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Hematopoietic effects of
Fufang E’jiao Jiang revealed by
microbiome, metabolome and
transcriptome analyses:
a multi-omics strategy
Yueting Mo1, Xiyuan He1, Peixin Shi1, Yifei Ning2,3,
Mingmei Zhou1, Hao Cui2,3* and Ting Zhang1*

1Institute for Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 2Faculty of Life Science and Technology, Kunming University of
Science and Technology, Kunming, China, 3Laboratory of Sustainable Utilization of Panax
Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, China
Introduction: Fufang E'jiao Jiang has been extensively utilized to replenish qi and

nourish blood as the homology of medicine and food.

Methods: We analyzed the effects of FEJ on cyclophosphamide and

acetylphenylhydrazine-induced anemia mice through gut microbiome analysis,

fecal metabolomics, and transcriptome sequencing.

Results: FEJ markedly alleviated the anemia symptoms in the mice. FEJ markedly

alleviated the anemia symptoms caused by cyclophosphamide and

acetylphenylhydrazine induction. FEJ improved the gut microbiome imbalance

by inhibiting the proliferation of harmful bacteria Turicibacter, Akkermansia and

Tuzzerella. Fecal metabolomic data showed that FEJ regulated metabolic

disorders in anemia mice and was probably associated with L-leucine, L-

proline, glycine, phenylalanine, propanoic acid and butanoic acid.

Transcriptome analysis indicated the amelioration of anemia was

predominantly associated with the hematopoietic cell lineage, osteoclast

formation and B cell receptor signaling pathway. According to Spearman's

correlation analysis, there was a strong link between gut microbiota and

hematopoietic index, metabolites and genes.

Discussion: Our study supports the application of FEJ in anemia treatment.
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Introduction

Anemia is a prevalent disease seen in clinical settings that is

defined by a reduction in red blood cells (RBC) and hemoglobin

concentrations. It impacted up to one-third of the world’s population

(1). In traditional Chinese medicine theory, anemia is defined by

blood deficiency and represents a condition of organ malnutrition and

blood dysfunction. Patients or animals suffering from anemia

frequently face impaired hematopoietic function, peripheral blood

pancytopenia, diminished internal organ function, malnutrition, or

myelosuppression during severe illnesses (2). In clinical, two primary

strategies are employed to treat anemia: stimulating the production of

RBC and providing more iron to the bone marrow. However, these

methods are accompanied by negative effects. Severe cases may require

blood transfusions, which could potentially result in hemolysis or

heart failure (3). Accordingly, the development of safe and efficacious

strategies for treating anemia is a concern in the medical community.

Fufang E’jiao Jiang (FEJ) is a syrupmade fromAsini Corii Colla and

four food-medicine homology ingredients Ginseng Radix et Rhizoma

Rubra (Panax ginseng C.A.Mey.), Codonopsis Radix (Codonopsis

pilosula Nannf.), Crataegi Fructus (Crataegus pinnatifida Bunge.) and

Rehmanniae Radix Praeparata (Rehmannia glutinosa (Gaertn.) Libosch.

ex DC.) using modern processing and refining technology (4–9).

Complex chemical composition of FEJ showed common challenges,

including ambiguous bioactive components and unidentified

therapeutic targets. A total of 72 chemical ingredients in FEJ were

identified by HPLC–MS, including organic acids, flavonoids,

phenylethanoid glycosides, notoginsenosides and ginsenosides (10).

Oligosaccharides, which have significant immune-boosting effects,

were key constituents of FEJ, and 13 oligosaccharides identified via

ultra-performance liquid chromatograms combined with triple

quadrupole mass spectrometry (UPLC-QQQ-MS) (6). FEJ is

produced exclusively by Shandong Dong-E-E-Jiao Co., Ltd in Dong’e,

China. Its sales surpassed one billion Yuan in China in 2012. The

efficacy of FEJ is replenishing qi and nourishing blood (8) and it has

been clinically employed in the adjuvant treatment of anemia by way of

blood supplementation (6). In a myelosuppression mouse model,

treatment with FEJ promoted the restoration of bone marrow
Abbreviations: APH, acetylphenylhydrazine; BCA, bicinchonininc acid; BFU-E,

burst-forming unit-erythroid; BMNCs, bone marrow nucleated cells; b-TH, b-

thalassemia; CFU-GM, colony-forming unit granulocyte-monocyte; CGD, Chronic

granulomatosis; Chdh, Choline dehydrogenase; CTX, cyclophosphamide; DEGs,

differential expression genes; EPO, erythropoietin; FEJ, Fufang E’jiao Jiang; Gpx4,

glutathione peroxidase 4; Gss, glutathione synthetase; Gst, glutathione S-transferase;

Gstm5, glutathione S-transferase mu 5; Gys1,glycogen synthase 1;HGB, hemoglobin;

Hk2, hexokinase2;H&E, hematoxylin-eosin;HSCs, hematopoietic stem cells;HSPCs,

hematopoietic stem and progenitor cells; KM, Kunming; LDA, Linear Discriminant

Analysis; MDA, Malondialdehyde; Mgst2, Microsomal glutathione S-transferase 2;

Mks, megakaryocytes; NMDS, Non-metric multidimensional scaling analysis; OsM,

Oncostatin M; OTUs, operational taxonomic units; PCA, Principal component

analysis; PcoA, Principal coordinate analysis; PLT, platelets; RBC, red blood cells;

RP, red pulp; SCFAs, short-chain fatty acids; SOD, superoxide dismutase; Thpo,

thrombopoietin; TSCC, tongue squamous cell carcinoma; T-AOC, total antioxidant

capacity; WBC, white blood cells; WP, white pulp.
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hemopoietic activity by improving bone marrow hematopoietic niche,

preventing bone marrow nucleated cells (BMNCs) from apoptotic cell

death and stimulating the expressions of cytokines essential to

hematopoiesis (8). The percentage of hematopoietic stem cells and

the quantities of burst-forming unit-erythroid (BFU-E) and colony-

forming unit granulocyte-monocyte (CFU-GM) in BMNCs of mice

with myelosuppressive were significantly increased by FEJ

supplementation (11). Nonetheless, a systematic investigation of the

underlying molecular mechanism of FEJ’s hematopoietic effects has not

yet be conducted.

In light of the prominent efficacy of FEJ in the treatment of

anemia, this study aimed to elucidate the potential mechanism of

FEJ in alleviating anemia in mice induced by cyclophosphamide

(CTX) and acetylphenylhydrazine (APH), with an emphasis on the

role of gut microbiota, metabolites, and genes. The ability of FEJ to

ameliorate hematopoietic dysfunction was assessed, and

pathological analyses of bone and spleen tissues were performed.

Following the analysis of gut microbiota and fecal metabolites from

fecal samples, we proceeded to perform gene expression profiling of

the spleen. The findings of this study offered insights into the

pharmacological mechanisms of FEJ in regulating hematopoiesis.
Materials and methods

Material preparation

FEJ (No. 2208021) was provided by ShandongDong-E-E-Jiao Co.,

Ltd (Dong’e, China). The above plant names have been checked with

http://mpns.kew.org and http://www.worldfloraonline.org/taxon/

wfo-0000263606. Accessed on: 10 Jan 2025’. CTX and APH were

obtained from Aladdin Biochemical Technology Co., Ltd

(Shanghai, China). The ELISA kits for erythropoietin (EPO) were

acquired from Enzyme-linked Biotechnology Co., Ltd (Shanghai,

China). Kits for Malondialdehyde (MDA), superoxide dismutase

(SOD), total antioxidant capacity (T-AOC) and bicinchonininc acid

(BCA) were provided by Nanjing Jiancheng Bioengineering

Institute (Nanjing, China).

