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In solid organ transplantation, especially renal transplantation, for the induction

of immune tolerance, accumulating evidence has revealed that Regulatory B

cells (Breg) play a crucial role in stimulating immune tolerance, alleviating

immune responses, and improving graft survival. We describe the

heterogeneous nature of Bregs, focusing on their defining surface markers and

regulatory functions. Meanwhile, the major cytokine secretion function and the

correlation between Breg and Treg or other immune checkpoints to balance the

immune responses are addressed. Furthermore, we summarized the intrinsic and

extrinsic pathways or costimulatory stimuli for the differentiation from naïve B

cells. More importantly, we summarized the progression of the immune

tolerance induction role of Breg in solid organ (kidney, liver, heart, lung, and

islet) transplantation. This is an up-to-date review from the origin of Breg to the

function of Breg in solid organ transplantation and how it induces immune

tolerance in both murine models and human solid organ transplantation.
KEYWORDS

regulatory B cells (Breg), interleukin-10 (IL-10), solid organ transplantation,
chemokines, B cell differentiation, immune tolerance
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1 Introduction

In organ transplantation, the recipient’s immune system has

three major responses against the grafts (1), which are acute

rejection, chronic rejection, and graft-versus-host disease

(GVHD) (2). These immune responses are primarily initiated by

T cell-mediated rejection, where donor antigens (particularly major

histocompatibility complex (MHC) molecules) on the graft are

recognized by the recipient’s immune cells. For acute rejection, T

cells and antibodies recognize and attack the graft within days or

weeks after transplantation (3). Whereas chronic rejection is a

prolonged and ongoing immune response that leads to gradual

loss of graft function over time (4). These two immune responses

are mostly in solid organ transplantation, and the immune response

is the rejection of grafts, called host-versus-graft disease (HVGD)

(5). However, for bone marrow and hematopoietic stem cell

transplantation, there will be GVHD, a complication where donor

immune cells attack the recipient’s tissue (6). Therefore, to prevent

these immune responses, immune tolerance to the graft has been

investigated and established for years, whether in allogenic or

xenogeneic transplantation.

For the induction of immune tolerance, accumulating evidence

has revealed that Regulatory B cells (Breg) play a crucial role in

stimulating immune tolerance, alleviating immune responses, and

improving graft survival (7, 8). Bregs are a subset of B cells

identified as having an immunosuppressive function, modulating

the immune system to prevent excessive inflammation and

autoimmune diseases (9, 10). Contrary to the role of B cells, which

have traditionally been associated with antibody production and

antigen presentation, Breg has been documented to contribute to

immune homeostasis by regulating T cell responses (11) and anti-

inflammatory cytokine production (12). Therefore, in this review, we

comprehensively summarize the specific role of Breg in organ

transplantation, including solid organ transplantation and

hematopoietic transplantation.
2 Characteristics of Breg

Breg are a subset of B cells, which are not a uniform population,

but rather a diverse group of cells (13). To date, there is no single

marker universally accepted to identify all Breg, but several

characteristics can define this subset of cells. The first one is

CD19+CD25+CD1d+ cells (14–16). These cell surface markers are

often associated with regulatory B cells, even though they are not

specific to Breg only. The second one is CD24hiCD38hi cells (17–20).

The third one is IL10+ cells (21, 22). There is a discrepancy in CD39hi

(23, 24) and CD39- (25) cells are Breg, therefore, CD39might not be a

canonical marker for Breg. The fourth one is IL-35 secreting B cells.

This subset of B cells has been shown to suppress autoimmune

diseases (26, 27), including autoimmune diabetes (28), systemic lupus

erythematosus (29), ankylosing spondylitis (30), thyroid associated

opthalmopathy (31) and also CNS (central nervous system)

autoimmune disease (multiple sclerosis and uveitis infection) (32)

as chronic hepatitis B (33). Further, IL-35-producing Breg could
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suppress inflammation and alveolar bone resorption in ligature-

induced periodontitis (11). There is another subset of B cells that

produce granzyme B, identified with CD307bhi, CD258hiCD72hi, and

CD21loPD-1hi B cell subpopulations (34). There are other subtypes of

Breg, detailed addressed in Table 1.

