
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mohd Kaisan Mahadi,
National University of Malaysia, Malaysia

REVIEWED BY

Jiaxin Fan,
The Second Affiliated Hospital of Xi’an
Jiaotong University, China
Yifan Xu,
The Affiliated Hospital of Qingdao University,
China

*CORRESPONDENCE

Hongyan Li

hongyan@jlu.edu.cn

Chen Shao

shaochen@jlu.edu.cn

Jingsong Kang

kangjs@jlu.edu.cn

RECEIVED 17 January 2025
ACCEPTED 12 March 2025

PUBLISHED 26 March 2025

CITATION

Li T, Kang X, Zhang S, Wang Y, He J, Li H,
Shao C and Kang J (2025) Integrating
machine learning and multi-omics analysis
to reveal nucleotide metabolism-related
immune genes and their functional
validation in ischemic stroke.
Front. Immunol. 16:1561544.
doi: 10.3389/fimmu.2025.1561544

COPYRIGHT

© 2025 Li, Kang, Zhang, Wang, He, Li, Shao
and Kang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 March 2025

DOI 10.3389/fimmu.2025.1561544
Integrating machine learning
and multi-omics analysis to
reveal nucleotide metabolism-
related immune genes and
their functional validation
in ischemic stroke
Tianzhi Li , Xiaojia Kang, Sijie Zhang, Yihan Wang, Jinshan He,
Hongyan Li*, Chen Shao* and Jingsong Kang*

Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of
Basical Medical Sciences, Jilin University, Changchun, China
Background: Ischemic stroke (IS) is a major global cause of death and disability,

linked to nucleotide metabolism imbalances. This study aimed to identify

nucleotide metabolism-related genes associated with IS and explore their roles

in disease mechanisms for new diagnostic and therapeutic strategies.

Methods: IS gene expression data were sourced from the GEO database.

Differential expression analysis and weighted gene co-expression network

analysis (WGCNA) were conducted in R, intersecting results with nucleotide

metabolism-related genes. Functional enrichment and connectivity map (cMAP)

analyses identified key genes and potential therapeutic agents. Core immune-

related genes were determined using LASSO regression, SVM-RFE, and Random

Forest algorithms. Immune cell infiltration levels and correlations were analyzed

via CIBERSORT. Single-cell RNA sequencing (scRNA-seq) data and molecular

docking assessed gene expression, localization, and gene-drug binding. In vivo

experiments validated core gene expression.

Results: Thirty-three candidate genes were identified, mainly involved in immune

and inflammatory responses. CFL1, HMCES, and GIMAP1 emerged as key

immune-related genes, linked to immune cell infiltration and showing high

diagnostic potential. cMAP analysis indicated these genes as drug targets.

scRNA-seq clarified their expression and localization, and molecular docking

confirmed strong drug binding. In vivo experiments validated their significant

expression in IS.

Conclusion: This study underscores the role of nucleotide metabolism in IS,

identifying CFL1, HMCES, and GIMAP1 as potential biomarkers and therapeutic

targets, providing insights for IS diagnosis and therapy development.
KEYWORDS

ischemic stroke, nucleotide metabolism, molecular docking, bioinformatics analysis,
machine learning
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1 Introduction

Ischemic stroke (IS) is a disease of the central nervous system

with a complex pathogenesis, and morbidity and mortality of stroke

have been increasing in recent years, representing an escalating

public health challenge (1). Pathologically, ischemic stroke is

characterised by disruption of the local blood supply to the brain

tissue leading to tissue ischemia and hypoxia, involving a variety of

molecular mechanisms and cytological changes including oxidative

stress, inflammatory cascades, activation of apoptotic pathways, and

dysfunction of the blood-brain barrier. Nucleotide metabolism

plays a key role in this process (2). Nucleotides are not only

important components of cellular energy metabolism and

signalling, but are also involved in cell growth, division and

repair. Disturbances in nucleotide metabolism during ischaemia

can lead to a decrease in ATP synthesis, which in turn affects

cellular energy supply and viability (3). In addition, the breakdown

products of nucleotides, such as adenosine, may further affect the

extent of brain tissue damage and the ability to recover by regulating

the inflammatory response and the apoptotic pathway after

ischaemia (4). Therefore, an in-depth study of the pathogenesis of

ischemic stroke and its regulatory network, especially the role of

nucleotide metabolism, is of great importance for the development

of novel therapeutic strategies and the improvement of

patient prognosis.

