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Yiming Zhao1,2, Ying Xiong1,2, Jianing Wang1,2,
 
Xiaotian Zheng1,2*† and Bin Liu1,2*†
 

1Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin 
University, Changchun, China, 2Engineering Laboratory of Tissue Engineering Biomaterials of Jilin 
Province, Jilin University, Changchun, China, 3Department of Pathology, National University Hospital 
(NUH), Singapore, Singapore 
Background: G protein-coupled receptors (GPRs) are associated with tumor 
development and prognosis. However, there were fewer reports of GPR-related 
signatures (GPRSs) in soft tissue sarcomas (STSs), and we aim to combine GPR-
related genes with cellular landscape to construct diagnostic and prognostic 
models in STSs. 

Methods: Based on AddModuleScore, single-sample gene set enrichment 
analysis (ssGSEA), differentially expressed genes (DEGs), and weighted gene 
co-expression network analysis (WGCNA), GPR-related genes (GPRs) were 
screened at both the single-cell and bulk RNA-seq levels based on The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We 
developed a novel machine learning framework that incorporated 12 machine 
learning algorithms and their 127 combinations to construct a consensus GPRS 
to screen biomarkers with diagnostic significance and clinical translation, which 
was assessed by the internal and external validation datasets. Moreover, the GPR­
TME classifier as the prognosis model was constructed and further performed for 
immune infiltration, functional enrichment, somatic mutation, immunotherapy 
response prediction, and scRNA-seq analyses. 

Results: We identified 151 GPR-related genes at both the single-cell and bulk 
transcriptome levels, and identified a Stepglm[both]+Enet[alpha=0.6] model with 
seven GPR-related genes as the final diagnostic predictive model with high 
accuracy and translational relevance using a 127-combination machine learning 
computational framework, and the GPR-integrated diagnosis nomogram 
provided a quantitative tool in clinical practice. Moreover, we identified seven 
prognosis GPRs and five prognosis-good immune cells constructing the GPR 
score and TME score, respectively. The findings indicate that high expression of 
GPRs is associated with a poor prognosis in patients with STS, highlighting the 
significant role of GPRs and the tumor microenvironment (TME) in STS 
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development. Building up a GPR-TME classifier, low GPR combined with high 
TME exhibited the most favorable prognosis and immunotherapeutic efficacy, 
which was further performed for immune infiltration, functional enrichment, 
somatic mutation, immunotherapy response prediction, and scRNA­

seq analyses. 

Conclusions: Our study constructed a GPRS that can serve as a promising tool 
for diagnosis and prognosis prediction, targeted prevention, and personalized 
medicine in STS. 
KEYWORDS 

soft tissue sarcoma, G protein-coupled receptors, machine learning, tumor 
microenvironment, personalized therapy 
1 Introduction 

Soft tissue sarcomas (STSs) are a group of the rarest and most 
extremely heterogeneous malignancies arising from mesenchymal 
cells, accounting for approximately 1% of all adult malignancies and 
have a predilection in middle-aged and older adults (1, 2). There are 
more than 100 different histological and molecular subtypes of STSs 
and over 50% of patients may experience recurrence and metastasis 
after surgery. Because of its rarity, its heterogeneous and histological 
nature, late diagnosis and early metastasis, and the limited 
responsiveness to chemotherapy, surgery remains the standard 
treatment and management options have remained unchanged in 
STS (3, 4). Given that immune checkpoint inhibitor (ICI) agents are 
widely investigated for treating STS, a series of biomarkers linking 
GPRs and immune features are emerging, although clinical application 
remains in its  early stages  and  poses challenges (4, 5). Over the past 
decades, although there are continuing advances in understanding STS 
tumorigenesis with molecular biology techniques, the specific etiology 
of STS remains unknown. Multi-omics bioinformatics strategies can 
help identify early diagnostic and prognostic biomarkers. With 
growing interest in the molecular profiling for STS, such approaches 
could assist clinicians in patient stratification and personalized 
management within the framework of personalized, predictive, and 
preventive medicine (PPPM) (6, 7). Thus, the identification of novel 
appropriate biomarkers for early diagnosis and predicting prognosis is 
desperately needed in personalized treatment regimens. 

G protein-coupled receptors (GPRs) are a large superfamily of 
cell-surface membrane signaling proteins related to G proteins that 
can be activated by various ligands involved in a variety of biological 
processes, including cell adhesion and motion, metabolite signaling 
transduction, and immune responses (8). Aberrant GPR expression 
and their functions in relation to metabolites have been addressed in 
the occurrence and development of various cancers, which have 
become one of the most important drug targets for drug 
development (9–11). GPRs can control tumor growth, invasion, 
migration, survival, and metastasis through their aberrant 
02 
overexpression, mutation, or increased agonist release (3). Recent 
studies suggested that acid-sensing GPR may mediate lipogenesis in 
cancer cells, thereby promoting lipid droplet accumulation and 
enhancing viability under acidic stress; estrogen-mediated GPR 
signaling played a critical role in gaining malignant phenotypes 
(11–13). Moreover, numerous GPRs have been identified to be 
associated with immunological functions and immune infiltration, 
such as the activation of A2A receptors and lactate receptors, to be 
involved in the immune escape of cancer cells in tumor niche, and to 
promote tumor growth and drug resistance (10, 14). This may provide 
a novel cancer immunotherapy strategy in STS and obtain potential 
benefits through the inhibition of the related signaling pathway. 

Despite the recognized role of GPR dysregulation in cancers, 
research on their involvement in STS tumorigenesis remains 
limited. Meanwhile, it is not clear how GPR-related genes affect 
the prognosis of patients with STS and whether they can predict the 
response to immunotherapy in such patients. In the light of these 
gaps, it is necessary to propose a novel GPR-related gene set that 
can shed light on the prognosis and biological behavior of STS. 
Furthermore, the tumor microenvironment (TME) has important 
implications for tumor growth, metastatic spread, and response to 
therapy (15). We hypothesized that GPRs are significantly 
associated with the progression and prognosis of STS and could 
be a potential biomarker predicting immunotherapy response due 
to their strong correlation with immunity and chemotherapy drugs. 
Based on multi-omics analysis and integrative machine learning, we 
aim to construct a GPR-related signature (GPRS) with the potential 
to guide early diagnosis, prognosis prediction, targeted prevention, 
and personalized treatment in the context of PPPM. 
2 Methods 

2.1 Datasets 

The workflow of our study is shown in Figure 1. All TCGA-SARC 
Datasets of transcriptomic, somatic mutations and clinical data for 
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TCGA-SARC came from the UCSC Xena brower. We also obtained 
the transcriptomic and clinical data of normal adipose and muscle 
tissues from the Genotype-Tissue Expression (GTEx) database. RNA 
sequencing (RNA-seq) datasets from these two data portals were 
processed and unified using the uniform procedures for the direct 
comparison between tumor and normal tissues at the gene expression 
Frontiers in Immunology 03 
level. All gene expression values were TPM-normalized and log2­
transformed after the addition of 1, and then used for downstream 
analysis. We used the ComBat function of the SVA package to 
maximize compatibility and reduce batch effects between TCGA 
and GTEx data. The GSE17674 dataset, consisting of 44 tumor 
samples and 18 normal controls, was used as an external validation 
FIGURE 1 

The workflow chart of this study. 
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cohort. We also obtained a single-cell RNA sequencing (scRNA-seq) 
dataset (GSE131309) for sarcomas from the NCBI Gene Expression 
Omnibus (GEO). 
2.2 Identification of DEGs and functional 
enrichment analysis in bulk RNA-seq 

We identified differentially expressed genes (DEGs) using the 
“limma” R package with Benjamini–Hochberg method (BH) 
correction between tumor and normal tissues, and |Log2Fold 
Change| > 1 and adjusted p-values< 0.05 were set as the threshold 
for screening out significant DEGs. We used the “clusterProfiler” 
R package, and adjusted p-values< 0.05 were considered statistically 
significant for the identification of the related biological functions 
and signaling pathways of these DEGs, including Gene Ontology 
(GO) annotation and Kyoto Encyclopedia for Genes and Genomes 
(KEGG) pathway enrichment analysis, respectively (16). 
 