Twenty-four Kunming (KM) mice, consisting of equal numbers

of males and females, and weighing 18–22 g, were obtained from

Beijing Vital River Laboratory Animal Technology Co., Ltd.

(Beijing, China). The mice were maintained under standard

conditions with unlimited access to food and water (22°C ± 1°C

temperature and 12 h light/dark cycle) to allow acclimation to the

laboratory environment. The study received approval of the Animal

Studies Ethics Committee of Shanghai University of Traditional

Chinese Medicine (Ethical number: PZSHUTCM2302110002).
Animal experiment

Experimental design (Animal modeling and
feeding)

The mice were evenly distributed into three groups: the control

group, model group and FEJ group, with 8 mice in each group
frontiersin.org
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(Figure 1A). The model and FEJ groups, but not the control group,

received subcutaneous injections of APH at a dose of 20 mg/kg on

the first, third, fifth and seventh days, and intraperitoneal injections

of CTX at a dose of 40 mg/kg on the first to third days to induce

anemia (12). Subsequently, the control group and model group
Frontiers in Immunology 03
were gavaged with water, whereas the FEJ group was gavaged with

FEJ (8 mL/kg) last 12 days. FEJ is particularly popular for its

remarkable performance in tonifying blood. In our previous study,

we utilized it as a positive control and discovered that an 8 mL/kg

dose of FEJ significantly alleviated anemia (13, 14). Consequently,
FIGURE 1

Impact of FEJ on weight loss, organ injury, blood routine and hematopoiesis cytokine abnormalities in mice. (A) The process of the experiment.
(B) Body weight gain. (C) Thymus coefficient. (D) Spleen coefficient. (E) Liver coefficient. (F) Heart coefficient. (G) Lung coefficient. (H) Kidney
coefficient. (I) The level of RBC. (J) The level of HBG. (K) The level of HCT. (L) The level of MCHC. (M) The level of WBC. (N) The level of PLT.
(O) The level of EPO. Values are presented as mean ± SD (n = 8). **p < 0.01, ***p<0.001 and ****p < 0.0001 versus control group. #p < 0.05,
##p< 0.01 and ####p < 0.0001 versus model group.
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this dosage was still used in this study. After the final

administration, mice were positioned in a sterile frame for fecal

collection, and a minimum of three fresh feces particles were

gathered for subsequent analysis. The researcher collected blood

from the orbital sinus and reserved if for biochemical assays. The

mice were anesthesia with ether and euthanized by cervical

dislocation. All mice were dissected and thymus, spleen, liver,

heart, lung, and kidney tissues were washed in 0.9% normal saline

and weighed. The femur and portions of the spleen were preserved

in 4% paraformaldehyde. All other samples were quickly transferred

in −80°C for later use.

Body weight gain and organ indexes
Body weight gain was calculated using the formula: body weight

gain = the final weight (12th day of treatment) (g)- the initial weight (g).

The organ coefficient was computed using the formula: organ   coefficie

nt   (mg=g) = organ  wet  weight   (mg)=body  weight   (g) (15).

Routine blood test
The blood samples were obtained in tubes containing EDTA-K2

anticoagulant. The white blood cells (WBC), RBC, hemoglobin

(HGB) and platelets (PLT) were quantified in mice using Mindray

automatic veterinary blood cell analyzer (BC-30Vet) (16). The

remaining blood samples were utilized for additional testing.

Measurements of hematopoiesis related cytokine
in serum

To isolate the supernatant, blood samples were centrifuged at 3000

rpm for 10 minutes at 4°C (5415R, Eppendorf, Hamburg, Germany).

The serum was then analyzed for EPO levels using enzyme-linked

immunoassays at 450 nm, following the manufacturer’s

instructions (17).

Assessing oxidative stress factors in the liver
The liver tissue was homogenized and the T-AOC, SOD, and

MDA levels were analyzed using a commercial kit, following the

manufacturer’s instructions (18).

Bone histological changes
After decalcification, the femur was processed into paraffin-

embedded thin slices. These thin slices were stained with

hematoxylin-eosin (H&E) for the examination of the

histopathological changes within the bone marrow (15).
Spleen histological changes
The spleen was embedded in paraffin and thin slices of the

paraffin blocks were stained with H&E for the histological

examination (19). Additionally, paraffin spleen sections were

employed for immunohistochemical staining (20). The spleen

sections were trans-sectioned through incubation with 3%

hydrogen peroxide in methanol for 25 min, incubated with

primary antibodies overnight, incubated with a horseradish

peroxidase-conjugated secondary antibody, and stained with

peroxidase substrate DAB kit. Subsequently, sections were
Frontiers in Immunology 04
counterstained with hematoxylin before examination under light

microscopy. We analyzed the percentages of positive staining areas

using the ImageJ 2.15.1 software (https://imagej.net/software/fiji/).

Measurement of short-chain fatty acids levels
The levels of SCFAs in feces were determined using a method

adapted from a previous study (21). Briefly, a mixed standard stock

solution A was prepared in n-butanol, comprising acetic acid,

propionic acid, butyric acid, isobutyric acid, valeric acid,

isovaleric acid, hexanoic acid and isohexanoic acid (Sigma

Chemical Co., St. Louis, MO, USA). Stock solution B was

prepared with n-butanol and internal standard 2-ethylbutyric acid

(Sigma Chemical Co., St. Louis, MO, USA). Standard A and B

solutions were mixed and diluted with n-butanol into 7 gradient

concentrations of solutions. Then, feces (20 mg) were mixed with

500 mL 0.5% phosphoric acid water, ground and centrifuged at

13000 g for 15 min (Centrifuge 5430R, Eppendorf, Hamburg,

Germany). The supernatant (200 mL) was combined with 200 mL
of a 10 mg/mL 2-ethylbutyric acid solution in n-butanol, and then

centrifuged at 13000 g for 5 min. Samples were then analyzed using

a GC system (8890B-5977B GC/MSD, Agilent Technologies, CA,

USA) fitted with an HP-FFAP column (30 m × 0.32 mm × 0.25 μm,

Agilent, CA, USA). The operating conditions were as follows:

nitrogen as the carrier gas at a flow rate of 1mL/min. The

temperature was initially set to 80°C, then ramped up to 120°C at

a rate of 20°C/min, followed by an increase to 160°C at a rate of 5°C/

min, and held at 220°C for 3 minutes. The concentrations of SCFAs

were calculated using linear regression standard curve.

Microbiome analysis via 16S rRNA sequencing
The total bacterial DNA was extracted from the fecal samples

using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA,

U.S.). The V3-V4 hypervariable region of the 16S rRNA gene was

t a rge t ed for ampl ifica t ion wi th pr imer pa i r s 338F

(ACTCCTACGGGAGGCAGCAG) and 806R(GGACTACH

VGGGTWTCTAAT) (22), and performed on an ABI GeneAmp®

9700 PCR thermocycler (ABI, CA, USA). Sequencing was utilized

on the Illumina MiSeq PE300 platform (Illumina, San Diego, USA).

UPARSE 7.1 (23) clustered the optimized sequences into

operational taxonomic units (OTUs) at a 97% similarity level.

Bioinformatic analysis was conducted on the Majorbio Cloud

p la t f o rm (h t tp s : / / c loud .ma jo rb io . com) . Non-met r i c

multidimensional scaling analysis (NMDS) was conducted to

analyze differences in bacterial community composition at the

OTU level. A Linear Discriminant Analysis (LDA) score greater

than 3.5 was considered the distinguishing feature. Each group

comprised six samples.