The main immune regulatory function of Breg is realized by

producing anti-inflammatory cytokines, interleukin-10 (IL-10)

(35, 36), IL-35 (26, 27), IDO (37) and granzyme B (38, 39). As an

anti-inflammatory cytokine, IL-10 is known for its immune-

regulatory properties, such as inhibiting the activation of T cells

(40), dendritic cells (41), and macrophages (42), and suppressing the

production of pro-inflammatory cytokines (43). IL-10 can suppress

inflammatory responses and the activation of immune cells, thereby

regulating the inflammatory immune response. It primarily works by

inhibiting the migration, infiltration, proliferation, and activation of

inflammatory cells (44), and by suppressing the production of pro-

inflammatory factors by Th1 cells (45, 46), thus inhibiting the cellular

immune response (22). In addition, IL-10 can inhibit activated

monocytes from secreting interleukin-1 (IL-1) and interleukin-6

(IL-6) (47), suppress the release of TNF-a by macrophages (48),

and inhibit the activation of mast cells and the secretion of their

cytokines (49, 50), thereby participating in the regulation of allergic

reactions (40, 51). IL-10 also has an activating effect on B cells and can

promote antibody production (52).

For the IL-35-producing Breg, they could be induced by IL-

12p35 (53). Meanwhile, the production of IL-35 by Breg is

facilitated through the binding of the BATF-IRF-4-IRF-8 complex

to the promoter elements of the il12a and ebi3 genes (54). In the

lung tissue of OVA-induced asthmatic mice, IL-35 enhances the

presence of Breg that co-express IL-35 and IL-10, as well as

conventional LAG3+ regulatory T cells (55).

Breg also produces granzyme B. In liver transplant recipients

with acute rejection, CD19+ granzyme B-producing Breg serves as a

feedback loop to modulate the activation of CD4+CD25- T cells

(56). Due to the significance of granzyme B-producing Breg, S.

Brouard laboratory generated a novel protocol to expand this

subtype of Breg (39). The dysfunction of granzyme B-producing

Breg is associated with more severe rheumatoid arthritis (38).

Meanwhile, human granzyme B-producing Breg could inhibit the

proliferation of effector CD4+CD25- T effector cells (57).
3 The differentiation of Breg from
naïve B cells

The differentiation of Breg from naïve B cells is via both

intrinsic and extrinsic signals. B cells can be activated by the

recognition of antigens through the B cell receptor (BCR) and

also co-stimulatory signals (58). During this process, the BCR

recognizes a specific antigen, typically in the form of proteins or

polysaccharides on the surface of pathogens, dead cells, or other

stimuli (59). Then, this antigen binds to the BCR to initiate

intracellular signaling through the spleen tyrosine kinase (Syk)

pathway (60) and subsequently activates downstream PLCg2,
PI3K, MAPK pathways (61, 62). With the activation of these
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signaling pathways, B cells are activated, proliferate, and survive.

Beyond antigen recognition, Breg require co-stimulatory signals for

full activation (23, 63). CD40 signaling is a crucial co-stimulatory

pathway that activates B cells (64). CD40 ligation by CD40L

(present on T cell surface) triggers several downstream signaling

events that influence the differentiation program of the B cell,

including NF-kB activation, which is crucial for B cell survival

and activation (65–67). Several transcription factors are involved in

guiding naïve B cells to adopt a regulatory phenotype, and they

form part of the intrinsic genetic pathway for Breg differentiation.

Several transcription factors contribute to the development of IL-

10-producing Breg, including Bach2 (68), BRD4 (69), the Nuclear
Frontiers in Immunology 03
Factor Kappa-B (NF-kB) signaling pathway (70), Interferon

Regulatory Factor (IRF4) (54), STAT3 and c-MAF (71), Foxp3

(72), Transforming Growth Factor-beta (TGF-b) signaling (73, 74),
IL-21 (75, 76) (a cytokine produced by T helper type 17 (Th17) and

follicular helper T (Tfh) cells), and B Lymphocyte-Induced

Maturation Protein 1 (BLIMP-1) (77). Furthermore, toll-like

receptors (TLRs) are crucial for the induction of IL-10-producing

Breg (78). By antigen-presenting cells (APCs), signals from TLRs

are essential for IL-10 production. Autophagosomes released by

tumors stimulate the formation of IL-10-producing Breg, which in

turn suppress T lymphocyte activity through the TLR2-MyD88-

NF-kB signaling pathway (79). For the generation of granzyme B-
TABLE 1 Breg characteristics and their specific functions.