Nucleotide metabolism is a complex process of intracellular

nucleotide synthesis, degradation and recycling that is critical for

cellular energy metabolism and signalling (5). Numerous studies

have shown that nucleotide metabolism plays a key role in the onset

and development of ischaemic brain injury (6). First, an imbalance

in the synthetic pathway leads to a disruption of energy metabolism

in cerebral ischaemia, resulting in the rapid breakdown of ATP to

ADP and AMP, which are further converted to metabolites such as

adenosine, inosine and hypoxanthine (7). Adenosine is an

important neuromodulator that regulates neuronal excitability,

vasodilation and inflammatory responses by binding to adenosine

receptors (A1, A2A, A2B and A3) (8). Secondly, an imbalance in the

catabolic pathway allows the accumulation of metabolites (e.g. uric

acid) from nucleotide degradation during acute ischaemia, leading

to oxidative stress and cellular damage that further exacerbates

brain injury (9).In addition, degradation products of purine

nucleotides (e.g. xanthine) are oxidised by xanthine oxidase (XO)

during ischaemia-reperfusion, generating large amounts of reactive

oxygen radicals and exacerbating oxidative stress injury (10).

Finally, imbalances in energy and adenosine metabolism may

affect DNA repair and cellular energy homeostasis, thereby

compromising neuronal survival and functional recovery.

Although studies have demonstrated the potential importance of

nucleotide metabolism in ischemic stroke, studies on effective

diagnostic biomarkers of nucleotide metabolism in ischemic

stroke are still lacking and need to be further investigated.

In this study, we used a bioinformatics approach to

comprehensively analyse nucleotide metabolism genes associated

with ischemic stroke (IS) and their biological functions, and to
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validate them in vivo. First, datasets related to IS and nucleotide

metabolism were retrieved from the GEO database and GeneCards,

and samples were classified using differential expression analysis

and weighted gene co-expression network (WGCNA) construction

to reveal core IS genes related to nucleotide metabolism and their

potential mechanisms. Multiple machine learning algorithms were

then applied to screen to obtain three key genes, and the accuracy

and generalisability of the constructed models were assessed by

receiver operating characteristic curve (ROC) analysis. Based on

single-cell sequencing data, we further analysed the expression

distribution of these key genes in different cell types. In addition,

we identified compounds with potential therapeutic effects on IS

and evaluated their binding ability using molecular docking

techniques. Finally, a rat cerebral ischaemia model was

established to validate the expression differences of the key genes

in normal and IS samples by qPCR to explore their potential as

diagnostic and therapeutic targets for IS.
2 Methods

2.1 Data acquisition and preprocessing

In this study, we analysed samples from IS and normal controls

to investigate the key genes involved in nucleotide metabolism in IS.

We downloaded two microarray datasets from the GEO database:

the GSE22255 and the GSE58294, both belonging to the GPL570

platform (HG-U133_Plus_2) Affymetrix Human Genome U133

Plus 2.0], and a single-cell RNA sequencing (scRNA-seq) dataset

(GSE174574). The NM (Nucleotide Metabolism) gene set for

nucleotide metabolism was obtained from the Genecards website,

with the criterion of a relevance score ≥1 to ensure biological

relevance. Specifically, GSE22255 and GSE58294 were used as

screening sets and GSE174574 as validation set. After the steps of

data pre-processing, batch effect correction using the combat

function, and expression value aggregation, we obtained the final

gene expression matrix. The details are shown in Supplementary

Table 1, and the overall study flow is shown in Figure 1.
2.2 Identification of differentially
expressed genes