Metabolomics analysis
The procedure for extracting fecal metabolites involved the

following steps: Weighing 100 mg of feces, mixing with 400 μL of a

1:1 methanol/water solution, homogenizing using a Tissue Grinder

(Tiss-24, Jingxin Industrial Development Co., Shanghai, China) and

subsequently centrifuging for 10 min at 4 °C and 13000rpm. 300 μL

mixture was added 10 μL of heptadecanoic acid methanol solution,
frontiersin.org
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dried under nitrogen and combined with 50 μL of methoxyl amine

hydrochloride pyridine solution for 90 minutes (24). After the

reaction, 50 μL BSTFA was added and the mixture was subjected

to a silicon alkylation reaction at 70°C for 1 hour. Finally, the

supernatant was collected for analysis.

Metabolites analysis was performed using an Agilent GC-MS

system equipped with an Agilent J&W DB-5ms Ultra Inert column

(30 m × 0.25 mm × 0.25 μm). Nitrogen served as the carrier gas at a

flow rate of 1 mL/min. The injection volume was 1 μL. The

temperature program began at 80°C, then ramped up to 120°C at

a rate of 20°C/min, followed by a further increase to 160°C at a rate

of 5°C/min, and held at 220°C for 3 minutes.

Experimental data were analyzed using the metaboanalyst 6.0

online platform. Statistical analyses, including Student’s t-test and

multivariate analysis of variance, were conducted. Metabolites with

a VIP score > 1 and a p -value < 0.05 were considered significantly

differentially expressed.

Gene expression profiling analysis
Spleen tissue RNA was extracted using the MJZol total RNA

extraction kit (Majorbio, Shanghai, China) following the provided

guidelines. The messenger RNA was then isolated through polyA

selection with oligo(dT) beads and fragmented. Next, double-

stranded cDNA was synthesized with the SuperScript double-

stranded cDNA synthesis kit (Invitrogen, CA) employing random

hexamer primers. The cDNA was processed for end-repair,

phosphorylation and adapter addition in line with library

construction protocol. Libraries were selected for 300 bp fragments

on 2% Low Range Ultra Agarose and then PCR amplified with

Phusion DNA polymerase (NEB) for 15 cycles. Libraries were

quantified with Qubit 4.0 and sequenced on the NovaSeq X Plus

platform(PE150). Reads underwent trimming and quality control

using fastp (25) and were aligned to reference genome HISAT2

software (26). StringTie was employed to assemble reads in a

reference-guided manner (27). DEGs (differential expression genes)

were identified by the transcripts per million reads (TPM) expression

analysis, with RSEM for gene quantification (28). DESeq2 was

applied for differential expression analysis (29), identifying DEGs

with |log2FC|≧1 and FDR<0.05 as significantly differentially

expressed. KEGG pathway analysis was performed using Python

scipy software at Bonferroni-corrected p-value < 0.05.

Statistical analysis
We used GraphPad prism 8.3.0 software for statistical analysis.

Results were expressed as mean ± SD, and statistical significance

was set at p < 0.05.
Results

Impact of FEJ on body weight, organ
indexes, peripheral blood cells and EPO

The model group exhibited a significant reduction in body

weight gain and thymus coefficient compared to the control group
Frontiers in Immunology 05
(p< 0.01, Figures 1B, C), and a significant increase in the coefficients

of spleen, liver, heart and lung (p< 0.01, Figures 1D–G,

Supplementary Figure S1). FEJ treatment showed a trend towards

enhancing body weight gain and thymus coefficient and improving

the swelling of spleen and liver (p < 0.05). However, FEJ had no

significant effects on the heart and lung coefficient (p < 0.05, Figure

1H). No significant difference in the kidney coefficient was observed

among the control, model and FEJ groups.

After 12 days treatment with FEJ, we determined the levels of

blood routine indicators (Figures 1I–N). The model group showed

significantly decreased levels of RBC, HGB, HCT and MCH (p <

0.01), and significantly increased levels of WBC and PLT (p < 0.01)

compared to the control group, confirming the successful

establishment of the anemic mouse model. Treatment with FEJ

significantly elevated the RBC, HGB, HCT and MCHC (p< 0.05)

and reduced the WBC (p< 0.01). Similarly, ELISA kits were used to

detect the level of EPO in serum. FEJ significantly ameliorated the

increase of EPO level in the model group (p<0.0001, Figure 1O).
Impact of FEJ on liver oxidative stress
markers

T-AOC, SOD and MDA levels in the liver serve as oxidative

stress indicators. The control and FEJ groups demonstrated

significantly higher levels of T-AOC and SOD compared to the

model group (Figures 2A, B). On the other hand, the MDA content

was significantly elevated in the model group compared to the

control and FEJ groups (Figure 2C).
Impact of FEJ on bone histological
features

The bone marrow is crucial for hematopoiesis in mice, serving

as active hematopoietic tissue (30), and the impact of FEJ on bone

marrow histopathology was assessed using H&E staining.

Compared with the control group, the model group exhibited a

significant abnormal proliferation and severe fatty degeneration of

the bone marrow cells, leading to increased adipocyte formation

and a subsequent decrease in erythroid, granulocytic and

megakaryocytic cell counts. However, the FEJ group displayed an

elevated bone marrow cellular density with plenty of hematopoietic

cells, and there was a significant decrease in the number of

adipocytes (Figure 2D).
Impact of FEJ on spleen histological
features

The spleen is also an active hematopoietic tissue (30). H&E

staining revealed distinct red pulp (RP) and white pulp (WP) in the

spleen of the control group, with clear and obvious boundaries, and

an apparent splenic trabecular structure. In contrast, the RP and

WP were not clearly defined, and the WP was atrophied in the
frontiersin.org
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model group. FEJ treatment led to a clearer boundary between the

RP and WP and an expansion of the WP’s marginal area

(Figure 2E). Bcl-2 and Bax are important proteins in regulating

cell apoptosis. We observed that the expression of Bcl-2 decreased
Frontiers in Immunology 06
significantly (p < 0.01), the expression of Bax increased significantly

(p < 0.05) and the ratio of Bax to Bcl-2 increased (p < 0.05) in the

model group. Although FEJ administration was not able to restore

the ratio of Bax to Bcl-2(p > 0.05), it significantly enhanced the
FIGURE 2

FEJ alleviated liver oxidative stress and promoted the recovery of bone and spleen tissue damage. The level of T-AOC (A), SOD (B) and MDA (C) in
liver. Values are presented as mean ± SD (n = 6). Pathological sections of bone marrow (D) and spleen (E). (400×, scale bar: 100 mm).
Immunohistochemical staining for Bcl-2 (F) and Bax (G) of spleen. (400×, scale bar: 100 mm). The percentages of positive staining area of
immunohistochemical staining for Bcl-2 (H), Bax (I) and Bax/Bcl-2 (J). The black arrow indicates myeloid cell adipocytosis in (D). In (E) red pulp is
denoted by RP, white pulp is denoted by WP. Values are presented as mean ± SD (n = 3). *p < 0.05, **p < 0.01 and ***p < 0.001 versus control
group. #p < 0.05 versus model group.
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expression of Bcl-2 (p < 0.05) and significantly reduced the

expression of Bax significantly (p < 0.05) compared to the model

group (Figures 2F–J).
Impact of FEJ on the SCFAs in the feces

Acetic acid, propionic acid, isobutyric acid, butanoic acid, isovaleric

acid, valeric acid,isohexanoic acid, hexanoic acid and total SCFAs levels

were significantly decreased in the model groups compared to the
Frontiers in Immunology 07
control group (p < 0.05) (Figures 3A–I). Additionally, the FEJ group

exhibited higher production of SCFAs compared to the model group.