Subsets of Bregs
Transplantation or

other disease
Function References

CD19+CD25+CD1d+ cells Renal transplantation
positively correlated with better graft function and longer and higher
Treg level

(14)

CD19+CD24hiCD38hi cells Renal transplantation long-term graft survival of renal transplantation (126)

Renal transplantation long-lasting graft survival of renal transplantation with drug-free (128)

Renal transplantation longer survival with belatacep after renal transplantation (131)

Lung transplantation Long-term lung grafts survival (20)

CD19+CD24hiCD27+ Breg Liver transplantation predict the occurrence of acute allograft rejection in liver transplantation (134)

CD19+CD5+CD1dhi Breg Heart transplantation Protective role in heart transplantation (136)

Islet transplantation Responsible for the early stage of transplantation tolerance induction (16)

CD39hi Induce cytokine secretion Induce IL-10 secretion (23, 24)

CD39- Breast cancer
Limited Th proliferation, type-1 cytokine production, and Teff survival.
Stimulate Treg

(25)

B220+/Tim1+ Breg Islet transplantation Induce islet transplantation tolerance (121)

CD19+TIM-1+Breg Islet transplantation Critical in the whole process of tolerance induction and maintenance (16)

IL10+ B cells Renal transplantation Mouse model of renal transplantation, modulating T cell responses (73, 124)

Renal transplantation Alleviate acute rejection of renal transplantation (125)

Renal transplantation Alleviate renal injury after transplantation (95)

Renal transplantation Prolong graft survival by decreasing CD3+ T cell proliferation (127)

Renal transplantation Non-immunosuppressant for at least 1 year after renal transplantation (129)

TGF-b-producing B cells Renal transplantation Tolerant drug-free patients with drug free (130)

Islet transplantation Establish islet transplantation tolerance (73)

IL-35-producing B cells Autoimmune disease Autoimmune diabetes (28)

Autoimmune disease Systemic lupus erythematosus (29)

Autoimmune disease Ankylosing spondylitis (30)

Autoimmune disease Thyroid associated opthalmopathy (31)

Autoimmune disease Multiple sclerosis and uveitis infection (32)

Autoimmune disease Chronic hepatitis B (33)

Autoimmune disease Periodontitis (11)

granzyme B-producing
B cells Renal transplantation Maintain allo-specific tolerance

(132)
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producing Breg, it could be generated by B-chronic lymphocytic

leukemia (B-CLL) cells treated with interleukin-21 (IL-21) (80).

CD4+ T cells can produce IL-21 and rapidly induce granzyme B-

producing Breg in co-cultured B cells in an IL-21 receptor-

dependent manner (81, 82). Lymphotoxin alpha, a new and

potent Breg ligand, has also been reported to increase granzyme B

expression in Breg (57).

The extrinsic pathway refers to the external signals from the

microenvironment, such as cytokines, cellular interactions, and

immune stimuli, that influence the differentiation of naïve B cells

into Breg. These extrinsic signals include immune cells (T cells,

dendritic cells, and macrophages) (83–86), cytokines produced

during inflammation or tolerance induction, and tissue-specific

microenvironments (23, 87). For the cytokine-driven Breg

differentiation it includes IL-10, TGF-b, and IL-21, along with

interactions with T cells, dendritic cells, and other immune cells,

providing additional stimuli for the differentiation of Breg.

Moreover, Indoleamine 2, 3-dioxygenase (IDO) could be

generated by Breg (37), and in turn, it could induce Breg

infiltration in lung cancer (88). Mesenchymal stromal cells

alleviate multiple sclerosis by increasing the suppressive

proportion of CD5+ IL-10+ Breg in an IDO-dependent

manner (55).
4 The function of the Breg

The primary function of the Breg is to regulate immune

responses and maintain tolerance (73). They achieve this

primarily through the production of immunosuppressive

cytokines like IL-10, as well as through other mechanisms.

