of the G

protein-coupled receptor family, plays a critical role in the

inflammatory process and immune cell recruitment. It is highly
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expressed in macrophages (55) and mediates macrophage

chemotactic motility and functional activation by binding to

TAFA4 (56, 57). FPR1 is a well-established target for clinical

therapeutic drugs, with various agonists and inhibitors developed

for its modulation (58). Studies have demonstrated that FPR1

modulates the immune response and repair process of the heart

by regulating macrophage activity, and dysregulation of the

immune response following cardiac injury may contribute to the

development of HF (59). Moreover, FPR1 may mitigate

inflammatory responses and facilitate cardiac repair and recovery

in HF through the regulation of macrophage function (60). Studies

suggest that FPR1 may be a promising drug target for

cardiovascular diseases, aiding both diagnosis and treatment (61).

It plays a negative regulatory role in myocardial ischemia-

reperfusion and coronary atherosclerosis but a positive regulatory

role in myocardial infarction. FPR1 contributes to atherosclerotic

lesions by modulating the number of blood neutrophils under

hypercholesterolemia (62) and exacerbates myocardial cell

apoptosis and inflammation during ischemia-reperfusion through

the MAPK signaling pathway (63). However, FPR1 activation has

been shown to improve left ventricular remodeling after myocardial

infarction in mice and rats, potentially by promoting early

neutrophil migration and infiltration, thus accelerating wound

healing (64). In the present study, decreased expression of FPR1

was observed in PBMCs from patients with HF and in the hearts of

HF rats through both bioinformatics and experimental validation.

However, no significant difference in FPR1 expression was found in

macrophages in HF. Notably, FPR1 expression gradually increased

during macrophage differentiation, suggesting its potential as a

therapeutic target for HF.

VSIG4 (V-set and immunoglobulin domain containing 4) is a

type I transmembrane receptor that inhibits T cell activation and

induces the differentiation of regulatory T cells, thus suppressing

immune-mediated inflammatory diseases (65). Soluble VSIG4, shed

from the surface of macrophages, serves as a biomarker for diseases

associated with macrophage activation (66). VSIG4 has a protective

role in cardiovascular diseases and can alleviate age-related insulin

resistance and hypertension (67). Additionally, research has

highlighted that VSIG4, as a critical immune marker, is strongly

associated with macrophage function and plays a pivotal role in both

the immune response and the diagnosis of HF (39, 68). In myocardial

ischemia/reperfusion (I/R) injury, VSIG4 inhibits M1 macrophage

polarization by blocking TLR4/NF-kB signaling, thus preventing

cardiomyocyte apoptosis (69). However, VSIG4 expression in M2

macrophages promotes fibrosis after acute myocardial infarction,

suggesting its potential as an immunomodulatory therapeutic target

(70). In HF, VSIG4 expression is significantly down-regulated in

patients with right ventricular HF (71), while serum levels of VSIG4

are elevated in patients with left ventricular HF, with high levels

correlating with poor prognosis (72). In the present study, VSIG4

expression was decreased in macrophages in HF, and its expression

showed a decreasing trend duringmacrophage differentiation, further

suggesting that HF progression may be linked to the expression of

VSIG4 in macrophages.
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GSEA enrichment analysis reveals that the three biomarkers are

significantly enriched in ribosomes. The enhanced translation

function of ribosomes is a hallmark of cardiac hypertrophy, and

inhibiting ribosomal translation can effectively mitigate

hypertrophy (73). However, systemic inhibition of ribosomal

translation may cause adverse effects in organs outside the heart.

For example, while rapamycin effectively inhibits cardiac

hypertrophy, it can lead to severe consequences such as immune

suppression (74). Recent studies have identified the cardiac-specific

nuclear ribonucleoprotein (RNP)-binding long non-coding RNA

(lncRNA) CARDINAL, which alleviates cardiac hypertrophy in vivo

and in vitro by inhibiting the translation of hypertrophy-related

proteins (75). In the study by Koji Kasahara et al. (76), FPR1

indirectly influenced ribosomal function through the regulation of

ribosomal protein gene expression. Additionally, VSIG4, an up-

regulated gene, is linked to ribosome function, implying its potential

significance in protein synthesis or cellular function regulation (77).

Prior research has demonstrated that CD163 expression correlates

with the mTOR signaling pathway (78), which governs translation

initiation and ribosome biogenesis (79). The biomarkers identified

in this study are all associated with ribosomes, offering a new

avenue for basic research. Single-cell analysis highlights the pivotal

role of monocytes and macrophages in HF progression, with cardiac

macrophages regulating both survival and adaptive remodeling in

patients with HF. However, these macrophages are highly infiltrated

in the hearts of patients with HF, potentially due to the elevated

expression of Ang II, which mobilizes macrophages (80).