The most significantly abundant SCFAs were found to be propanoic

acid, butanoic acids and total SCFAs(p < 0.05).
Impact of FEJ on gut microbiome

The rank-abundance curves and the rarefaction curves (Sobs

index on OTU level) exhibited a flat profile (Figures 4A, B),
FIGURE 3

FEJ promoted the production of SCFAs in feces contents. (A) Acetic acid. (B) Propionic acid. (C) Isobutyric acid. (D) Butanoic acid. (E) Isovaleric acid.
(F) Valeric acid. (G) Isohexanoic acid. (H) Hexanoic acid and (I) Total SCFAs. Values were expressed as means ± SD (n=6). *p< 0.05, **p < 0.01 and
***p< 0.001 versus control group. #p < 0.05 versus model group.
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suggesting that the sequencing volume was reasonable and that all

the types were successfully recovered. In the control, model, and FEJ

groups, we identified a total of 1266, 1683 and 1607 OTUs,

respectively, with 267, 573 and 464 unique OTUs identified in

each group (Figure 4C). Principal coordinate analysis (PCoA)

demonstrated that the gut bacterial community in the FEJ group
Frontiers in Immunology 08
(orange) closely resembled the control group (red). In contrast, the

model group (blue) exhibited a more pronounced differentiation

from the control group (Figure 4D).

Figure 4E illustrated a histogram of species abundance,

highlighting that the predominant intestinal bacteria at the

phylum level consisted mainly of Bacteroidota, Firmicutes,
FIGURE 4

Impact of FEJ on gut microbiota (n= 6). (A) Rarefaction curves. (B) Rank abundance curves. (C) OTU numbers of Venn diagram (D) NMDS analysis at
OTU level. (E) Relative abundance of gut microbiota composition at phylum level. (F) Relative abundance of gut microbiota composition at genus
level. (G) LEfSe analysis with Cladogram and (H) LDA score (LDA > 3.5). *p< 0.05, **p < 0.01 and ***p< 0.001 indicated significant correlation.
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Patescibacteria , Verrucomicrobiota , Proteobacteria and

Desulfobacterota, with Bacteroidota being the most dominant

bacteria. Among them, the model group significantly down-

regulated Bacteroidota, while up-regulated Firmicutes and

Verrucomicrobiota. Conversely, FEJ treatment counteracted these

changes, up-regulating Bacteroidota and down-regulating

Firmicutes and Verrucomicrobiota.

As shown in Figure 4F, the distribution of genus level of intestinal

bacteria was made up primarily of norank_f_Muribaculaceae,

Lactobacillus, Bacteroides, Lachnospiraceae_NK4A136_group,

Alloprevotella , norank_f_norank_o_Clostridia_UCG-014 ,

Candidatus_Saccharimonas, Faecalibaculum, Turicibacter and

Akkermansia . However, the abundance of Turicibacter ,

Akkermansia, Romboutsia, Family_XIII_UCG-001, UCG-009,

Negativibacillus, Tuzzerella, unclassified_f_Peptostreptococcaceae,

norank_f_Erysipelatoclostridiaceae and unclassified_p_Firmicutes

significantly increased in the model group compared to the control

group (p < 0.05). Following FEJ treatment, there was a notable

decrease in the abundance of Family_XIII_ UCG-001, UCG-009,

Negativibacillus and Tuzzerella(p < 0.05).

We used LEfSe analysis to determine the classified bacterial

taxas that were altered. The LDA scores and taxonomic diagram are

displayed in Figures 4G, H. Twenty-seven distinct classes of taxa

were identified, exhibiting varying degrees of richnesses among

three groups. C_Bacteroidia were the dominant microbiota in the

control group, p_Firmicutes and g_Turicibacter were the dominant

microbiota in the model group and g_Faecalibaculum was the

primary microbiota in the FEJ group. Overall, these findings

indicate that FEJ treatment reversed the composition and

structure of the gut microbiota of CTX and APH-induced mice.
Impact of FEJ on fecal metabolome

Metabolites in fecal samples were analyzed from the control,

model group and FEJ groups in order to overall assess the

metabolomics regulation of FEJ intake in anemic mice. Principal

component analysis (PCA) clearly indicated a trend of separation

between the control group and the model group, suggesting

differences in metabolites between the two groups. Additionally,

the spatial distances of the FEJ group were closer to the control

compared to the model group (Figure 5A). OPLS-DA based S-plot

visualization is often used to explore different metabolites between

groups and assess integrating VIP (>1), p (<0.05). The results

demonstrated that the groups were well grouped as shown in

Figures 5B–E. A permutation test was conducted on the model to

prevent overfitting and the results indicated that the model was

applicable (Figures 5F, G). Following a comparison with the

database, a total of 30 and 16 differential metabolites were

identified between the model and FEJ groups, respectively

(Table 1). The variation of all differential metabolites in the two

comparison groups (the control group compared with the model

group and the model group compared with the FEJ group) was

displayed in Figure 5H. The two comparison groups shared 15

differential metabolites. After FEJ treatment of anemic mice, five
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metabolites were upregulated, such as ethanedioic acid, D-

glucopyranoside, octadecanoic acid, sebacic acid and isoquinoline,

whereas ten metabolites were downregulated, such as L-valine, L-

leucine, L-proline, glycine, threonine, 2-piperidone, ornithine,

phenylalanine, pyrimidinetrione and L-tyrosine.

Subsequently, the significant metabolites were conducted for

metabolic pathway analysis via metaboanalyst. Seven primary

altered pathways were identified in the model vs. control/FEJ

groups (Figure 5I, impact value > 0.1) as follows: phenylalanine,

tyrosine and tryptophan biosynthesis, glycine, serine and threonine

metabolism, phenylalanine metabolism, starch and sucrose

metabolism, arginine and proline metabolism, glyoxylate and

dicarboxylate metabolism and tyrosine metabolism.
Impact of FEJ on spleen transcriptome

We performed transcriptome analysis on spleen tissues from

the control, model and FEJ groups to interpret the effects of FEJ on

anemia mice. This analysis revealed a total of 8679 DEGs between

the model group and the control group, and 2059 DEGs in the FEJ

group compared to the model group (Figures 6A, B). PCA revealed

distinct clusters among the groups. The model group was

distinguished from the control group, and the FEJ group showed

intermediate variability between the control and model groups in

Figure 6C. The Venn diagram and cluster analysis heat map

revealed the restoration of 1297 DEGs after FEJ treatment, which

were previously skewed by CTX/APH (Figures 6D, E). Based on the

KEGG pathways classification, six, six, three, two, two and one

pathways were associated with human diseases, organismal systems,

cellular processes, environmental information processing, genetic

information processing and metabolism pathways, respectively

(Figure 6F). The KEGG enrichment analysis revealed that the

DEGs reversing by FEJ were found significantly enriched in Fc

gamma R-mediated phagocytosis, NF-kB signaling pathway,

hematopoietic cell lineage, GnRH secretion, RNA polymerase,

osteoclast differentiation and multiple immune-related signaling

pathways (B cell receptor signaling pathway, leukocyte

transendothelial migration, natural killer cell mediated

cytotox ic i ty , chemokine s ignal ing pathway, pr imary

immunodeficiency and T cell receptor signaling pathway), etc (p

< 0.05, Figure 6G).
Analyses of the microbiome, metabolome
and transcriptome correlations