To identify differentially expressed genes (DEGs) between

normal and IS samples, we used the limma package (3.46.0) (11)

in R to perform differential expression analysis. Screening criteria

were set as p-value < 0.05 and |log2(fold change)| > 0.5. Heatmaps

and volcano plots were generated for visualisation using the ggplot2

package (1.0.1) to further demonstrate the expression

characteristics of DEGs. We then performed an intersection

analysis of the screened DEGs with nucleotide metabolism genes

using the Venn diagram package (1.7.3) to identify nucleotide genes

that were differentially expressed in the pathogenesis of IS.
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2.3 Weighted gene co-expression
network analysis

The data from GSE22255 and GSE58294 were merged and batch

processed. The weighted gene co-expression network analysis

(WGCNA) software package (1.73) (12) was used to evaluate the

trait-related modules. Topological overlap matrices were constructed

based on expression curves. A soft threshold of 6 and a minimum

module size of 30 were used to filter the core modules, and a height

constraint of 0.25 was used as a guide for module combinations.

Modules were then tested using the Pearson correlation test with a

significance threshold of P < 0.05. Candidate genes were also found

by taking the intersection of differentially expressed nucleotide genes

with genes from the WGCNA core module.
2.4 Enrichment analysis

To identify biological processes, metabolic pathways with

candidate genes, we performed GO, KEGG pathway and disease

enrichment analyses using the enrichGO and enrichKEGG

functions in clusterProfiler package (4.12.6) (13).
2.5 Machine learning model building

In order to rank the importance of genes and identify potential

biomarkers, we employed three commonly used machine learning

models for screening and classification of feature genes. In all the
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algorithms, the merged IS dataset was randomly divided into a

training set and a test set in the ratio of 7:3, where the training set

was used for model training and parameter optimisation, and the

test set was used to evaluate the generalisation ability of the models.

These models include the Support Vector Machine Recursive

Feature Elimination (SVM-RFE) method using the e1071 package

(version 1.7-16) (14), the Random Forest (RF) algorithm using the

randomForest R package (version 4.7-1.2) (15), and the Lasso

Regression (LASSO) algorithm using the glmnet package (version

4.1-8) (16). Specifically, LASSO is a linear model for feature

selection and regression analysis via L1 regularisation, which can

effectively handle high-dimensional data and reduce overfitting,

thus improving model stability. In this study, 10-fold cross-

validation was used to select the best lambda values

corresponding to the key genes. Random Forest is an integrated

learning algorithm that improves overall prediction accuracy and

robustness by training multiple decision trees on a random subset of

data and integrating their predictions, while SVM-RFE ranks the

importance of features by evaluating their contribution to the

classifier performance. Finally, we performed a Venn diagram

analysis of the feature genes screened by these three models, and

selected the genes that consistently appeared as key genes to lay the

foundation for subsequent biomarker studies.
2.6 Assessment of pivotal genes

In order to evaluate the diagnostic efficacy of the screened

signature genes, we first constructed a diagnostic column-line graph
GSE22255,GSE58294
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Study workflow.
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model using the rms package. In the model, ‘Points’ represent the

scores of each corresponding factor, and the corresponding

calibration curves were plotted to evaluate the predictive accuracy

of the model. Secondly, the pROC package (v1.18.0) (17) was used

to construct Receiver Operating Characteristic (ROC) curves and

calculate the Area Under Curve (AUC). The AUC was calculated to

evaluate the classification performance of the characterised genes

under different sensitivity and specificity conditions, and the closer

the AUC was to 1, the better the diagnostic performance.

Meanwhile, to visualise the expression differences of the feature

genes between different sample groups, the ggplot2 package (v3.4.0)

was used to construct box plots to show the expression distribution

of the feature genes.
2.7 Hub gene enrichment and immune
infiltration

Single-gene GSEA was used to explore the relationship between

hub genes and disease states and their regulatory mechanisms (18).

CIBERSORT is an inverse convolutional algorithm capable of

transforming a normalised gene expression matrix into the

composition of infiltrating immune cells. We compared the

infiltration of 22 immune cells in normal and ischemic stroke (IS)

samples in the combined IS datase. LM22 was used as the reference

expression signature and 1000 permutations were performed to

improve the accuracy of predicting immune cell composition.