2.3 Single-sample gene set enrichment 
analysis of G protein-coupled receptors in 
bulk RNA-seq 

The GPR  signature used the  “G_PROTEIN_COUPLED_ 
RECEPTOR_ACTIVITY” pathway gene lists from MSigDB of the 
Broad Institute (https://www.gsea-msigdb.org/gsea/msigdb/cards/ 
GOMF_G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY.html), 
and 870 GPRs were included in further analysis. The single-sample 
gene set enrichment analysis (ssGSEA) algorithm is commonly used 
to evaluate changes in biological processes and pathway activity for 
a single sample. We performed ssGSEA through the R package 
“GSVA” for obtaining the GPR score for every sample in our study, 
which reflects the degree to which a specific gene  set  is
systematically changed in the sample by quantifying the 
enrichment score of a particular gene set within a single sample. 
Moreover, we classified all samples into up- and down-GPR score 
groups based on the median ssGSEA score. 
2.4 Identification of the key module and 
hub genes to GPRs in bulk RNA-seq 

We used the “WGCNA” (weighted gene co-expression network 
analysis) R package for constructing co-expression networks and 
identifying gene expression modules based on all RNA-seq data. 
Pearson correlation coefficients were calculated for all pairwise 
comparisons of expressed genes across all samples. A soft-threshold 
power with a scale-free R2 > 0.9 and a slope near −1 was chosen to 
transform the adjacency matrix to a topological overlap matrix 
(TOM). Genes with similar expression profiles were classified into 
modules based on the TOM dissimilarity (1−TOM) with a minimum 
size of 50 for the gene cluster dendrogram and visualized by 
hierarchical clustering, and the modules whose eigengenes (MEs) 
were highly correlated were merged, and high similarity modules 
were merged to construct the co-expression network. We set the soft-
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threshold power as 7, cut height as 0.25, and the minimal module size 
as 50 for module detection and network construction. The module– 
trait associations were estimated by the correlations of these modules 
and clinical traits. The modules with the strongest significant 
correlation with GPR scores via ssGSEA were considered as key 
modules, and key genes in modules were defined as those with |MM| 
> 0.8 and |GS| > 0.2. Furthermore, we also performed GO and KEGG 
pathway enrichment analyses for key modules. 
2.5 GPRs in single-cell transcriptome by 
scRNA-seq data analysis 

The scRNA-seq (SMART-seq2) dataset (GSE131309) for 
sarcomas included gene expression profiles from 12 human SyS 
tumors, and we used the same annotated specific cell clusters from 
the original research. We used the tSNE algorithm to cluster cell 
types, which produces a single map to demonstrate structure at 
many different scales, particularly useful for high-dimensional data. 
We utilized the “AddModuleScore” and “FindMarkers” functions 
built in the R “Seurat” package to quantify the activity of the GPR 
gene set in each cell and analyze the DEGs between high- and low-
GPR scores based on the median GPR score in a single cell. The 
statistical significance of DEGs was determined using Wilcoxon test 
(padj< 0.05), which were considered to be involved in GPRs at the 
single-cell transcriptome level. Moreover, we also performed cell 
interaction analysis using the “CellChat” R package. 
2.6 Identification of G protein-coupled 
receptor-related signatures 

In the TCGA and GTEx bulk RNA-seq and scRNA-seq data, we 
obtained DEGs and GPR-related modules identified by differential 
analysis and WGCNA, and DEGs identified by the “FindMarkers” 
function; these intersected genes were considered to be involved in 
GPRs at both the bulk and single-cell transcriptome levels, and we 
referred to them as GPRSs for further analysis. 
2.7 Construction of a diagnostic model 
based on integrative machine learning 
algorithms 

To construct a robust diagnostic model with high predictive 
accuracy, we randomly divided the meta dataset into a training set 
and an internal validation test set in a 1:1 ratio, ensuring a balanced 
distribution of clinical characteristics between tumor and normal 
groups. The meta dataset was used for further internal validation, 
and GSE17674 was used as an external validation set. Twelve 
machine learning algorithms were incorporated, including least 
absolute shrinkage and selection operator (LASSO), Ridge, elastic 
net (Enet), Stepglm, support vector machines (SVMs), glmBoost, 
LDA, plsRglm, random forest (RF), generalized boosted regression 
modeling (GBM), eXtreme gradient boosting (XGBoost), and 
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NaiveBayes. We arranged 127 combinations of these 12 algorithms 
in the training dataset for variable selection and model 
construction. All constructed models were evaluated in the 
internal and external validation dataset, the C index of which was 
calculated, and then the predictive performance of the models was 
ranked based on the mean AUROC. We established a final GPRS 
that can predict the disease with both robust performance and 
clinically translational significance. 
2.8 Establishment and validation of a 
nomogram with GPR-related signatures 

To enhance the diagnostic accuracy and predictive ability of our 
model, we developed a nomogram that incorporated the final seven 
GPRS genes to quantify the expected patients with STS with the aid 
of the R “RMS” package, and assessed the nomogram’s precision 
discrimination and accuracy using receiver operating characteristic 
(ROC) curves, C index, and calibration curves. 
 

2.9 GPR-related signatures combined 
cellular landscape for predicting prognosis 
and immunotherapy response 

2.9.1 Identification of prognostic GPR-related 
genes and TME cells 

To obtain the prognostic-related signatures, we firstly used the 
R “survival” package to perform univariate Cox proportional 
regression analysis to screen GPR genes with potential prognostic 
roles in all datasets and then LASSO Cox regression analysis to 
further screen gene signatures and reduce overfitting by the R 
“glmnet” package. Meanwhile, we applied the Kaplan–Meier (K–M) 
method using the R “survival” and “survminer” packages to screen 
the protective immune cell types with optimal cutoff analysis, which 
have a high immune infiltration. We quantified the relative 
proportions of 22 immune cell types by the “CIBERSORT” 
algorithm with 1,000 iterations and the LM22 gene signature 
based on the normalization RNA-seq data of tumor and normal 
tissues. The overall prognostic value of GPR genes and TME cells 
was presented by hazard ratio (HR) and their 95% confidence 
interval (CI). Finally, seven GPR genes and five TME cells were 
identified to be statistically significantly associated with the 
prognostic outcome in STS (HR< 1 and p< 0.05). Correlation 
analysis was used to study the correlation between the prognostic 
signatures of seven expression genes and the five infiltrating 
immune cells via the R “corrplot” package with the default 
method, which was shown using the heatmap. 
2.9.2 Establishment of the GPR score, TME score, 
and GPR-TME classifier 

To ensure the accuracy of the prognostic model, we performed a 
combination of multivariate Cox regression analysis and the 
bootstrapping method to construct the GPR score and the TME 
score, resampling 1,000 times all of the samples using the R “boot” 
Frontiers in Immunology 05 
       

package to reduce the overfitting risk and improve the model 
generalization performance. We obtained the Coef and the 
bootstrap standard deviation (SD) values of each gene and each 
cell, and bootstrap–Coef was the ratio of coefficient to SD value of 
their weight in the corresponding model. The development of the 
GPR score and TME score was based on the corresponding HR values 
with bootstrap–Coef values of seven GPR-related genes and five TME 
cells, respectively (17, 18). The risk scores were calculated using the 

Coefi previous published formula: Risk score = 
n 

x Exp(Gi or Ci),o SDi 
where Gi and Ci were the abundances of the gene or TME cell i in 
each sample. Then, GPR and TME scores were integrated for the 
development of the GPR-TME classifier, and all tumor samples were 
further divided into the following subgroups: GPRlow/TMEhigh , 
intermediate mixed (GPRlow/TMElow and GPRhigh/TMEhigh), and 
GPRhigh/TMElow based on the median value of the GPR and TME 
score in the tumor dataset. The K–M survival of patients with STS was 
analyzed with the R “survminer” package, and the risk score 
distribution and survival status were presented. The ROC curves for 
3, 5, and 7 years were constructed to evaluate the accuracy of the 
prognostic model. Furthermore, univariate and multivariate Cox 
analysis and K–M survival analysis for overall survival (OS) were 
used to assess the classifier and clinical traits (age and sex) and to 
identify independent risk factors. 