Analysis of correlations between hematopoietic
index and microbiome

Spearman’s correlation analysis was conducted to explore the

connection between the hematopoietic-related traits and the genus

level of the intestinal flora (Figure 7A). The richness of above

mentioned ten kinds of different gut microbiota exhibited positive

correlations with WBC, PLT, EPO and MDA while negative

correlation with SOD, HGB, T-AOC, RBC, HCT and MCHC.
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FIGURE 5

Impact of FEJ on fecal metabolic profile in anemia mice(n = 6). (A) The PCA score plots among all groups (R2X = 0.657, Q2 = 0.381). The OPLS-DA
score plots between (B) the control and model groups (R2Y =1, Q2 = 0.879), (C) the model and FEJ groups (R2Y = 0.974, Q2 = 0.403). The
permutation test analysis between (D) the control and model groups, (E) the model and FEJ groups. Score plot from OPLS-DA model classifying (F)
the control and model groups, (G) the model and FEJ groups. (H) The heatmap of all the differential metabolites. (I) Summary of pathway analysis in
the fecal. a-phenylalanine, tyrosine and tryptophan biosynthesis; b-phenylalanine metabolism; c-starch and sucrose metabolism; d-glycine, serine
and threonine metabolism; e-arginine and proline metabolism; f-tyrosine metabolism; g-glyoxylate and dicarboxylate metabolism; KEGG, Kyoto
Encyclopedia of Genes and Genomes.
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Analysis of correlations between microbiome and
metabolome

FEJ influenced the gut microbiota composition and metabolic

profiles, with Spearman’s correlation analysis revealing correlations

between 15 significantly changed fecal metabolites and 10 gut

microbiota at the genus level (Figure 7B). L-valine, L-leucine,
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phenylalanine, pyrimidinetrione, ornithine, 2-piperidone,

threonine, L-tyrosine, L-proline and glycine were significantly

positively correlated with 7, 8, 8, 5, 5, 5, 5, 7, 5 and 6 gut

microbiota, respectively. Ethanedioic acid, octadecanoic acid,

isoquinoline, D-glucopyranoside and sebacic acid were negatively

correlated with 1, 8, 7, 2 and 5 gut microbiota.
FIGURE 6

Impact of FEJ on spleen transcriptome profile in anemia mice. Volcano plots of differentially expressed genes in (A) the control group vs model
group, (B) the model group vs FEJ group (DEGs, n = 3 mice per group). (C) PCA among the three groups. (D)Venn diagram of up-regulated and
down-regulated DEGs among the three groups. (E) Heatmap showing the cluster analysis of DEGs. (F) Functional annotation of DEGs among the
three groups. (G) KEGG pathway enrichment analysis of DEGs among the three groups. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Furthermore, the relationship between gut microbial

composition and SCFAs production was also investigated. The

concentrations of acetic acid, propanoic acid, isobutyric acid,

butanoic acid, isovaleric acid, valeric acid, isohexanoic acid,

hexanoic acid and total SCFAs were found to have a negative
Frontiers in Immunology 12
correlation with at least three representatives of fecal Akkermansia,

Unclassified_p_Firmicutes, Family_XIII_UCG-001, Romboutsia,

Un c l a s s i fi e d _ f _ P e p t o s t r e p t o c o c c a c e a e , No r a n k _ f _

Erysipelatoclostridiaceae, Tuzzerella, UCG-009, Negativibacillus

and Turicibacter.
FIGURE 7

Associations amongst hematopoietic-related indicators, microbiome, metabolome and transcriptome influenced by FEJ. (A) Correlation heatmap
between hematopoietic-related indicators and fecal bacteria at genus level. (B) Correlation heatmap between metabolites and fecal bacteria at
genus level. (C) Correlation heatmap of genus-level fecal bacteria with top 20 DEGs in anemia-related pathways. (D) Combined metabolome and
transcriptome analysis. (E) Schematic of FEJ resistance to the mechanism of CTX and APH-induced anemia. The color of each square represents
negative correlation (blue) and positive correlation(red). Significance levels are indicated as *p < 0.05, **p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1561477
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mo et al. 10.3389/fimmu.2025.1561477
Analysis of correlations between microbiome and
transcriptome

According to padjust value < 0.05, we screened out hematopoietic-

related functional pathways, including B cell receptor signaling

pathway, NF-kB signaling pathway, leukocyte transendothelial

migration, hematopoietic cell lineage, T cell receptor signaling

pathway and osteoclast differentiation. The top 20 DEGs were

related to hematopoiesis pathways based on the Log2 FC (the FEJ

group vs. the model group). Then, Spearman’s correlation analysis was

conducted to examine the gut microbiota and the top 20 DEGs

involved in hematopoietic pathways. As depicted in Figure 7C,

Akkermansia, Romboutsia, Turicibacter, Family_XIII_UCG-001 and

Tuzzerellawere notably associated with KEGG pathways implicated in

anemia. For instance, Romboutsia, Turicibacter and Tuzzerella showed

a significantly negative correlation with Edaradd, Ncf2, Cd19, Cd22,

I15ra, Fcer2a,Ncf1, and Plcg2. Additionally,Akkermansia, Romboutsia

and Turicibacter exhibited significantly negative correlations with Pirb

and Vav3. Moreover, Romboutsia and Turicibacter were significantly

negatively correlated with Atm, and Family_XIII_UCG-001 was

negatively correlated with Edaradd, Ncf2, and Plcg2.

Integrative analysis of metabolome and
transcriptome

An integrative analysis of the transcriptome and metabolome

was carried out to investigate the links between DEGs and

metabolites. Figure 7D illustrated that 304 KEGG pathways were

altered at the transcriptional level and 19 at the metabolome level. It

was worth mentioning that 14 KEGG pathways were affected in

both, among which nine pathways were associated with anemia,
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namely, starch and sucrose metabolism; valine, leucine and

isoleucine biosynthesis; glutathione metabolism; arginine and

proline metabolism; porphyrin metabolism; glycine, serine and

threonine metabolism; phenylalanine metabolism; pantothenate

and CoA biosynthesis; and tyrosine metabolism. Starch and

sucrose metabolism belongs to carbohydrate metabolism. Valine,

leucine and isoleucine biosynthesis, glutathione metabolism,

arginine and proline metabolism, glycine, serine and threonine

metabolism, phenylalanine metabolism and tyrosine metabolism

belong to amino acid metabolism. Porphyrin metabolism and

pantothenate and CoA biosynthesis belong to the metabolism of

cofactors and vitamins.
Discussion

The global burden of anemia is considerable, accounting for 8.8%

of disability from all conditions (31). Anemia increases in prevalence

with increasing age and frailty (32). Even without underlying health

conditions, mild anemia is associated with impaired functional

capacity, reduced physical performance and a diminished quality of

life (33). People with anemia exhibit different traits from normal

individuals, including body weight, spleen, liver, hematopoietic

cytokines, fecal microbes, host genes and metabolites (34, 35). We

observed that FEJ had beneficial effects on anemia induced by CTX

and APH in mice and investigated its antianemia mechanism through

microbiome, metabolome, and transcriptome analyses.

After modeling, the anemia mice exhibited a poor appearance,

including easily shedding fluffy hairs, pale ears, noses, faces and feet,
TABLE 1 Differentia metabolites among the control group, model group, and FEJ group.