CIBERSORT output was defined as p < 0.05 and eligible samples

were then selected for further analysis. The 22 types of infiltrating

immune cells included B cells (naive B cells and memory B cells), T

cells (CD8 T cells, naive CD4 T cells, memory resting CD4 T cells,

memory activated CD4 T cells, follicular helper T cells, regulatory T

cells), and gd T cells), NK cells (resting and activated NK cells),

monocytes, macrophages (M0, M1 and M2 type macrophages),

dendritic cells (resting and activated dendritic cells), mast cells

(resting and activated mast cells), eosinophils and neutrophils. The

composition of all 22 immune cell types assessed was summed to 1

in each sample (19).
2.8 Diagnostic model construction and
mRNA-TF network analysis

In order to comprehensively evaluate the prediction

performance of key genes and their molecular regulatory

mechanisms, the study adopts a multi-dimensional analysis

strategy that integrates machine learning modelling and

transcriptional regulatory network analysis. In terms of machine

learning model construction, model training, evaluation and

comparison were achieved based on Tidymodels framework

(v1.2.0) (20). The generalisation ability and prediction stability of

the model were ensured by 10-fold cross-validation. Meanwhile, to

deeply resolve the transcriptional regulatory networks of key genes,

TF-mRNA interaction maps were constructed using the

NetworkAnalyst website(https://www.networkanalyst.ca/) (21)
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and imported into Cytoscape software for visualisation. By

combining the machine learning prediction model with the

transcriptional regulatory network analysis, we not only verified

the diagnostic value of the key genes, but also elucidated their

potential molecular regulatory mechanisms, laying a theoretical

foundation for the subsequent functional validation experiments

and clinical translational applications.
2.9 Analysis of single cell data and
intercellular communication

We obtained the single-cell RNA sequencing dataset

GSE174574 from the GEO database and performed systematic

quality control and downstream analysis of the dataset using

Seurat (version 5.0.1) (22). First, cells with gene expression below

200 or above 3000 were excluded, as well as genes detected in fewer

than 3 cells. In addition, cells with more than 20% unique molecular

identifier (UMI) counts of mitochondrial origin were filtered out.

The data set was then log-normalised and the top 2000 highly

variable genes (HVGs) were selected for typical correlation analysis.

The ScaleData function was then used to normalise the data and

Principal Component Analysis (PCA) was performed. Based on the

PCA results, cell clustering was performed using the first 10

principal components with a resolution parameter of 0.5. t-SNE

and UMAP visualisation maps were also generated to show the

distribution and characteristics of the cell population. Cell

classification was also performed using SingleR and CellMarker

2.0 (23) and the corresponding visualisation analysis was

performed. Subsequently, cell-to-cell communication analysis was

performed using the CellChat package (version 1.6.1) to provide a

comprehensive understanding of the dynamics of the cellular

microenvironment during the pathogenesis of ischemic stroke (IS).
2.10 Expression level analysis in normal
human tissues

Expression of key genes in human tissues is analysed using the

harmonizome database (https://maayanlab.cloud/Harmonizome/) (24).
2.11 CMAP analysis

Drug prediction analyses have been performed to gain a deeper

understanding of drug mechanisms and to discover new therapeutic

compounds. The Connection Mapping (CMAP) database contains

6100 instances of 1309 small molecule drugs, each accompanied by

a gene expression profile for a specific drug and its corresponding

treatment. In this study, we used gene expression profiles to predict

potential small molecule compounds for the treatment of ischemic

stroke (IS) based on the CMAP database. First, we uploaded

differentially expressed genes (DEGs) into the CMAP database to

predict possible therapeutic small molecule drugs. The CMAP

scores range from -100 to 100, with a negative value indicating
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that the gene expression profile of the compound is negatively

correlated with the disease state, suggesting that it may have

therapeutic potential. This analysis provides strong support for

the screening of candidate compounds that merit further validation,

thus laying the groundwork for future therapeutic studies.
2.12 Protein-ligand interaction analysis

To further validate the candidate compounds predicted by the

CMAP analysis, we performed protein-ligand molecular docking

experiments. First, the 3D structures of the core target proteins were

obtained from the UniProt database, and the structure files of the

CMAP-predicted small molecules in SDF format were downloaded

from PubChem and converted to mol2 format using OpenBabel

software. Molecular docking analysis of the protein receptor and the

small molecule ligand was then performed using AutoDock

software to calculate the binding free energy of the two. The

lower the binding energy value, the stronger the binding affinity.