i=1 

2.9.3 Gene set enrichment analysis and 
immunological trajectory analysis 

We performed gene set enrichment analysis (GSEA) in different 
GPR score subgroups and TME score subgroups, respectively, using 
the R “clusterProfiler” package with hallmark pathways from 
“MsigDB” and their DEGs to investigate which hallmark pathways 
were significantly enriched. Meanwhile, we performed fast gene set 
enrichment analysis (FGSEA) using the R “fgsea” package with 
hallmark pathways from “MsigDB” to compare the GPR-TME 
classifier  with  other gene  signatures  and  their DEGs to investigate

which hallmark pathways were significantly enriched. Then, the 
complex heatmaps of these signatures were built in different GPR/ 
TME subgroups and GPR-TME classifier to compare the consistency 
and potential pathways. The tracking tumor immunophenotype (TIP) 
web tool (http://biocc.hrbmu.edu.cn/TIP/) is an online tool that can 
be used to calculate the activity scores of the seven anti-cancer 
immune steps for TCGA-SARC samples (19). TIP included seven 
key steps: release of cancer cell antigens (step 1), cancer antigen 
presentation (step 2), priming and activation (step 3), trafficking of 
immune cells to tumors (step 4), infiltration of immune cells into 
tumors (step 5), recognition of cancer cells by T cells (step 6), and 
killing of cancer cells (step 7), respectively. 

2.9.4 Weighted gene co-expression network 
analysis based on GPR-TME subgroups 

Moreover, we used the “WGCNA” R package for constructing 
co-expression networks and identifying gene expression modules 
with different GPR/TME subgroups based on all RNA-seq data. We 
set the soft threshold as 4, the cut height as 0.25, and the minimal 
module size as 30. The module–trait associations were estimated by 
the correlations of these modules and different GPR/TME 
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subgroups. The modules with the strongest significant correlation 
with different GPR/TME subgroups were considered as key 
modules, and key genes in modules were defined as those with | 
MM| > 0.8 and |GS| > 0.2. Meanwhile, to investigate gene function 
in each module, we used Metascape web tools (https:// 
metascape.org/gp/index.html) to perform GO enrichment and 
cluster analysis with the following ontology sources: GO 
Biological Processes, KEGG pathway, Canonical Pathways, 
Reactome Gene Sets, DisGeNET, TRRUST, and COVID (20). 

2.9.5 Tumor somatic mutation, immunotherapy 
response, and Proteomaps analysis 

Somatic mutation data of TCGA-SARC were available in the 
TCGA-SARC database. The top 20 mutation genes were obtained 
and then compared between GPR-TME subgroups. Oncoprints for 
these genes were built by the R package “ComplexHeatmap.” 
Candidate genes with significant differences among GPR-TME 
subgroups were then extracted for further prognosis analysis. The 
tumor mutational burden (TMB) score of each tumor was also 
calculated using previously described methods. We collected 
immune checkpoint-related genes and HLA class genes from the 
literature. Subsequently, we analyzed the expression differences of 
individual immune checkpoint genes and HLA class genes between 
the high-risk group and the low-risk group, with p< 0.05 as the 
standard. Tumor immune dysfunction and exclusion (TIDE) 
(http://tide.dfci.harvrd.edu/) is an online tool that can be used to 
calculate the response score of immunotherapy (21). In order to 
explore the differences in the immunotherapy response of GPRlow/ 
TMEhigh and GPRhigh/TMElow groups, we standardized the TCGA­
SARC dataset expression profile using the R package “scale” and 
calculated the TIDE. We obtained DEGs between GPRlow/TMEhigh 

and GPRhigh/TMElow groups for Proteomaps analysis, which were 
developed by a web tool (https://bionic-vis.biologie.uni­
greifswald.de/) (22). Finally, the association of the GPR-TME 
classifier with immunotherapy was explored by comparing the 
similarity of upregulated genes as well as downregulated genes in 
both groups. 
2.10 Statistical analysis 

All statistical analyses and data visualization were performed 
using the R 4.1.3 software. DEGs between groups were identified by 
using the R “limma” package and FDR-corrected p-value to assess 
the significant differences in DEGs. K–M survival analysis and the 
log-rank test were performed to compare the OS among different 
subgroups using the R “survival” and “survminer” packages. 
Univariate and multivariate Cox regression analyses were used to 
screen prognostic signatures and construct risk scores. The log-rank 
test and Cox proportional hazard regression were used to 
investigate independent prognostic factors. ROC curve analysis 
and calculation of the area under the curve (AUC) were 
performed using R “timeROC”. Correlation analysis between 
potential prognostic genes and immune cells was performed using 
Spearman’s correlation test. The differences between two non-
Frontiers in Immunology 06
normally distributed variables were estimated by the Wilcoxon 
test as a non-parametric method. All statistical tests were two-
sided, and p< 0.05 was considered statistically significant. 
3 Results 

3.1 Identification of DEGs and functional 
enrichment analysis 

A total of 4,379 significant DEGs were identified by differential 
expression analyses according to the selection criteria, including 
3,166 downregulated and 1,213 upregulated significant DEGs 
(Figures 2A–D). To explore the biological functions of these 
DEGs, GO and KEGG enrichment analyses were performed. The 
top 10 KEGG pathways were as follows: Cell cycle, DNA replication, 
Protein digestion and absorption, ECM–receptor interaction, 
Fanconi anemia pathway, Glycosaminoglycan biosynthesis, p53 
signaling pathway, Complement and coagulation cascades, 
Phagosome, and Arginine and proline metabolism (Figure 2E). 
The most abundant GO terms were for biological process nuclear 
division (BP), collagen-containing extracellular matrix (CC), and 
glycosaminoglycan binding (MF), respectively (Figures 2F–H). 
3.2 Identification of key gene expression 
modules related to GPR in bulk RNA-seq 

In the study, we performed the ssGSEA algorithm to obtain the 
GPR activity score for each STS tumor and normal sample, which 
served as the clinical trait for further WGCNA. To identify key 
modules associated with the GPR score, we applied WGCNA to the 
combined TCGA and GTEx datasets to construct the co-expression 
network. The cluster dendrogram of genes and the module–trait 
relationship are presented in Figure 3. A soft-threshold power value 
of 7 (R2 = 0.9) was set to ensure a scale-free topological network 
with high-scale independence and low mean connectivity of all 
genes. We identified 13 modules ranging in size from 76 genes in 
the tan module to 7,358 in the turquoise module, with a gray 
module not belonging to any modules (Figures 3A–D). Our findings 
indicated that the MEbrown module was positively correlated with 
the GPR score in bulk RNA-seq, indicating that genes in the brown 
module were mostly overexpressed in GPR score, and pink module 
genes were negatively correlated with GPR score, meaning that 
those genes were mostly underexpressed in GPR score 
(Supplementary Table S1). Moreover, the scatterplot of GS versus 
module membership (MM) shows a significant correlation in the 
brown module but only a slight correlation in the pink module 
(Figure 3E), indicating that module genes may have functional 
significance associated with GPR. 