NO Metabolites Formula RT (min) m/z
p(Con
vs Mod)

VIP(Con
vs Mod)

Trend(Con
vs Mod)

Trend (Mod
vs FEJ)

1 ethanedioic acid C2H2O4 11.16 73.1 0.029 1.2300 ↓* ↑*

2 L-valine C5H11NO2 12.86 145.1 0.002 1.8429 ↑** ↓**

3 L-leucine C6H13NO2 13.98 159.1 0.002 1.6967 ↑** ↓*

4 L-proline C5H9NO2 14.50 142.0 0.011 1.4305 ↑* ↓*

5 glycine C2H5NO2 14.64 174.0 0.000 1.9300 ↑**** ↓**

6 threonine C4H9NO3 15.92 117.0 0.002 1.5396 ↑** ↓*

7 2-piperidone C5H9NO 17.02 128.0 0.000 1.4375 ↑**** ↓*

8 ornithine C5H12N2O2 19.09 142.0 0.004 1.5736 ↑** ↓*

9 phenylalanine C9H11NO2 19.28 219.0 0.000 1.9824 ↑**** ↓**

10 pyrimidinetrione C4H4N2O3 21.46 256.1 0.005 1.8164 ↑** ↓*

11 D-glucopyranoside C6H12O6 21.70 204.0 0.014 1.1096 ↓** ↑*

12 L-tyrosine C9H11NO3 22.68 219.0 0.003 1.5188 ↑** ↓*

13 octadecanoic acid C18H36O2 25.91 73.1 0.000 1.8535 ↓**** ↑*

14 sebacic acid C10H18O4 28.05 331.1 0.022 1.5156 ↓* ↑*

15 isoquinoline C9H7N 30.39 192.0 0.000 2.3461 ↓**** ↑**
*p < 0.05, **p < 0.01 and ****p < 0.0001 indicated significant correlation. VIP value was obtained from the OPLS-DA model.
The symbol ↑ (FC > 1) up or ↓ (FC < 1) down arrows represent the relatively increased or decreased levels of the metabolites, respectively.
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sleepiness, mobility retardation and emaciation. FEJ could

markedly reverse the weight loss and appearance caused by

anemia modeling. The blood routine data revealed that the

peripheral RBC, HGB, HCT and MCHC of the model mice were

decreased significantly, which are hallmark indicators of anemia.

Meanwhile, WBC counts in the model group were higher than in

the control group, indicating a compensatory leukocytosis triggered

by CTX and APH (36). After treatment with FEJ, the peripheral

blood cell count also showed a significant return to normal values.

EPO is a hematopoietic growth factor which regulates blood cell

production (37), mainly stimulating RBC production. EPO

secretion generally helps to maintain normal levels of RBC and

HGB for effective oxygen delivery to body (38). In regenerative

anemia, elevated EPO levels respond to decreased HGB levels,

reflecting a loss of erythrocytes due to hemolysis or bleeding (39).

In our investigation, the EPO concentrations of serum samples in

the model group were higher than in the control group, but

decreased significantly with FEJ intervention, suggesting that FEJ

may ameliorate hematopoietic damage by regulating EPO

production. These findings implied that FEJ may facilitate

hematopoietic rehabilitation in the model mice, which confirmed

its traditional efficacy of tonifying blood.

It has been demonstrated that APH and CTX can impair the

body’s antioxidant system, reducing its capacity for oxidative stress

(40). T-AOC and SOD serve as pivotal indicators of antioxidant

capacity. A dysregulation of oxidative stress response results in

inadequate antioxidant capacity and lipid peroxidation, ultimately

increasing the lipid peroxidation marker MDA, further aggravating

bodily injury (41). FEJ increased the T-AOC and SOD levels in the

liver while reducing MDA levels, indicating that FEJ enhanced

antioxidant capacity in anemia mice.

The bone marrow has hematopoietic and immune defense

functions, containing hematopoietic cells at various maturation

stages (42). CTX can disrupt the blood-forming microenvironment,

leading to inhibition of bone marrow hematopoiesis (15). FEJ could

alleviate the severe damage of bone marrow in the histopathological

lesions of the anemia model by decreasing adipocyte numbers and

increasing hematopoietic cell counts in the bone marrow.

The thymus serves as a pivotal lymphoid organ responsible for the

generation of T cells, which are essential for regulating both cellular

and humoral immunity (43). The spleen is a critical organ for

hematopoiesis, immunity and clearance of particulate matter from

the blood, and its size and constituents are altered by anemia. The

degrees of spleen enlargement are diagnostic features for anemia (44–

47). Notably, FEJ successfully reversed the abnormalities in the size of

the spleen and thymus. Moreover, FEJ was capable of restoring the

spleen’s structural integrity to normal and facilitating the recovery of

splenic function. Bax and Bcl-2 are apoptosis regulatory proteins. Bcl-

2 can protect cells from mitochondrial damage and inhibit apoptosis,

while Bax can increase mitochondrial membrane permeability,

thereby promoting cell apoptosis (48). In the present investigation,

apoptotic spleen cells and Bax expression were significantly increased

and Bcl-2 expression was decreased in the model group. Treatment

with FEJ notably normalized Bcl-2 and Bax expression, curtailing
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spleen cell apoptosis. Collectively, these observations imply that FEJ

may promote the recovery of hematopoietic and immune function.

SCFAs, which are predominantly produced by the gut

microbiome through the fermentation of complex carbohydrates,

play a crucial role in maintaining intestinal homeostasis and barrier

function (49). Acetic acid, propionic acid and butyric acids are the

most abundant SCFAs. Anemic patients exhibit reduced SCFAs

concentrations in feces or serum due to the impaired synthesis of

SCFAs. Butyrate and supplementation with butyrate can restore

iron metabolism to ameliorate anemia (50). Additionally,

propionate can modulate the differentiation of bone marrow

hematopoietic cells and effectively combat iron deficiency anemia

(51). In this research, the concentrations of propanoic acid,

butanoic acid and total SCFAs in fecal samples treated with FEJ

were markedly elevated compared to those in the model group,

suggesting that FEJ improved anemia by increasing the

concentration of SCFAs.

Compared with the control group, some pathogenic bacteria

exhibited significant changes in the model group, such as

Turicibacter, Akkermansia, Romboutsia, Desulfobacterota,

Negativibacillus and Erysipelotrichaceae. FEJ modulated the

composition of the gut microbiota in anemia mice at the genus

level, significantly decreasing the abundance of genera such as

Family_XIII_UCG-001, UCG-009, Negativibacillus and Tuzzerella.

Turicibacter, related to inflammation, has been linked to intestinal

barrier disruption upon its elevation (52). Akkermansia was

previously identified as a bacterium with probiotic properties and

a health marker in healthy individuals. Multiple studies in vivo

revealed its critical role in modulating inflammation, enhancing

immune function, maintaining energy homeostasis, inhibiting

pathogenic microbes, improving metabolic disorders, suppressing

tumors, regulating autoimmune responses and alleviating

psychological disorders. Clinical observations indicated a reduced

abundance of Akkermansia in patients with diabetes, obesity,

intestinal disorders and metabolic diseases compared to healthy

individuals (53). However, other studies showed adverse effects

associated with elevated abundance of A. muciniphila, including on

the induction of Parkinson’s disease and ulcerative colitis (54).

Additionally, the pathobionts Akkermansia expanded in the mice

with severe anemia and monocytopenia (55), and overcolonization

of Akkermansia was found to exacerbate intestinal diseases through

disrupting the intestinal barrier by consuming excessive mucin (56).