The most important function of Breg is the suppression of T cell

responses (84, 89). Breg play a crucial role in controlling T cell

activity, especially CD4+ T helper (Th) cells (90–92). By producing

IL-10, they inhibit the activation, proliferation, and cytokine

production of effector T cells (Teff), thus preventing excessive

immune responses and alleviating tissue damage (83, 85). They

can also induce the differentiation of regulatory T cells (Tregs),

which further enhances immune suppression (83, 91, 93).

Meanwhile, Breg could regulate the inflammatory cytokines by

suppressing the production of pro-inflammatory cytokines, such

as TNF-a (94, 95), IL-6 (96), IL-17 (97, 98), and IFNg (99).
5 Mechanisms of Breg in organ
transplantation

Breg contribute to immune tolerance in organ transplantation

through a variety of mechanisms, many of which revolve around their

capacity to suppress excessive immune responses, inhibit T-cell

activation, and promote an anti-inflammatory microenvironment

(8, 100, 101). The main mechanisms are as follows:
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5.1 Bregs mediate immune tolerance via
anti-inflammatory cytokines

The primary function of Breg in transplantation is the secretion

of anti-inflammatory cytokines, particularly IL-10. IL-10 suppresses

immune responses in several ways. It could inhibit T-cell activation

(102, 103). IL-10 directly suppresses the activation, proliferation,

and cytokine production of effector T cells (both CD4+ and CD8+ T

cells), preventing them from recognizing and attacking the

transplanted organ (104, 105). Besides, it could stimulate the

differentiation and expansion of regulatory T cells (Tregs) by IL-

10 (106). Tregs, in turn, regulate both T cell-mediated and

antibody-mediated rejection (107). Further, it could inhibit the

antigen-presenting cells (APCs) (108). IL-10 downregulates the

activity of APCs such as dendritic cells, macrophages, and B cells,

reducing their capacity to stimulate T cell responses.
5.2 Regulation of B cell responses to
reduce graft rejection

Breg also exert their immunosuppressive effects on B cells by

modulating the activation and function of other B cell subsets. In

transplantation, the role of B cells can be complex, as they

contribute to both humoral rejection (antibody-mediated

rejection) and immune regulation (109). In transplantation, Breg

help suppress the activation of autoreactive B cells that produce

antibodies against the graft (110). By reducing the production of

alloantibodies (antibodies that recognize donor antigens), Breg help

prevent antibody-mediated rejection (111). Furthermore, it controls

antigen-specific B cell responses. Breg can inhibit the expansion and

differentiation of antigen-specific B cells that produce graft-specific

antibodies, which could otherwise contribute to graft rejection. To

induce allograft tolerance, Bregs can be induced by anti-CD45RB

and anti-TIM1antibody, which means that Breg requires antigen

recognition for tolerance inducition (112).
5.3 Direct suppression of T cell-mediated
rejection

In transplantation, Breg can directly suppress T cell responses

via cell-to-cell contact, in addition to cytokine secretion. The first

way is to induce immune checkpoint proteins. Breg expresses

inhibitory molecules like PD-L1 (113–115), CTLA-4 (84), and

TIGIT (116), which can interact with their respective ligands on

T cells to induce immune suppression. These interactions inhibit T-

cell activation and promote tolerance. The second way is via the

induction of anergy in T cells. Breg can induce anergy in CD4+ and

CD8+ T cells through direct interactions, preventing them from

responding to allo-antigens (117). The third way is via the induction

of Treg differentiation. Through direct contact, Breg can promote
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the conversion of naïve T cells into regulatory T cells (Tregs), which

are crucial for maintaining immune tolerance to the graft (91).
5.4 Induction of graft-specific tolerance