Finally, we visualised the docking results using PyMOL software to

visually analyse the interaction patterns of the compounds with the

target proteins. This experiment provides an important basis for

evaluating the potential therapeutic effects of candidate compounds.
2.13 Establishment of animal and MCAO
models

In this study, we used a middle cerebral artery occlusion

(MCAO) model to simulate ischemic stroke to investigate the

changes in related gene expression. Since ischemic stroke is

mainly a disease of the elderly and the incidence rate increases

significantly with age, in order to provide clinical value for future

translational medicine, we selected aged (24-27 months) male

Wistar rats provided by Beijing Viton Lever Laboratory Animal

Co(Compliance with relevant regulations and guidelines and ethical

approval from our Animal Ethics Committee). and randomly

divided the rats into the MCAO group and the control group of 6

rats each, and the MCAO model was established according to

previous reports (25). The rats were then subjected to general

anaesthesia with 2% isoflurane. After a midline incision was

made, the right common carotid and external carotid arteries

were isolated and the internal carotid artery was clamped. The

middle cerebral artery was then occluded with nylon sutures to

establish the MCAO model for 24 hours. All procedures were

performed in strict accordance with the Guide for the Care and

Use of Laboratory Animals.
2.14 RNA extraction and qPCR

Total RNA was extracted from rat peripheral blood by the

TRIzol method and reverse transcribed using the First-strand

cDNA Synthesis Mix kit (TaKaRa, Japan) according to the
Frontiers in Immunology 05
manufacturer’s protocol. Primers used for cDNA amplification

are listed in Supplementary Table 1. The cDNA was mixed with

SYBR Premix Ex Taq2 (TaKaRa, Japan) and synthetic primers for

real-time quantitative PCR. PCR conditions were selected according

to the manufacturer’s protocol as follows: 2 min at 50°C; 10 min at

95°C; 45 cycles of 10 s at 95°C, 10 s at 60°C and 15 s at 72°C. Relative

mRNA expression levels were quantified by normalisation to the

expression of the internal reference GAPDH. Gene expression levels

are expressed as fold change relative to control.
2.15 Statistical analyses

R software (version 4.4.2) was used to examine the data, and the

Wilcoxon test was used to compare groups, with P < 0.05 defined as

a significant difference.
3 Results

3.1 Identification of differential genes

We first merged two microarray datasets, GSE58294 and

GSE22255, and performed differential analysis after removing

batch effects. A total of 243 differentially expressed genes (DEGs)

were identified by selecting p<0.05 and |log fold change (FC)| > 0.5

as thresholds in the integrated expression matrix and visualised as

heat maps and volcano plots (Figures 2A, B).
3.2 Identification of key modules

We selected the merged dataset for weighted gene co-expression

network analysis (WGCNA). The constructed scale-free topological

network showed the best connectivity when using the

PickSoftThreshold function to determine a soft threshold b of 6

(Figure 3A). We then set the clustering height to 0.25 for more in-

depth analyses and obtained a clustering dendrogram of co-

expression modules (Figure 3C). Based on the analysis of IS

expression profiles, 16 co-expression modules were identified,

each represented by a different colour (Figure 3D). Correlation

analysis of the module features showed that the cyan module had

the most significant correlation with IS (cyan; cor = 0.67, P = 0.01)