Macrophages are categorized into M1 and M2 types based on

their secreted factors and functions. Promoting the conversion of

M1 to M2 macrophages and maintaining a balance between these

two subtypes may provide an effective strategy for treating HF (81).

It has been demonstrated that sodium-glucose cotransporter 2

(SGLT2) inhibitors can reduce fibrosis markers by promoting M2

macrophage polarization and enhancing angiogenic factors (82),

while nicorandil can suppress the production of pro-inflammatory

cytokines by inhibiting M1 polarization (83). Furthermore, this

study found a positive correlation between the expression levels of

these three biomarkers and M2 macrophages, suggesting that

targeting these biomarkers to modulate macrophage homeostasis

in HF may offer a promising therapeutic strategy.

Cell subtype communication analysis revealed that fibroblasts

likely engage in frequent interactions with monocytes,

macrophages, NK cells, T cells, and B cells. Previous studies have

demonstrated that macrophages influence cardiac function by

modulating fibroblast activity and affecting the remodeling and

excessive deposition of extracellular matrix (ECM) (84). During

cardiac inflammation and remodeling, macrophages and fibroblasts

exhibit a close interconnection. Notably, M1 macrophages release

pro-inflammatory cytokines, activate fibroblasts, and drive the

progression of fibrosis (85). Additionally, research has shown that

macrophages interact with TWEAK via the receptor CD163,

playing a critical role in cardiac fibrosis and HF (86). VSIG4

promotes cardiac fibrosis repair during acute myocardial

infarction (AMI) by regulating M2-type macrophage function and

interacting with immune factors such as TGF-b1 and IL-10 (70).
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Furthermore, the FPR1 receptor is crucial for the aggregation and

activation of immune cells, including monocytes and macrophages,

which subsequently impacts fibroblast activation and fibrosis,

thereby promoting inflammatory and fibrotic responses in the

heart and lung (87). Collectively, the intricate crosstalk between

immune cells and fibroblasts plays a pivotal role in the pathogenesis

of cardiac inflammation and fibrosis, offering potential therapeutic

targets and novel strategies for treating cardiac fibrosis.

In this paper, drug prediction was performed based on three

biomarkers, and it was found that carbachol and etynodiol may

have potential roles for all three biomarkers. Carbachol, a structural

analogue of acetylcholine that acts on muscarinic and nicotinic

receptors, is used clinically to treat glaucoma (88). Only a few

literatures have found that carbachol increases phagocytosis of

macrophages in vitro (89). Progestin is the first progestin with

moderate progestogen activity, and progestin has some effect on

macrophages. In a clinical study of adolescent endometriosis, one-

year progestin treatment increased the number of CD206+

monocytes (P < 0.001) but decreased the number of CD163+

monocytes (P = 0.017) (90). The specific effects of the above two

drugs on macrophages are still superficial, and the relevant

mechanisms are not deeply studied. In addition, the effects of the

above two drugs on heart failure are lack of relevant research

support and still need to be further explored.

This study has several limitations. First, the dataset is relatively

small, necessitating the inclusion of larger, multi-center datasets

(e.g. UK Biobank, HF registry study data) for more robust

conclusions. Furthermore, validation in human and animal

models is preliminary; additional functional experiments, such as

gene knockout or overexpression studies, are needed to clarify the

roles of these biomarkers in HF progression. Simultaneously,

further experimental evidence is required to clarify the

relationship between biomarkers and ribosomes. Moreover,

existing studies have predominantly focused on monocytes/

macrophages, while the interactions with other cell types, such as

fibroblasts and cardiomyocytes, remain underexplored. Future

investigations could leverage spatial transcriptome technologies,

like Visium, to map co-localization regions and deepen our

understanding of macrophage-fibroblast interactions. Lastly, the

absence of experimental validation for drug predictions restricts

their direct clinical application. In subsequent studies, carbachol or

etynodiol could be administered in HF rat models to monitor

changes in CD163/VSIG4 expression levels, cardiac function

parameters, and inflammatory/fibrosis markers. Despite these

limitations, the study identifies novel mechanisms underlying HF

and highlights potential biomarkers, offering valuable insights for

the prevention and treatment of HF and establishing a foundation

for future research.
5 Conclusions

This study identified three biomarkers—CD163, FPR1, and

VSIG4—associated with immunogenic cell death in patients with

HF, integrating transcriptomic data with single-cell datasets. The
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functions and biological pathways of these biomarkers were

examined, and the potential links between immunogenic cell

death-related genes and HF pathophysiology were explored.

Additionally, the expression of these biomarkers was validated in

both human and animal models, providing a novel theoretical

framework for clinical diagnosis and treatment of HF.
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