The abundance ofA.muciniphila significantly increased in 4-day fasted

Syrian hamsters and 30-day fasted Burmese pythons, associated with

dietary iron inadequate (57, 58). This mucin-degrading bacteria gained a

competitive advantage during nutrient deprivation due to its ability to

utilize mucin as a constant nutrient source. Host mucus production and

secretion were correlated with dietary iron content. Furthermore, A.

muciniphila exhibited advantage for growth in vehicle-treated mice with

iron-deficiency anemia (IDA) induced by an iron-deficient diet. The study

hypothesized that IV iron treatment elevated plasma iron levels, providing

luminal iron source to other gut microbes and thereby reducing A.

muciniphila abundance in iron-supplemented groups (59). These

contradictory findings highlight the need for comprehensive
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investigations to validate the characteristics of Akkermansia. Additionally,

Romboutsia proliferates in gastrointestinal disorders, including irritable

bowel syndrome, and its levels is positively correlated with pro-

inflammatory cytokines, such as TNF (60). The strain Desulfovibrio

desulfuricans in the phylum Desulfobacterota can exacerbate intestinal

permeability and boost systemic inflammation when administered orally

(61, 62). Mice with obesity-related disorders have a high content of

Negativibacillus in cecal (63). Erysipelotrichaceae strains are associated

with colitogenic effects (64). The abundance of Family_XIII_UCG-001

increases when inflammation occurs (65). The increased risk of disease is

positively correlatedwithUCG-009 abundance (66).Tuzzerella is associated

with the development of IBD, as its upregulation can promote an

inflammatory response and increase intestinal permeability (67).

Consuming polystyrene microplastics can cause liver damage, leading to

an increase in pathogenic Tuzzerella (67, 68). DHA-enriched

phosphatidylcholine alleviate NAFLD by improving hepatic oxidative

stress (MDA, SOD) and reducing the abundance of Tuzzerella (69).

In this study, Spearman’s correlation analysis was conducted to

examine the relationship between gut microbiota and

hematopoietic indicators. Akkermansia and Tuzzerella showed

significant positive correlations with WBC, PLT, EPO and

significant negative correlations with HGB, RBC, HCT and

MCHC. In addition, a positive correlation was found between

Tuzzerella and MDA, but a negative correlation was found

between Tuzzerella and other oxidative stress indicators(T-AOC

and SOD). The results suggested that Akkermansia and Tuzzerella

may be potential markers for improving hematopoietic function.

Therefore, FEJ may ameliorate anemia by inhibiting the

proliferation of harmful bacteria and by modulating the structure

of gut microbiota, thereby controlling inflammation, intestinal

barrier and liver oxidative stress in mice.

Fecal metabolites include own metabolites of the host and the

metabolites of gut microbiota, which can reveal the activity of

microbial communities and their symbiotic relationship with the

host. Fecal metabolomics based on GC-MS technology has been

applied on the therapeutic effect of FEJ in CTX and APH-induced

anemic mice for the first time in our study. The fecal metabolomics

profile revealed a disorder in amino acid metabolism in the model

group, predominantly affecting neutral and acidic amino acids with

a polyanionic group structure. The presence of the negative ion

group exerts a profound influence on the oxygen-binding capacity

of Hb, facilitating its linkage with dextran (70). The elevated valine

level in anemia rats reflects liver failure due to the usage of APH

(70). Generally, valine and leucine collaborate to support normal

body growth, assist in tissue repair, regulate blood sugar, and supply

energy to the body (71). Moreover, the liver antioxidant activity is

disrupted in anemia mice induced with CTX and APH, which could

be related to the elevated glycine level (72). In addition, glycine

plays a role in regulating serum iron and accelerating serum protein

synthesis. Threonine has the function of enhancing immunity. It is

reported that Angelica sinensis exerted blood enrichment by

decreasing abnormally elevated glycine and threonine levels (73).

FEJ could significantly decrease glycine and threonine, speculating

that the FEJ nourished blood by regulating glycine, serine and
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threonine metabolism. Phenylalanine is an essential aromatic

amino acid, and abnormally high levels of plasma phenylalanine

in patients with severe aplastic anemia may cause bone marrow and

hematopoietic stem cell injury (74). A damaged liver can’t

catabolize phenylalanine and tyrosine, leading to elevated

concentrations of them in individuals with liver disease (75). FEJ

influenced the metabolic pathways of phenylalanine, tyrosine and

tryptophan biosynthesis, in line with previous reports (76). By

regulating the concentrations of these amino acids, FEJ

potentially facilitated hemoglobin’s oxygen affinity, enhanced liver

antioxidant activity, and improved the cellular microenvironment

involved in anemia, suggesting hepatoprotective effects and

hematopoietic support. Moreover, proline and ornithine were

significantly different metabolites between the model group and

the FEJ group, with their enrichment noted in the arginine and

proline metabolism pathway. Arginine is capable of biosynthesizing

both proline and ornithine (77, 78). Proline promotes the formation

of osteoblastogenesis. It is speculated that FEJ regulated the

formation and function of osteoblasts by participating in arginine

and proline metabolism pathway. Methyl a-D-glucopyranoside,
which has demonstrated a strong binding capacity to hemoglobin

E in molecular docking studies, is a potential drug candidate for

deficient hemoglobin synthesis in b-thalassemia (b-TH) (79).

Octadecanoic acid, a beneficial saturated fatty acid, helps to

maintain membrane dynamics. Low levels of octadecanoic acid

can weaken the RBC membrane. Starch and sucrose metabolism

along with dicarboxylate metabolism altered in b-TH patients (80),

which is consistent with our findings.

In the correlation analysis, UCG-009, Family_XIII_UCG-001,

Tuzzerella andNegativibacillus was found to be positively correlated

with the levels of L-leucine, phenylalanine, L-proline and glycine

and negatively correlated with the levels of octadecanoic acid.

Anemia and blood deficiency are linked to a spectrum of

metabolic disturbances including amino acid metabolism (16, 81,

82). These results suggested that FEJ may regulate phenylalanine

metabolism, glycine, serine, and threonine metabolism, arginine

and proline metabolism, as well as octadecanoic acid in anemic

mice by influencing these gut microbiota. Turicibacter, Tuzzerella,

Negativibacillus and Romboutsia were found to be significantly

negatively correlated with propanoic acid and butanoic acid. Gut

dysbiosis inhibited the production of SCFAs in thalassemia mice

(83). The increase in the harmful bacteria Turicibacter, Tuzzerella,

Negativibacillus and Romboutsia disrupted a balance of gut flora,

resulting in decreased SCFAs content (84–88). SCFAs and anemia-

related metabolic pathways interact closely with intestinal flora (89).

The relative abundance of Tuzzerella and Negativibacillus were

upregulated in anemia mice and FEJ treatment could significantly

restore their abundance to normal levels. FEJ may alleviate anemia

by down-regulating Tuzzerella and Negativibacillus, thereby

promoting the production of SCFAs. The changes in gut

microbiota induced by FEJ were likely to cause corresponding

variations in metabolism, which emphasized the role of FEJ in

modulating intestinal metabolism and maintaining gut microbiota

homeostasis in anemic mice. Especially, targeted metabolomics of
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SCFAs based on GC-MS and 16S rRNA sequencing combining with

Spearman’s correlation analysis of hematopoietic indices were

firstly empolied to find potential targets.

A previous study showed that the nourishing blood

mechanisms of E’jiao in bone marrow cells, as revealed via RNA

sequencing in a 5-fluorouracil-induced myelosuppression mouse

model, were associated with hematopoietic cell lineage, osteoclast

differentiation, T cell receptor signaling pathways and NF-kB
signaling pathways, etc (90). Spleen is one of the primary organs

and is most susceptible to anemia. Spleen dysfunction is closely

linked to blood deficiency and immune dysregulation. The

accumulated bone marrow progenitor cells and RBC can induce

splenic enlargement, exacerbating anemic symptoms (91).