(Figure 3E). Therefore, we retained the 1126 genes associated with

IS in this module for subsequent studies. Furthermore, by

intersection analysis of 243 differentially expressed genes (DEGs)

with nucleotide genes and cyan module genes,33 intersecting genes

were finally screened (Figure 3F).
3.3 Gene enrichment analysis

By performing gene ontology (GO) and KEGG pathway

enrichment analyses on 33 candidate genes, we obtained the

following results. In the biological process category analysed by
frontiersin.org
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GO, these genes were significantly enriched in processes such as cell

cycle regulation, cell division regulation, and regulation of synaptic

structure and function (Figure 4A). In terms of cellular

components, the main features of enrichment included the

nucleus, cytoplasm and cytoskeleton (Figure 4B). Molecular

functional analyses showed significant activities involving

enzymatic activity, catalytic activity, and binding activity

(Figure 4C). KEGG pathway analysis revealed that these

candidate genes were enriched in several biologically relevant

pathways, including human immunodeficiency virus type 1

infection and nucleotide excision repair-related pathways.

Notably, fluid shear stress and atherosclerosis-related pathways

were similarly enriched (Figure 4D). This suggests that

nucleotides may influence the development of IS by modulating a

wider range of pathological processes, thereby influencing the

development of IS.
3.4 Using machine learning to screen for
key genes

To screen for ischemic stroke signature genes, we applied the

previously obtained 33 candidate genes to three commonly used

feature selection algorithms: SVM-RFE, RF and LASSO. 10

signature genes were obtained from the screening using LASSO

regression analysis (Figures 5A, B). 33 genetic markers were

identified by SVM with an accuracy of 0.909 (Figures 5C, D).

Subsequently, 33 candidate genes were ranked by importance scores

using the random forest method, and three trait genes were

screened (Figure 5E). Finally, we performed intersection analysis

on the results of the three methods and obtained three common key

genes (Figure 5F).
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3.5 Assessment of the diagnostic value of
the hub genes

A column-line diagram model for IS diagnosis was developed

based on CFL1, HMCES and GIMAP1 (Figure 6A). The calibration

curves showed that the difference between observed and predicted

risks was limited, indicating that the column-line graph model

performed very well in predicting IS (Figure 6B). Analysis by

constructing a box plot (Box plot) revealed that the three

signature genes were expressed at low levels in the disease group

(Figures 6C–E). Subsequently, the expression of the three pivotal

genes in the screening set and their diagnostic value were further

evaluated using ROC curves. The results showed that the AUC

values between ischemic stroke (IS) samples and healthy control

samples in the screening set were 0.880 (95% CI, 0.812-0.938) for

CFL1 and 0.853 (95% CI, 0.762-0.962) for GIMAP1, HMCES was

0.816 (95% CI, 0.721-0.900) (Figures 6F–H). These results suggest

that these three hub genes have good potential in the predictive

ability of IS, providing an important basis for their application in

clinical diagnosis.
3.6 Diagnostic models and TF-mRNA
networks

Using single-gene GSEA analysis, we found that the pathways

enriched in these key genes were mainly involved in immune-

related processes such as allograft rejection, primary

immunodeficiency, IL-17 signalling, TNF signalling and

arachidonic acid metabolism (Figures 7A–C). This further

supports their key role in ischemic stroke pathogenesis. For

machine learning, we used the tidymodels package (v1.1),
FIGURE 2

Screening of differentially expressed genes. (A) Heatmap of DEGs. (B) Volcano plot of DEGs.
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following the approach recommended by the developers. Each

dataset was divided into training and test subsets in an 80:20

ratio. After model development on the training set, the test

dataset was only evaluated once. and validated the model in

training using k-fold cross-validation with k = 10 and found it to

have good predictive power (Figures 7D–E). To understand the

overall framework of gene regulation and to understand the
Frontiers in Immunology 07
regulatory relationships. We predicted potential transcription

factors for these hub genes using the NetworkAnalyst database.