Meanwhile, we performed functional enrichment analyses in these 
two key modules since module genes with similar expression patterns 
might take part in parallel biological procedures or networks. The 
results of KEGG pathway and GO enrichment analyses of the two key 
modules are shown in Figure 4. KEGG pathway analyses revealed that 
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brown module genes mainly participate in Graft-versus-host disease, 
Antigen processing and presentation, Allograft rejection, Phagosome, 
Natural killer cell-mediated cytotoxicity, Autoimmune thyroid disease, 
Leishmaniasis, Type I diabetes mellitus, Hematopoietic cell lineage, 
and Cell adhesion molecules; pink module genes mainly participate in 
Citrate cycle (TCA cycle); Carbon metabolism; Propanoate 
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metabolism; 2-Oxocarboxylic acid metabolism; Lipoic acid 
metabolism; Glyoxylate and dicarboxylate metabolism; Pyruvate 
metabolism; Valine, leucine, and isoleucine degradation; Diabetic 
cardiomyopathy; and Thermogenesis (Figure 4D; Supplementary 
Table S2). The most abundant GO terms of brown module genes 
were T-cell activation, external side of plasma membrane and immune 
FIGURE 2 

Differentially expressed genes (DEGs) of STS. (A) PCA of the combined TCGA and GTEs datasets. (B) Volcano plot. (C) Heatmap plot. (D) PCA plot. 
(E) KEGG pathways. (F) Biological process (BP). (G) Cellular component (CC). (H) Molecular function (MF). 
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receptor activity for biological process nuclear division (BP), collagen-
containing extracellular matrix (CC), and glycosaminoglycan binding 
(MF), respectively (Figures 4A–C; Supplementary Tables S3-S5). 
Aerobic respiration, mitochondrial matrix and oxidoreductase 
activity, acting on the aldehyde or oxo group of donors were the 
most significant terms in pink module. Furthermore, under the 
threshold of |MM| > 0.8 and |GS| > 0.2, we identified a total of 150 
key genes, including 144 genes in the brown module and 6 genes in the 
pink module (Figure 3F). 
3.3 G protein-coupled receptor 
characteristic in the single-cell 
transcriptome level 

We used the annotated cell types in scRNA-seq data, including 
B cells, endothelial cells, fibroblasts, macrophages, malignant cells, 
mastocytes, NK cells, CD4+ T cells, CD8+ T cells, and T cells. We 
used the “AddModuleScore” function in the R “Seurat” package to 
calculate the expression levels of the GPR gene set across all cells, 
quantifying the activity of the GPR (GPRScore) in different cell 
types. Of the 10 cell types, we observed a significantly higher GPR 
activity in B cells, macrophages, NK cells, CD4+ T cells, CD8+ T 
cells, and T cells (Figures 5A–D). Moreover, we further performed 
differential analyses based on GRP activity, and we classified all cells 
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into high- and low-GPR groups, and identified 1,259 DEGs between 
these two groups for further analysis. 

To investigate the role of GPRScore in the TME at the single-cell 
transcriptome level, we selected those cells to bind to GPR scores and 
performed cell–cell communication analyses for intercellular 
communication between various cells. The number of interactions 
and the interaction weights of the cell–cell communication network 
are presented in Figure 5E. We divided B cells, CD4+ T cells, CD8+ T 
cells, macrophages, and mastocytes into high- and low-GPR score 
groups using the quartiles as the boundary, and investigated their 
interactions with other types of cells in the TME. We found that TME 
cells with different GPR scores had diverse communication patterns. 
The results indicate that TME plays a crucial role in cellular 
communication; those cells with GPR activity possess an additional 
ability to communicate with different cell types through multiple 
pathways. We found that B, NK, Macrophage cells and Mastocyte 
cells in both GPR-high and GPR-low risk groups and CD4+ and CD8 
+ T cells in GPR-low risk group interacting with MIF-(CD74 + 
CXCR4) ligand–receptor relationships were extremely correlated, 
which indicated that the interactions of those cells with other cell 
types are related to MIF signaling pathway (Figures 6A–F). These 
findings suggest that high GPR activity enhances the cellular 
communication function of macrophage cells while suppressing the 
cellular communication function of B cells, CD4 + T cells, CD8 + T 
cells, NK cells, and mastocyte cells. 
FIGURE 3
 

Identification of co-expressed modules and relationship of modules and GPR score by bulk RNA-seq. (A) Soft threshold of scale free topology
 
model. (B) Histogram. (C) Cluster dendrogram of all genes. (D) Correlation of modules and GPR score. (E) Bar plot of mean gene significance (GS)
 
across modules. (F) Scatterplots of GS for disease status versus module membership (MM) in four key modules.
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FIGURE 4 

Functional enrichment analysis for module genes. (A) KEGG pathways. (B) Biological process (BP). (C) Cellular component (CC). (D) Molecular 
function (MF). 
FIGURE 5 

(A) tSNE map of cell clusters in STS sample. (B) Bar graph shows the proportion of cell types in each sample. (C, D) GPR score counted in each cell 
cluster. (E) The number of interactions and the interaction strength of intercellular communication analysis. 
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3.4 Identification of GPR-related genes 

Based on GRP activity, we classified all cells into high- and low-
GPR groups, and identified 1,259 DEGs between these two groups for 
further analysis. We intersected the DEGs, key module genes from the 
bulk RNA-seq, and the DEGs by the “FindMarkers” function from the 
scRNA-seq, finally identifying a total of 151 genes for further analysis 
(Figure 7A; Supplementary Table S6). These genes were named GPR-
related genes (GPR genes), which were considered to be involved in 
GPR at both the bulk and single-cell transcriptome levels. 
3.5 Establishment and validation of the 
diagnostic risk prediction model 

To construct a consensus GPRS, we performed a combination of 
127 machine learning algorithms to analyze the 151 GPR genes; the 
combined dataset was divided into a training set and an internal test 
set at a 1:1 ratio, and the meta set and GSE17674 were used for further 
validation. In the training set, we fitted 127 diagnostic prediction 
models and calculated the AUROCs across all training and validation 
datasets (Figure 8A). We identified that the Stepglm[both]+Enet 
[alpha=0.6] model presented, which demonstrated good predictive 
ability in the training, test, and meta datasets, only incorporated seven 
genes (NCKAP1L, ARHGAP4, ASS1, CD163, SLCO2B1, ALOX5, and  
ADCY7), yet achieved comparable predictive efficacy with high 
accuracy and translational relevance (Supplementary Tables S7, S8). 
Moreover, ROC curves showed that the Stepglm[both]+Enet 
[alpha=0.6] model had a good diagnostic effect (Figure 8A; 
Supplementary Table S7). Therefore, these genes may have the 
potential for early diagnosis. In order to improve the clinical 
applicability of the diagnostic model, we constructed a nomogram 
based on these genes and also plotted the calibration curves. The C 
indexes of the nomogram were 1, 0.9994, 0.995, and 1 in the train, test, 
meta, and GSE17674 sets (Figures 8B–M). The calibration chart 
predicted by the nomogram was in excellent consistency with the 
actual observation results in the training, test, meta, and GSE17674 
sets. The above confirms that those genes might have the potential as 
diagnostic markers. 
 

3.6 Establishment of a prognostic risk 
model for the combined signatures of 
GPRs and cellular landscape 

Subsequently, we performed univariate Cox regression analysis 
on the 151 GPR genes, identifying 44 significant genes (p< 0.05). 
Then, to reduce overfitting, we conducted LASSO Cox regression 
analysis in the tumor set, yielding seven potential prognostic genes 
(CPXM1, CD48,  GPR132, PRF1,  CTSW, TBC1D10C,  and
PLEKHO2 in Supplementary Table S9). Therefore, we performed 
the multivariate Cox regression analysis with bootstrap methods 
based on these seven genes to establish a prognostic model, 
resampling 1,000 times with a multivariate Cox analysis each 
time, and the ratio of Coef to bootstrap SD values serves as the 
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weight in the corresponding model for improving the stability of the 
prognostic model (Figures 7B–D). 

For the 22 TME cells by CIBERSORT, we performed the K–M 
survival analysis in tumor samples, yielding five favorable prognostic 
cells (CD8 T cells, activated NK cells, monocytes, resting mast cells, 
and M1 macrophages). Meanwhile, we also utilized the multivariate 
Cox regression analysis with bootstrap methods based on those five 
cells to establish a prognostic model, resampling 1,000 times with a 
multivariate Cox analysis each time, and the ratio of Coef to bootstrap 
SD values serves as the weight in the corresponding model for 
improving the stability of the prognostic model (Figures 9A–F). 