Breg is involved in the establishment and maintenance of graft-

specific tolerance, which is essential for long-term organ survival

without the need for chronic immunosuppression (2). Breg could

induce donor-specific tolerance by promoting the tolerance specifically

to donor antigens. This may involve the promotion of Tregs or other

regulatory cells that target graft-specific immune responses, allowing

the recipient’s immune system to accept the transplanted organ as

“self” (2). Furthermore, Breg could regulate inflammatory responses in

the transplant microenvironment (87, 118). Breg helps to create an

anti-inflammatory environment within the graft, which reduces the

activation of both innate and adaptive immune responses that could

lead to graft rejection (7, 8, 101, 119).
5.5 Interactions between Bregs and other
immune cells in transplantation

By interacting with other immune cells, Breg could stimulate

tolerance in transplantation. Breg can modulate dendritic cell (DC)

function, reducing their ability to activate T cells. By interacting

with DCs, Breg can decrease the presentation of donor antigens and

thereby lower the risk of graft rejection (83). Breg could mitigate the

function of macrophages, which play a central role in transplant

rejection and immune surveillance (120). By reducing macrophage

activation, Breg can help prevent tissue damage in the graft. For the

natural killer (NK) cells, there is emerging evidence suggesting that

Breg may also interact with NK cells, which are involved in innate

immunity and can contribute to graft rejection. Breg can inhibit NK

cell cytotoxicity and promote immune tolerance in the

transplantation (121).
6 Breg in solid organ transplantation

6.1 Renal transplantation

In solid organ transplantation, Breg contributes to the induction

of tolerance and the prevention of both acute and chronic rejection

(8, 122, 123). Studies in mouse models of renal transplantation show

that Breg play a role in the tolerance of the grafts by modulating T cell

responses and promoting IL-10 production (73, 124). In a cohort of

200 kidney transplant recipients, an imbalance of circulating follicular

helper T cells (cTfh) over IL10+ Breg leads to graft failure. Meanwhile,

the increase in the cTfh/IL10+Breg ratio is an index of acute rejection

(125). A cohort of human renal transplantation with calcineurin

inhibitors (CNI) or mammalian target of rapamycin (mTOR)

inhibitors showed that CD19+CD24hiCD38hi Breg increases over

time and contributes to the long-term graft survival is not

correlated with these drugs (126). In human allogenic renal
Frontiers in Immunology 05
transplantation, Breg could regulate the IL-10 and TNF-a
expression ratios to alleviate renal injury after transplantation (95).

Moreover, in kidney transplant recipients, the levels of CD19+CD25+

Breg are positively correlated with better graft function and longer

and higher Treg levels (14). In another study of human kidney

allografts, human leukocyte antigen G (HLA-G) stimulates IL-10-

producing memory Breg (CD19+CD24hiCD27+IL-10+) to prolong

graft survival by decreasing CD3+ T cell proliferation (127). Renal

transplant recipients could benefit from the induction of long-lasting

CD19+CD24hiCD38hiBreg (128). In renal transplant recipients, a

higher level of CD19+CD25+ Breg is independently associated with

improved graft function (14). In a cohort of 58 kidney transplant

recipients , IL-10-producing Breg could lead to non-

immunosuppressant for at least 1 year after transplantation (129).