The results showed that the transcription factor NFKB1 regulates

both HMCES and CFL1; CREB1, FOXC1 and GSTA2 regulate

HMCES and GIMAP1; and SRF may regulate both GIMAP1 and

CFL1, providing a basis for further elucidation of the gene

regulatory network (Figure 7F).
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FIGURE 3

Construction of a weighted gene co-expression network (WGCNA). (A) Selection of soft thresholds. (B) Dendrogram representing clusters of genes
characterising modules. (C) Dendrogram of the clustering tree of co-expression modules. (D) Heatmap showing the correlation between the 16
modules and the features. (E) Genes of the cyan module. (F) Venn diagram of overlapping genes.
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3.7 Human tissue expression profiles

Using the Harmonizome database, we analysed the expression

of key genes in human tissues (Figures 8A–C), with a particular

focus on brain and intracerebral cell lines.
3.8 scRNA profiling in IS

To investigate the distribution of the three key genes in various

cell types in stroke samples, we classified and cellularly annotated

the single-cell samples we obtained. We identified 21 clusters in the

GSE174574 dataset with 13 different cell types: endothelial cells,

microglia, macrophages, astrocytes, monocytes, oligodendrocytes,

erythrocytes, neuronal cells, cardiomyocytes, granulocytes,

fibroblasts, and NK cells (Figures 9A, B). We observed a major

distribution of hub genes in these cells in the GSE174574 stroke

samples (Figure 9C). Next, we analysed intercel lular

communication between different types of immune cells in the

stroke setting using CellChat (Figure 9E). Since the occurrence of
Frontiers in Immunology 08
stroke is associated with a variety of pathological processes such as

inflammatory response, immune regulation and cell death. The

communication network of TNF signalling pathway in immune

cells was mainly examined in stroke samples (Figure 9D).
3.9 Correlation of key genes with immune
infiltrating cells

We analysed immune cell infiltration in the ischemic stroke (IS)

and normal control groups using the CIBERSORT algorithm

(Figure 10A). The results showed that the abundance of naive B

cells and CD8+ T cells was significantly lower in the IS group

compared to the normal group, whereas the abundance of

monocytes and neutrophils was significantly higher (Figure 10B).

Further analysis revealed that the expression levels of these three

hub genes (CFL1, GIMAP1 and HMCES) correlated with the

abundance of most immune cells (Figures 10C–E). It is suggested

that these key genes may regulate the function of immune cells and

influence the development of ischemic stroke.
FIGURE 4

Enrichment analysis of candidate genes. (A) BP analysis, (B) CC analysis, (C) MF analysis. (D) KEGG analysis.
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3.10 Drug prediction and molecular
docking for IS therapy

In summary, this study successfully predicted potential

therapeutic small molecule compounds (all connectivity scores

>0.7) by submitting the differentially expressed genes to the

Connectivity Map (Cmap) database (Supplementary Figure 1), and

we selected the two drugs with the largest positive and negative

scores. Molecular docking analysis showed that these three hub genes

formed good binding conformations with both liquiritigenin and

varenicline. The most stable binding conformation of two

compounds to each target protein was also visualised using Pymol
Frontiers in Immunology 09
software, which included multiple intermolecular interactions such as

hydrogen bonding, hydrophobic forces, p-cation interactions and p-
stacking (Figure 11), suggesting that they could be potential targets

for these two compounds.
3.11 Hub gene validation

We successfully established a rat MACO (middle artery permanent

occlusion) ischemic stroke model. To further investigate the expression

changes of key genes in this model, peripheral blood was collected from

MACO and control rats, and RNA was extracted and analysed by
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qPCR. The results showed that all three genes, GIMAP1, HMCES and

CFL1, were significantly downregulated in IS compared to the control

group (Figure 12). The changes in the expression of these genes provide

important clues for further exploration of the pathogenesis and

therapeutic targets of ischemic stroke, and lay the foundation for

subsequent translational medicine research.
4 Discussion

Globally, stroke has become a serious public health problem,

affecting more than 795,000 people and killing about 140,000, or 1
Frontiers in Immunology 10
in 20, each year, making it the fifth leading cause of death worldwide