According to the above prognostic signatures and calculation 
formula, we subsequently determined the GPR score and TME score, 
respectively. According to the median value of the GPR score and 
TME score in the dataset, tumors were classified into two subgroups 
(Figures 7E, 9G). Notably, we observed that the low GPR score and 
high TME score showed a statistically longer survival compared to 
patients with a high GPR score and low TME score. Tumors with a 
high GPR score were significantly enriched for ribosome, and those 
with a low GPR score were enriched for allograft rejection, antigen 
processing and presentation, asthma, autoimmune thyroid disease, 
cell adhesion molecules, chemokine signaling pathway, graft-versus­
host disease, hematopoietic cell lineage, and type I diabetes mellitus 
(Figure 7F). Similarly, tumors with a high TME score were 
considerably enriched for asthma, autoimmune thyroid disease, 
calcium signaling pathway, drug metabolism cytochrome P450, 
histidine metabolism, tryptophan metabolism, and vascular smooth 
muscle contraction, whereas tumors with a low TME score were 
enriched for basal cell carcinoma, ribosome, and spliceosome 
(Figure 9H). Additionally, we performed a correlation analysis 
among GPR-TME factors (GPR-related genes and TME cells); a 
correlation coefficient heatmap is presented in Figure 9I. 
3.7 Prognostic value of the established 
GPR-TME classifier 

Based on the above results, we asked whether it would be 
possible to combine the GPR score and TME score to characterize 
the GPR TME. Therefore, we combined the GPR score with the 
TME score and developed the GPR-TME classifier, which resulted 
in dividing patients into four subgroups: GPRlow/TMEhigh, GPRlow/ 
TMElow, GPRhigh/TMEhigh, and GPRhigh/TMElow (Figure 9J). We 
identified that the GPR-TME classifier presented a statistically 
different prognosis in STS tumor patients, which demonstrated 
that both the GPR score and TME score contribute significantly to 
the prognostic value. Patients from the GPR-TME classifier 
subgroup were revealed to have the best prognosis compared to 
patients in the other subgroups. Meanwhile, we combined the 
GPRlow/TMElow and GPRhigh/TMEhigh subgroups to become the 
mixed subgroup, because the prognosis of patients in the two 
subgroups were less divergent. The GPR-TME classifier could 
significantly distinguish the OS of the patients with STS, and the 
AUROC of the GPRlow/TMEhigh subgroup compared to GPRhigh/ 
TMElow was 0.617 (Figure 9K). The GPR-TME classifier could 
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FIGURE 6 

Cell–cell communication analysis. Dot plots of entry and exit interaction signaling pathways in macrophage (A), CD8+ T (B), CD4+ T (C), B cell (D), 
NK (E), and mastocyte cell (F) with high and low GPR activity. 
FIGURE 7 

Identification of the GPR-related genes (GPRgenes) and development of the GPR score in STS. (A) Venn plot showing the intersecting genes, DEGs, 
and key module genes from the bulk RNA-seq and the DEGs from the scRNA-seq. (B) Selection of the optimal l in the LASSO analysis. (C) LASSO 
coefficient profiles of genes in STS. (D) Forest plot shows a multivariate Cox analysis of these enrolled genes. (E) K–M curves for the OS of patients 
with STS in the low- and high-risk subgroups based on the GPR score. (F) Gene set enrichment analysis (GSEA) in the low- and high-risk subgroups 
based on the GPR score. 
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predict OS at the 3-, 5-, and 7-year survival with AUCs of 0.688, 
0.638, and 0.621, respectively (Figure 9L). 

Furthermore, we performed WGCNA and FGSEA for the 
molecular signaling pathways based on GPR-TME subgroups 
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according to the significant prognostic differences in the 
prognostic classifier. WGCNA indicated that the MEgreen 
module was positively correlated with GPRhigh/TMElow and the 
MEblue module was positively correlated with the GPRlow/TMEhigh 
FIGURE 8 

A consensus GPRS was developed and validated via the machine learning-based integrative procedure. (A) A total of 127 kinds of prediction model 
frameworks; the C index of each model was further calculated across all datasets. (B–D) Establishment, ROC, and calibration curve of the 
nomogram in the train, test, meta, and GSE17674 sets. (E–G) Establishment, ROC, and calibration curve of the nomogram in the test set. 
(H–J) Establishment, ROC, and calibration curve of the nomogram in the meta set. (K–M) Establishment, ROC, and calibration curve of the 
nomogram in GSE17674. 
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subgroup (Figures 10A–C). Metascape results of these two module 
genes are shown in Figures 10D–K (Supplementary Table S10). 
FGSEA identified that the GPRlow/TMEhigh subgroup was mainly 
enriched in cell substrate adhesion, glycerophospholipid metabolic 
process, homotypic cell–cell adhesion, immunoglobulin 
production, protein depolymerization, regulation of high voltage 
gated calcium channel activity, regulation of transposition, antigen 
processing and presentation via major histocompatibility complex 
(MHC) class Ib, macrophage activation, myeloid leukocyte 
activation, positive regulation of pattern recognition receptor 
signaling pathway, positive regulation of response to biotic 
stimulus, and regulation of leukocyte apoptotic process 
(Figure 10L). The above furthermore demonstrated the synergistic 
influence of GPR and TME on antigen processing and presentation 
and immune activation, which implies the significance of an 
integrated analysis of GPR-TME. 
3.8 Differences in anti-cancer immunity 
cycle and immunotherapy response among 
different GPR-TME subgroups 

In the study, we performed TIP analysis for assessing the 
activity of each step in the anti-cancer immune cycle, which 
might have a more comprehensive understanding of the anti­
cancer role of immune cells that improves immunotherapy 
guidance (Figures 10M, N). We observed that there were 
differences in steps 1, 4, 6, and 7 of the anti-cancer immune cycle 
among different GPR-TME subgroups. The GPRlow/TMEhigh 

subgroup demonstrated stronger activity in the release of cancer 
cell antigens (step 1), trafficking of immune cells to tumors (step 4), 
recognition of cancer cells by T cells (step 6), and killing of cancer 
cells (step 7). The results were refined to analyze the recruitment of 
different immune cells in step 4 by the GPR-TME subgroups, which 
revealed that the GPRlow/TMEhigh subgroup had a greater ability to 
recruit immune cells, especially CD8+ T cells, dendritic cells, 
macrophages, NK cells, monocytes, and Th 1 cells, which might 
have greater anti-cancer activity in the cycle of immune 
cell functioning. 
 

3.9 Association between the GPR-TME 
classifier and clinical traits 

Considering the relationship between clinical traits and 
prognosis, univariate and multivariate Log rank survival analysis 
and cox regression analysis were conducted. The result of survival 
analysis found that GPR-high plus TME-low group showed a worse 
prognosis (Figure 11A). The results of univariate Cox regression 
analysis showed that the age and GPR-TME classifier of patients 
with STS are risk factors [univariate Cox: age (HR), 1.023; 95% (CI): 
1.007–1.04, p< 0.01; GPR-TME classifier (HR), 1.629; 95% (CI): 
1.245–2.13, p< 0.001] (Figure 11B). The multivariate Cox regression 
analysis showed that the age and GPR-TME classifier of patients 
with STS are risk factors and independent factors for the prognosis 
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of patients with STS [multivariate Cox: age (HR), 1.02; 95% (CI): 
1.01–1.00, p< 0.01; GPR-TME classifier (HR), 1.62; 95% (CI): 1.23– 
2.10, p< 0.001] (Figure 11C). Notably, our analysis furthermore 
demonstrated that the GPR-TME classifier allowed a further 
subdivision of patients among young (<65 years) women 
(Figures 11D–G). 
3.10 Differential patterns of tumor somatic 
mutations in patients among GPR-TME 
subgroups 