However, no RNA-seq-based study has been used in the

therapeutic effect of FEJ on spleen function in CTX and APH-

induced anemic mice. Among the in spleen pathways modulated by

FEJ treatment, the B cell receptor signaling pathway stood out,

involving Plcg2 and Vav3. The knockdown Plcg2 in megakaryocytes

(Mks) reduces thrombopoietin (Thpo) expression, leading to

decreased bone marrow hematopoietic stem cells (HSCs)

quiescence and repopulation potential, as well as extramedullary

hematopoiesis (92). Vav3 is critical for B and T cells development

and osteoclast function (93). FEJ also regulated the NF-kB signaling

pathway, including Edaradd, Card10 and Atm. Edaradd

knockdown in tongue squamous cell carcinoma (TSCC) cells

reduces proliferation and induces apoptosis (94), while Atm

deficiency disrupts hematopoiesis and reduces myeloid and

lymphoid hematopoie t ic ce l l s in zebrafish (95, 96) .

Transcriptomic data showed FEJ significantly modulated

hematopoietic cell lineage biomarkers (Cd19, Cd22, Il5ra, Fcer2a,

Cd33 and Csf2ra), which are pivotal for hematopoietic cells

maturation and specialization (97, 98). Cd19 promotes B

lymphocyte maturation and activation (99), while Cd22 negatively

regulates B-cell signaling pathways (100, 101). Il5ra and Fcer2a

promote eosinophil development and neutrophil apoptosis,

respectively (102, 103). FEJ also regulated the osteoclast

formation including Lilrb4a, Ncf2, Ncf1, Pira12, Pira1, Lilra6 and

Pirb. Endochondral ossification is tightly associated with the

generation of the hematopoietic stem cell in bone marrow (104).

Ncf2 indirectly promotes osteoclast differentiation (105), and

mutations in Ncf2 or Ncf1 are correlated with chronic

granulomatosis (CGD), a genetic disorder often accompanied by

anemia (106). Pirb supports the stemness of hematopoietic stem

and progenitor cells (HSPCs) in hematopoietic organs (107). The

FEJ group restored EPO levels and OsM expression, potentially

through modulation of hematopoietic cell lines and osteoclastic

bone marrow. Elevated EPO levels represent the physiological

response to anemia (108). Animals lacking the Oncostatin M

(OsM) receptor suffer from anemia (109, 110) and EPO

stimulation activates OsM in erythroblasts, thereby stimulating

osteoclast differentiation (108, 111, 112).

The Spearman’s correlation analysis revealed significant negative

correlations between intestinal flora including Akkermansia,

Romboutsia, Turicibacter, Family_XIII_UCG-001 and Tuzzerella,

and biomarker genes in B cell receptor signaling pathway, NF-kB
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signaling pathway, hematopoietic cell lineage and osteoclast

differentiation. Benzene exposure deregulates the B cell receptor

signaling pathway by down-regulating CD22, inhibiting NF-kB
activation, causing an oxidative stress imbalance, thereby ultimately

inhibiting spleen cell proliferation and promoting spleen cell

apoptosis (113). It was reported that decreased Tuzzerella

abundance is associated with relieved hepatic oxidative stress

(MDA, SOD) (69), consistent with our findings. We identified that

Tuzzerella has a significant correlation in regulating hematopoietic

function and oxidative stress using Spearman’s correlation analysis.

Therefore, Tuzzerellamay regulate oxidative stress and splenic injury

to reduce anemia through various signaling pathways.

The correlation analysis between transcriptome and metabolome

profiles indicated that twenty-one DEGs and ten differential

metabolites were enriched in fourteen anemia-related pathways.

Microsomal glutathione S-transferase 2(Mgst2), glutathione

synthetase (Gss), glutathione peroxidase 4 (Gpx4) and glutathione S-

transferase (Gst), mu 5 (Gstm5) are differential genes in glutathione

metabolism. Mgst2 can mitigate ROS-mediated lipid peroxidation.

The direct binding of coniferyl ferulate to Mgst2 alleviates the toxic

effect of xylene on HSPCs induced by oxidative stress (114). Variants

in Gss can reduce Gss activity, leading to lower GSH levels, which in

turn cause red blood cell rupture and anemia (115). Mice exhibit

anemia and ineffective erythropoiesis when Gpx4 is deletion (116).

Gstm5 is associated with refractory anemia with excess blast

progression (117). Starch and sucrose metabolism requires the

participation of glycogen synthase 1 (Gys1) and hexokinase2(Hk2).

Enarodustat protects against renal anemia by increasing the

expression of Gys1, leading to upregulated glycogen synthesis (118).

Angelica sinensis polysaccharides facilitate the expression of the

glycolytic gene Hk2, which promoted splenic glycolysis and

extramedullary stress erythropoiesis, thereby ameliorating anemia

(119). Choline dehydrogenase(Chdh) is a differential gene in glycine,

serine and threonine metabolism. In the hemopoietic systems, Chdh

exhibits significant enzyme activity in granulopoietic cells, while

erythroblasts, megakaryocytes and platelets show only weak positive

activity. These results are related to cellular lipid metabolism and

blood cell functions (120). Integrative analysis of transcriptomic and

metabolomic data indicated that FEJ prevented anemia by interfering

with amino acid metabolism and carbohydrate metabolism.
Conclusion

This study comprehensively investigated the hematopoietic

characteristics of FEJ for the first time by integrating multi-omics

analysis of fecal metabolomics, intestinal microbiota and spleen

transcriptome profiles in CTX and APH-induced anemic mice. FEJ

exhibited beneficial effects on hematological parameters, organ

indexes, peripheral blood routine, hepatic oxidative stress and

tissue damage in the bone and spleen. FEJ effectively ameliorated

gut microbiome dysbiosis by reducing the abundance of pathogenic

genera , inc lud ing Fami ly_XI I I_UCG-001 , UCG-009 ,

Negativibacillus and Tuzzerella in anemia mice, while establishing

Akkermansia and Tuzzerella as potential microbial markers for
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hematopoietic enhancement. Distinct metabolic profile variations

revealed key fecal biomarkers including propanoic acid, butanoic

acid, L-leucine, phenylalanine, L-proline, glycine and octadecanoic

acid, which potentially regulated phenylalanine metabolism,

glycine, serine and threonine metabolism, arginine and proline

metabolism. Transcriptome analysis identified spleen

hematopoietic regulators, including B cell receptor signaling

pathway (Plcg2, Vav3), NF-kB signaling pathway (Edaradd),

hematopoietic cell lineage biomarkers (Cd19, Cd22, Il5ra, Fcer2a)

and osteoclast formation (Ncf2, Ncf1, Lilra6, Pirb), as potential

diagnostic indicators (Figure 7E). The Spearman’s correlation

analysis revealed significant associations between hematopoietic

indicators and the gut microbiota, with functional connections

between microbial communities and hematopoietic related genes

and amino acid metabolism. An integrated metabolome and

transcriptome analysis demonstrated FEJ’s regulatory impact on

metabolic disturbances induced by anemia, particularly amino acid

metabolism and carbohydrate metabolism. The results indicated

FEJ ameliorated anemia through regulating the amino acid

metabolism, inhibiting the proliferation of harmful bacteria,

controlling inflammation and liver oxidative stress and reflecting

the multi-target therapeutic effect of traditional Chinese medicine.

These findings offer valuable insights into application of FEJ as a

healthy food and Chinese patent medicines for anemia treatment.
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