Further, T1 and T2 transitional B cells (CD38+CD24+) were also

increased in tolerant recipients. The 42 healthy controls also had IL-

10-producing Breg. But they found no difference in TGF-b secreting

B cells (129). In another cohort study with 71 kidney transplant

recipients and 19 healthy controls, T1 and T2 transitional B cells

(CD38+CD24+) were also increased in tolerant recipients, who had

higher percentages of B cells and less NK and T cells. In the analysis

of the tolerant drug-free patients, there is a redistribution of Breg,

which produces TGF-b instead of IL-10 (130). In a Phase III clinical

study of belatacept on kidney transplant recipients, the frequency and

abso lu te number o f t rans i t iona l B ce l l s , inc lud ing

CD19+CD24hiCD38hi Breg and CD19+IgDhiCD38hiCD27-, and

naïve B cells were significantly higher (131). Granzyme B-

producing B cells are a characteristic B cell subset, identified with

CD307bhi, CD258hiCD72hi, and CD21loPD-1hi B cell subpopulations

(34). This subtype of Breg serves a dual function in renal

transplantation. They act as regulatory cells to maintain allo-

specific tolerance and as effector cells to enhance CMV viral

control (132).
6.2 Other solid organ transplantation

Breg in liver transplant models has been shown to promote

long-term graft survival by suppressing immune responses and

promoting donor-specific tolerance (101). This is particularly

important in liver transplantation, as the liver is considered to be

an immunologically privileged organ, and Breg may help maintain

th i s pr iv i l ege (133) . Meanwhi le , the propor t ion o f

CD19+CD24hiCD27+ Breg has been reported to predict the

occurrence of acute allograft rejection in liver transplantation

(134). With the application of Sirolimus, both Breg and Treg are

expanded in liver transplant patients (135).

For heart and lung transplantation, similar to kidney and liver

transplantation, Breg contributes to immune regulation and graft

survival in heart and lung transplant models. In the heart

transplantation mouse model, histone deacetylase (HDAC)

inhibitor trichostatin A (TSA) could increase the frequency of IL-

10 and TGF-b-producing CD19+CD5+CD1dhi Breg cells and

thereby induce immune tolerance (136). With the adoptive

transfer of the transplanted Breg in heart-transplanted mice, this
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Breg could induce transplantation tolerance via the CD40-TRAF6

signaling pathway in DCs (137). In a study of 117 cases of clinical

lung transplantation recipients, CD19+CD24hiCD38hi B-cells

contribute to the long-term lung grafts survival (20).

For allogenic islet transplantation, two subsets of Breg play a key

role in tolerance induction and maintenance. CD19+CD5+CD1d+ B10

cells are mainly responsible for the early stage of transplantation

tolerance induction, and CD19+TIM-1+B cells are critical in the

whole process of tolerance induction and maintenance (16). Another

study on islet transplant tolerance revealed that Breg-dependent

tolerance is dependent on NK cells (121). In a mismatched islet

transplantation model, to establish transplantation tolerance,

adoptively transferred Breg cells need the presence of Treg (73).
7 Conclusion and future perspective

Breg in immune regulation as Tregs, especially in organ

transplantation, offers significant therapeutic potential and provides
Frontiers in Immunology 06
promising potential for Breg-based therapies (138). Enhancing the

function or expansion of Breg could be a promising therapeutic

strategy to induce tolerance and promote graft survival (8, 139). It

could be a substitute for immunosuppressive drugs, which may have

significant adverse effects (140) (Figure 1).

Despite the promising role of Breg in organ transplantation,

several challenges remain. One major unresolved issue is the

heterogeneity of Breg subsets and the lack of standardized

markers for their identification, making their clinical translation

challenging. Additionally, while Breg-based therapies hold potential

for inducing long-term tolerance, concerns remain regarding their

stability, potential off-target effects, and the risk of over-suppressing

the immune system. The optimal strategies for in vivo expansion or

adoptive transfer of Breg also require further refinement. Future

research should focus on defining the molecular mechanisms

governing Breg differentiation and function, optimizing methods

for their therapeutic application, and conducting long-term clinical

studies to evaluate their efficacy in transplantation. Integrating

Breg-based therapies with current immunosuppressive strategies
FIGURE 1

Mechanisms of Bregs in Promoting Graft Tolerance. Bregs contribute to long-term drug-free graft tolerance in transplant patients. Increased
populations of CD24+CD38hi Bregs, CD19+CD1d+CD5+ B cells, and TIM-1+ Bregs, along with reduced CD4+ T cells, promote graft tolerance.
BANK1-mediated inhibition of PI3K-Akt signaling reduces B cell hyperactivity, enhancing tolerance. Approaches like B cell depletion or expansion of
TIM-1+ Bregs (expBregs) further support graft survival.
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may offer a novel approach to reducing drug toxicity while

maintaining immune tolerance. Addressing these challenges will

be crucial for advancing Breg-based immunotherapy in

organ transplantation.

Overall, Breg plays a critical role in maintaining immune

tolerance and promoting graft survival in organ transplantation.

The therapeutic potential of Breg provides new hope for cell therapy

in organ transplantation.
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