We next investigated the tumor somatic mutation alterations 
among different GPR-TME subgroups and presented the top 20 
genes with the highest mutation rate in the waterfall map; the 
GPRlow/TMEhigh  subgroup  had  a  higher  mutation  rate  
(Figures 12A, C, D). Meanwhile, we also attempted to determine 
TMB differences among different GPR-TME subgroups, but no 
significant difference was found; TP53 was the most frequently 
mutated gene. As shown in Figure 12B, to further investigate the 
effect of TMB on STS, we divided them into TMBhigh and TMBlow 

groups according to the median value of TMB calculation results 
and performed joint survival analysis in the GPRlow/TMEhigh and 
GPRhigh/TMElow groups. The results showed that the GPRlow/ 
TMEhigh/TMBhigh group had a better prognosis, while the 
GPRhigh/TMElow/TMBlow group had the worst prognosis, and 
these results provided additional evidence supporting the notion 
that individuals in the high-TMB group, specifically the GPRlow/ 
TMEhigh subgroup, may have a higher likelihood of experiencing an 
immune response rate. However, TMB status could successfully 
optimize the predictive efficacy of the GPR-TME classifier. These 
results might indicate that the GPR-TME classifier is more sensitive 
than the TMB score to distinguish patients. 
3.11 Distinct immune response profile in 
tumors among GPR-TME subgroups 

Higher expression of immune checkpoint is associated with a 
better response to ICI therapy. Thus, we then further investigated 
the immune response-associated  genes  among  the GPR-TME

classifier subgroups, including the expression levels of MHCs and 
ICIs. It was noted that all MHCs were significantly highly expressed 
in the GPRlow/TMEhigh subgroup as shown in Figures 12E, F, and 
most ICIs except CD276, SIRPA, and TDO2 were highly expressed 
in the GPRlow/TMEhigh subgroup. 
3.12 Prediction of therapy response based 
on the GPR-TME classifier 

Furthermore, we tested whether the GPR-TME classifier could 
be used to predict clinical response in patients who may benefit 
from ICIs using the TIDE online tool. Then, we evaluated the 
predictive ability of the GPR-TME classifier in the immunotherapy 
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FIGURE 9 

Development of the TME score in STS. (A) CD8 T cells. (B) M1 macrophages. (C) Activated NK cells. (D) Monocytes. (E) Resting mast cells. (F) Forest 
plot shows a multivariate Cox analysis of these immune cells. (G) K–M curves for the OS of STS in the low- and high-TME score subgroups. 
(H) GSEA identifies the phenotype differences between the TME score high and TME score low subgroups. (I) Correlation analysis shows the 
relationship between the GPR and TME score components. (J) K–M curve for the OS of STS in the GRP_low+TME_high, GPR_low+TME_low, 
GPR_high+TME_high, and GPR_high+TME_low subgroups. (K) ROC curves demonstrate the predictive efficiency of the GPR-TME classifier. 
(L) Time-dependent ROC curves demonstrate the predictive efficiency of the GPR-TME classifier. 
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FIGURE 10 

WGCNA and functional enrichment analysis of the GPR-TME classifier. (A) Soft threshold of scale free topology model. (B) Cluster dendrogram of all 
genes. (C) Gene modules derived from WGCNA show the different clusters among four subgroups. (D–G) Enrichment analysis for the GRP_low 
+TME_high subgroup by Metascape. (D) Top 20 annotations. (E) Enrichment analysis result in DisGeNET. (F) Enrichment analysis result in 
transcription factor targets. (G) Enrichment analysis result in TRRUST. (H–K) Enrichment analysis for the GPR_high+TME_low subgroup by 
Metascape. (H) Top 20 annotations. (I) Enrichment analysis result in DisGeNET. (J) Enrichment analysis result in transcription factor targets. 
(K) Enrichment analysis result in TRRUST. (L) Fast gene set enrichment analysis (FGSEA) of the GPR-TME classifier. (M, N) Heatmaps for steps 1–7 of  
TIP analysis based on the GPR-TME classifier. 
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response from TIDE; the GPRlow/TMEhigh subgroup had the 
highest percentage (38%) of patients with immunotherapy 
response among all subgroups, and the immunotherapy 
responder of STS presented a significantly lower GPR score but 
no significant difference in the TME score between the two groups, 
indicating that the GPR score can independently affect the outcome 
of immunotherapy (Figures 12G, H). Additionally, the Proteomap 
was used to intuitively reveal the potential mechanism of the GPR­
TME classifier predicting therapy response in patients undergoing 
immunotherapy. Interestingly, the pattern of Proteomap in the 
GPRlow/TMEhigh subgroup and in the immunotherapy responder is 
quite similar, and a higher similarity between the GPRhigh/TMElow 

subgroup and the immunotherapy non-responder was observed 
(Supplementary Figure S1). To summarize, these results might 
suggest that the pretreatment GPR-TME signature can describe 
the TME, thus benefiting the prediction of patient’s therapy

responses. Similar patterns of Proteomaps are observed in the 
GPRlow/TMEhigh subgroup and the ICB responder. These findings 
may suggest that the pretreatment GPR-TME classifier can depict 
the tumor immune microenvironment, thereby enhancing the STS 
patient’s therapy response prediction. 
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4 Discussion 

STS is a highly heterogeneous tumor characterized by early 
invasion, metastasis, resistance to immunotherapy, and poor 
prognosis, necessitating early diagnosis and tailored treatment 
strategies (23). GPRs have recently gained more recognition in 
tumorigenesis, development, and treatment and are an important 
target for drug development, several of which have been approved 
for marketing or under development (8, 24). Previous studies 
suggested that GPRs play a crucial role in the regulation of cancer 
cells by activating downstream signaling pathways and networks, 
including metabolism, migration, growth, apoptosis, and cell-
specific activities, and may become valuable biomarkers for 
tumors (12, 25). Meanwhile, TME also plays an important role in 
cancer biology and tumor prognosis, which may be a promising 
therapeutic strategy by targeting TME in cancer treatment (26, 27). 
Recent studies on GPRs and TME strengthen our understanding of 
their importance in the prognosis and therapy of patients with 
cancer (10, 18, 28, 29). However, multi-omics application for 
molecular signatures in STS remains few, which has been 
confirmed to be a widely useful tool in various cancer research 
frontiersin.or
FIGURE 11 

Clinical trait analysis and application of the GPR-TME classifier. (A) K–M survival analysis was performed in the GRP_low+TME_high, Mixed, and 
GPR_high+TME_low groups. (B, C) Univariate and multivariate Cox analysis of multiple clinical traits. (D–G) K–M curves for the simplified GPR-TME 
classifier present statistically significant discriminations regardless of age and sex. 
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FIGURE 12 

Comparison of tumor somatic mutations, immune-related markers, and therapy response prediction based on the GPR-TME classifier. (A) Comparison 
of TMB level among defined subgroups according to the classifier. (B) K–M curves divided by TMB and the GPR-TME classifier of STS. (C) Top 20 
mutation genes in the GPR_high+TME_low subgroup. (D) Top 20 mutation genes in the GPR_low+TME_high subgroups. (E) Comparison analysis of ICB 
responder among subgroups based on the GPR-TME classifier. (F) Comparison analysis of the HLA molecules among subgroups based on the GPR-TME 
classifier. (G) Comparison of the different percentages of ICB responder based on the GPR-TME classifier. (H) Comparison of GPR scores among 
patients with different ICB immunotherapy response status. 
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studies, identifying several molecular biomarkers for personalized 
diagnosis and medicine. In the study, we performed multi-omics 
approaches to construct a novel GPR signature for early diagnosis, 
predict prognosis and immunotherapy response for STS, and 
uncover the underlying molecular mechanisms in the context 
of PPPM. 

Firstly, we developed a novel diagnosis computational 
framework incorporating 12 MLs and their 127 combinations. 
Our analysis resulted in the identification of GPRS based on 
seven GPRs (NCKAP1L, ARHGAP4, ASS1, CD163, SLCO2B1, 
ALOX5, and ADCY7) to predict the occurrence of STS, which 
exhibits higher diagnosis accuracy and better clinical translational 
implications.  Secondly,  this  study  firstly  conducted  a  
comprehensive bioinformatics analysis of GPRs integrated with 
TME in STS, resulting in the identification of GPR-TME 
prognosis classifiers for STS. A more stable prognostic risk 
assessment model was established using self-service internal 
validation methods, including seven GPRs (CPXM1, CD48, 
GPR132, PRF1, CTSW, TBC1D10C, and PLEKHO2) combined 
with five protective immune cells (CD8 T cells, activated NK cells, 
monocytes, resting mast cells, and M1 macrophages), to evaluate 
the prognosis of patients with STS. Meanwhile, we used the novel 
prognosis classifier for predicting immunotherapy response for 
STS. The novel classifier exhibits a good predictive ability, clinical 
prognosis improvement, and clinical translational implications in 
PPPM framework. These findings provide rational guidance for 
administering effective personalized immunotherapy in clinical 
practice. Furthermore, we performed an integrated multi-omics 
analysis, including scRNA-seq analysis, bulk RNA-seq analysis, and 
genome analysis, for a deeper understanding of the GPRs combined 
with TME in STS. We identified the associations of GPRS and the 
GPR-TME classifier with the development and prognosis of STS, 
revealing their biological evidence and the molecular basis and an 
underlying mechanism across multi-omics levels, providing 
biological evidence in guiding personalized medicine approaches. 
Lastly, we performed a novel comprehensive bioinformatics 
analysis that integrated DEGs, ssGSEA, and WGCNA in a bulk 
transcriptome level and the AddModuleScore in single-cell 
transcriptome for identifying GPRSs. The findings in the study 
provided new insights for GPR in STS by uncovering GPRSs and 
providing potential diagnosis and therapy targets in GPRs for STS. 

In the study, we developed a novel computational framework to 
identify a stable and reliable diagnosis for GPRS. We incorporated 
12 machine learnings with their 127 combinations in a training set, 
and subsequently replicated them in the training, test, meta, and 
GSE17674 sets. Based on the framework, we successfully fitted a 
consensus diagnosis model with high accuracy and translatability, 
and the Stepglm[both]+Enet[alpha=0.6] algorithm was selected as 
the final model with its high average accuracy, low model gene 
number, and optimal model performance power. The combined 
application of multiple machine learning algorithms enables more 
efficient variable dimensionality reduction, thus facilitating the 
development of accurate and simple predictive models. Model 
performance was assessed using ROC curves, C indexes, and 
calibration curves in the validation datasets. All evaluation 
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methods demonstrated the excellent diagnostic performance of 
our GPRS models in predicting the onset of STS, which can be 
employed in high-risk individuals with developing STS and for the 
early intervention and appropriate treatment of such individuals. 

To provide a convenient tool for diagnosing the occurrence of 
STS, we constructed a nomogram that integrated seven GPR-related 
genes (NCKAP1L, ARHGAP4, ASS1, CD163, SLCO2B1, ALOX5, 
and ADCY7). The nomogram demonstrated satisfactory 
discrimination, with the ROC curve and C index reflecting its 
high predictive accuracy. The calibration curve further confirmed 
the accuracy of the nomogram by showing close agreement between 
predicted and observed diagnostic rates. The diagnostic model was 
established by machine learning to predict the occurrence of STS; 
the diagnostic tool for determining the occurrence of STS has a 
good predictive ability. Early diagnosis of STS may improve 
prognosis and clinical outcomes. These findings hold significant 
and powerful implications for the early diagnosis and prompt 
treatment of GPRS in STS. 

Nck-associated protein 1 (NCKAP1) as part of the WAVE 
(WASP-family verprolin-homologous protein) complex plays an 
essential role in disease pathogenesis and poor prognosis in several 
cancers by regulating various intracellular processes through 
apoptosis, migration, and invasion (30, 31). Nck-associated 
protein 1-like (NCKAP1L) is a hematopoietic lineage-specific 
regulator of the Nap1l subunit of the WAVE complex, which 
signals downstream of activated Rac to stimulate F-actin 
polymerization in response to engagement of various immune 
receptors, and NCKAP1L defects would lead to a novel syndrome 
combining immunodeficiency, lymphoproliferation, and 
hyperinflammation (32). ARHGAP4 is a novel negative regulator 
of Rho GTPas‐activating protein (GAP) family proteins inhibiting 
axon outgrowth and cell motility, and a novel regulator of HDAC2/ 
b-catenin pathway with a critical role in tumorigenesis. Proteins 
encoded by ARHGAP4 can regulate the binding between GTPase 
and rat sarcoma (RAS) family members, whose negative regulation 
involves the small G protein of the Rho family and associated with 
tumorigenesis in various cancers, including head and neck 
squamous cell carcinoma, glioblastoma, breast, lung, pancreatic, 
liver, colon, and prostate cancers (33, 34). Furthermore, ARHGAP4 
is associated with immune cells (B, CD8+ and CD4+ T, 
macrophages, neutrophils, and dendritic cells) and may be a 
potential biomarker for the prognosis of CRC (34). A previous 
study suggested that ASS1 plays a critical role in controlling the 
activation of inflammatory macrophage and in antibacterial defense 
by depletion of cellular citrulline, which is an innate immune-

signaling metabolite that engages a metabolic checkpoint for 
proinflammatory responses (35). Meanwhile, the somatic silence 
or downregulation of ASS1 is very common in various cancers, and 
ASS1 might be a tumor suppressor in breast cancer (36). CD163 as a 
marker of M2 macrophage might contribute to predict 
aggressiveness and prognosis of Kazakh ESCC with the increased 
number of M2 macrophages (37), and CD163 also contributes to 
gliomagenesis via casein kinase 2 that might serve as a therapeutic 
target for glioma (38). A previous study suggested that SLCO2B1 as 
a heme transporter is enriched in microglia in the brain and 
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required for heme analog import, which enhances cellular iron 
availability (39). ALOX5 plays a critical role in cell death by ways of 
inflammation and lipid peroxidation including apoptosis, 
pyroptosis, and ferroptosis, whose activity is regulated by several 
factors including protein phosphorylation, ALOX5-interacting 
protein, redox state, and metal ions (40). ALOX5 exhibits 
antitumor and drug-sensitizing effects and has a therapeutic 
potential in mixed lineage leukemia (MLL)-rearranged leukemia 
(41). Meanwhile, ALOX5 may be a valuable therapeutic target and 
prognostic biomarker for bladder cancer, in which the deficiency of 
ALOX5 might contribute to BCa progression by mediating 
ferroptosis escape (42). Adenylate cyclase 7 (ADCY7) plays a 
critical role in nervous system diseases, inflammatory responses, 
and immune responses, and ADCY7 was abnormally expressed in 
multiple cancers and may be a prognostic biomarker of 
tumorigenesis (43). A previous study showed that ADCY7 
deficiency resulted in decreased cell growth, elevated apoptosis, 
and lower c-Myc expression of these leukemia cells, indicating that 
GPR signaling contributes to AML pathogenesis and that ADCY7 
supports the development of AML; the inhibition of ADCY7 may be 
a novel treatment strategy for AML (44). 

When  cons ider ing  target ing  GPR  combined  with  
immunotherapy for the treatment of STS, the signatures based on 
the combination of GPR and TME might enable both clinical 
classification and optimizing therapy strategies. In our study, we 
systematically utilized large-scale STS sets to assess the integrated 
value of GPR TME for prognostic and immunotherapy response 
based on the GPR-TME classifier. In this study, we investigated the 
joint effect of GPR  and TME  on  STS,  first using differential 
expression analysis, univariate Cox regression analysis, LASSO 
algorithm, and multivariate Cox regression analysis, and 
identified a total of seven genes (CPXM1, CD48, GPR132, PRF1, 
CTSW, TBC1D10C, and PLEKHO2) related to STS prognosis and 
constructed a seven-GPR risk signature. The TME score was further 
calculated based on the five protective immune cells (CD8 T cells, 
activated NK cells, monocytes, resting mast cells, and M1 
macrophages). Finally, a GPR-TME classifier that can predict 
patient prognosis and assist in subsequent immunotherapy 
analysis was established by the combination of the above two risk 
profiles, and its value in terms of the prognosis and immunotherapy 
in patients with STS was assessed. We identified that the GPR score 
was a risk factor for STS prognosis, while the TME score was a 
protective factor. Upon simplification, the GPR-TME classifier was 
identified as an independent prognostic factor for patients with STS, 
and the GPRlow/TMEhigh subgroup has the best prognosis outcome 
and clinical immunotherapy. This classifier’s prognosis predictive 
value was independent of the patient’s age and sex, indicating a 
stable prediction efficiency and the robustness of the classifier. The 
time-dependent ROC curves confirmed the sensibility and 
specificity of this risk signature. The model was also used for 
single-cell RNA statistical processing, cell–cell communications, 
tumor mutational load, and immunotherapy analysis. 

CPXM1 is an epigenetic factor involved in many physiological 
processes including osteoclast differentiation and adipogenesis, 
which might be a novel biomarker for the detection and 
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treatment of various cancers, including gastric cancer, ovarian 
cancer,  breast  cancer,  neck  squamous  cell  carcinoma,  
myelodysplastic syndrome, and papillary thyroid (45). CD48 may 
play an important role in mediating the immune response in both 
immune activation and suppression, which binds to CD2 and is 
involved in a wide variety of innate and adaptive immune 
responses, and CD48 interaction with its high-affinity receptor 
2B4 (CD244) leads to monocyte/macrophage-elicited NK cell 
dysfunction in HCC (46).  CD48  is  a  key  molecule  of  
immunomodulation affecting prognosis in glioma, and combining 
CD48 blockade with PD-L1 may be a promising immunotherapy 
approach for specific subpopulations of glioma (47). A previous 
study suggested that the lactate–Gpr132 axis is a driver of breast 
cancer metastasis by stimulating tumor–macrophage interplay and 
revealed potential new therapeutic targets for breast cancer 
treatment (48). The pore-forming protein perforin (PRF1) is a 
definite marker of the killing ability of immune cells and is involved 
in the establishment of immune homeostasis, elimination of 
pathogens, and tumor surveillance. PRF1 might be related to 
better survival in multiple cancers, including melanoma, bladder 
cancer, head and neck squamous cell carcinoma, and ovarian cancer 
(49). A previous study suggested that CTSW inhibits IL-2R 
signaling in pTreg cells by cytosolic interaction with and 
processing of CD25, repressing signal transducer and activator of 
transcription 5 activation to restrain pTreg cell generation and 
maintenance (50). Cancer immunotherapy approaches target 
signaling pathways that are highly synonymous between CD4 and 
CD8 T-cell subsets and, therefore, often stimulate nonspecific 
lymphocyte activation, resulting in cytotoxicity to otherwise 
healthy tissue. TBC1D10C is a selective, constitutive suppressor of 
the CD8 T-cell antitumor response, and the Tbc1d10c–Map3k3– 
NF-kB signaling axis is a viable therapeutic target to promote CD8 
T-cell antitumor immunity while circumventing  CD4 T cell­

associated cytotoxicity and NF-kB activation in tumor cells (51). 
PLEKHO2 is a novel inhibitor of apoptosis and necroptosis, and 
plays a key role in regulating RIPK1 ubiquitination and activation, 
which inhibits TNFa-induced cell death by suppressing RIPK1 
activation (52, 53). 

We performed a systematic exploration of the functions and 
pathways involved in different subgroups for providing a deeper 
understanding into the transcriptional regulation mechanisms of the 
GPR-TME classifier in STS. The functional enrichment revealed that 
the GPR-TME classifier was associated with tumor growth, and there is 
potential influence on cellular communication in STS. In addition, by 
conducting immune function and antitumor immune cycle analyses of 
TIP, we found that the GPRlow/TMEhigh subgroup had a stronger 
inflammation-promoting, cytolytic activity, and T-cell co-inhibition 
activity and was more active in most of the anti-cancer immune cycle 
steps. This further revealed that the GPRlow/TMEhigh subgroup has 
stronger antitumor immune activity, which is corroborated by the 
results obtained in the functional enrichment analysis. Moreover, 
multiple algorithm methods for functional annotation revealed 
different biological process enrichments  among  GPR-TME

subgroups. This may imply that the host tumor profiles of the 
various GPR-TME subgroups share certain common characteristics. 
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In scRNA-seq analysis, we observed a significantly higher GPR 
activity in B cells, macrophages, NK cells, CD4+ T cells, CD8+ T 
cells, and T cells, and GPRs genes may play a role in immune cell 
function (54–56). We found that B, NK, and macrophage cells in 
both GPR-high and GPR-low risk groups and CD4+ and CD8+ T 
cells in the GPR-low risk group interacting with MIF-(CD74 + 
CXCR4) ligand–receptor relationships were extremely correlated, 
which indicated that the interactions of those cells with other cell 
types are related to MIF signaling pathway (57, 58). These findings 
suggest that high GPR activity enhances the cellular communication 
function of macrophage cells while suppressing the cellular 
communication function of B cells, CD4 + T cells, CD8 + T cells, 
NK cells, and mastocyte cells. The above results might elucidate the 
mechanism behind the GPR-TME classifier predicting prognosis 
and therapy responses. 

Furthermore, immune checkpoints and tumor antigen 
presentation play a key role in tumor therapy (59), and an 
intriguing result showed that both activating and inhibitory 
immune markers were, in general, highly expressed in the GPRlow/ 
TMEhigh subgroup, suggesting that a stronger antitumor immune 
response would likely be restored through immune checkpoint 
blockade in the GPRlow/TMEhigh subgroup. Moreover, somatic 
mutation results provide additional evidence supporting the notion 
that individuals in the high-TMB group, specifically the GPRlow/ 
TMEhigh subgroup, may have a higher likelihood of experiencing an 
immune response rate. Finally, we investigated whether the GPR­
TME signatures could predict the response to immunotherapy in 
patients with STS, and the response to immunotherapy differed 
among risk groups in this model, with lower GPR signatures or 
higher TME signatures implying better levels of immune response. 
We applied the model to the ICI treatment cohort and found that the 
model could be used to predict the efficacy of ICI treatment in 
patients with STS. This implies that the GPR-TME classifier is of 
great research value in immunotherapy and may be applied for the 
pre-immunotherapy stratification of patients with STS. In our GPR­
TME classifier, 38% of patients in the GPRlow/TMEhigh subgroup 
were successfully predicted to benefit from immunotherapy 
regardless of the molecular subtyping. The similarity of Proteomap 
patterns between the GPRlow/TMEhigh subgroup and TIDE 
immunotherapy-responder subgroups might reveal a certain 
commonality in a determinative interplay between patients’ 
immune system and cancer cells, which further indicated the 
therapeutic predictive value of the GPR-TME classifier. The 
findings provide an explanation from a multi-omics perspective on 
the better prognosis and better response to immunotherapy observed 
in the GPRlow/TMEhigh subgroup. In summary, this study based on 
integrated multi-omics bioinformatics analysis provides some new 
biomarkers of GPRs for the diagnosis and prognosis of STS and may 
aid to develop new precise and effective targeted drugs and prevent 
the progression of STS in the context of PPPM. The results of our 
study provide new ideas for prognosis prediction as well as treatment 
Frontiers in Immunology 20 
of STS, which may enable the clinical classification and optimization 
of therapy strategies. 

Meanwhile, some limitations should still be addressed, even 
though we innovatively integrated GPR and TME for predicting 
prognosis and immunotherapy response in STS with the bootstrap 
method to enhance our model’s stability and reliability in the study. 
First, the reliance on public datasets may constrain the 
generalizability of the classifier. Despite internal and external 
validation, further evaluation using large-scale, prospective, multi­

center cohorts is essential. Second, the GPRS and GPR-TME 
classifier were all based on gene expression that additional in vivo 
and in vitro experimental studies require for further validation and 
unraveling the intricate molecular pathways involved. Lastly, 
although we had predicted the immunotherapy response of the 
classifier, large-scale prospective clinical and real-world data are still 
needed to further confirm its clinical applications in personalized 
medicine selection for clinicians. 
5 Conclusion 

In this study, we firstly constructed a GPRS that can serve as a 
promising tool for diagnosis and prognosis prediction, targeted 
prevention, and personalized medicine in patients with STS. 
Incorporating GPR-combined cellular landscape into the PPPM 
framework will provide a unique opportunity for clinical 
management and precise personal treatment. Additionally, we 
provided novel insights into the molecular mechanisms 
underlying the occurrence, development, and progression of STS 
from a multi-omics perspective. 
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