(26). At the same time, the total cost of stroke in the United States,

including healthcare services, medication costs and work loss due to

stroke, is approximately $34 billion annually (27). Because stroke is

a complex process involving multiple factors, current treatments for

IS still have a poor prognosis due to the narrow therapeutic window,

potential risk of bleeding and subsequent reperfusion injury, etc

(28). In contrast, Nucleotide metabolism plays a key role in the

onset and development of stroke and is an important factor in

understanding stroke mechanisms and identifying new therapeutic

targets. Abnormalities in nucleotide metabolism can lead to

inadequate cellular energy supply, dysregulated inflammatory
FIGURE 6

Model construction of column-line diagrams for IS diagnosis and expression of key genes. (A) Column graph predicting IS risk. (B) Calibration curves
assessing the diagnostic potential of the line drawing model. (C–E) Expression of key genes in controls and IS. (F–H) Diagnostic values of key genes.
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FIGURE 7

GSEA analysis of key genes, machine learning models and TF-mRNA regulatory networks. GSEA analysis of key genes (A) CFL1, (
machine learning models. (F) TF-mRNA regulatory network.
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responses and reduced cellular repair capacity, thereby exacerbating

brain tissue damage.First,The ischaemic state following a stroke

leads to a lack of energy supply to brain cells and a significant

decrease in ATP levels (29). Increased ATP synthesis, support for

cell survival and improved energy metabolism can be achieved by

regulating nucleotide metabolism, which is essential for restoring

brain cell function (30). In addition, ischemic stroke is associated
Frontiers in Immunology 12
with a pronounced inflammatory response and nucleotide

metabolites (e.g. adenosine) play an important role in regulating

inflammation, inhibiting the release of pro-inflammatory cytokines

and reducing brain damage (31). Effective modulation of this

pathway could provide neuroprotection for stroke patients. In

addition, nucleotides are essential for DNA and RNA synthesis

and promote the proliferation and differentiation of neural stem
FIGURE 8

Expression of three key genes, (A) CFL1, (B) GIMAP1 and (C) HMCES in human tissues and cells.
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cells, thereby supporting the regeneration of brain tissue after stroke

and significantly improving functional recovery (32). Therefore, it is

extremely important to search for stroke biomarkers related to

nucleotide metabolism. This will not only help in the early diagnosis

and assessment of stroke severity, but may also provide an

important basis for the development of new therapeutic strategies.

Our study aims to explore the potential biomarkers and therapeutic

targets of nucleotide metabolism in stroke. This will open up new

avenues for the prevention and treatment of stroke and enable the

development of more targeted interventions to reduce stroke
Frontiers in Immunology 13
morbidity and mortality and ultimately improve patients’ quality

of life.

In this study, we investigated the molecular mechanisms of

ischemic stroke (IS) using an integrated bioinformatics approach.

First, we screened genes related to nucleotide metabolism from the

Genecards database and retrieved and analysed two related datasets

from the GEO database. Through merging and differential analysis,

we identified 243 significantly differentially expressed genes. Using

weighted gene co-expression network analysis (WGCNA) and three

machine learning methods (LASSO, support vector machine SVM
FIGURE 9

Validation of key genes in the single-cell dataset GSE174574. (A) UMAP plot showing the major classifications involved in stroke in the GSE174574
dataset. (B) UMAP plot showing the major cell types involved in stroke in the GSE174574 dataset. (C) Distribution of key genes across cell types in
the GSE174574 dataset. (D) TNF signalling pathway network of the GSE174574 stroke immune cell population. (E) Crosstalk analysis between
GSE174574 stroke immune cells.
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FIGURE 10

Distribution of immune cells in IS. (A) Heatmap of immune cell expression in IS. (B) Differences in immune ce
immune cells.
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and random forest RF), we identified three core immune-related

diagnostic biomarkers: CFL1, HMCES and GIMAP1. The role of

these core immune genes in IS was validated by enrichment

analysis, which showed that they were significantly enriched in

several immune-related processes, particularly nucleotide excision

repair and the fluid shear stress pathway associated with

atherosclerosis. In addition, we comprehensively analysed the
Frontiers in Immunology 15
infiltration levels of 22 immune cell types using the CIBERSORT

algorithm. Compared with controls, the expression of naive B cells

and CD8+ T cells was downregulated in IS patients, whereas the

expression of monocytes and neutrophils was significantly

increased.The expression levels of CFL1, HMCES and GIMAP1

correlated with the infiltration levels of a wide range of immune cell

types, further confirming their important role in IS.
FIGURE 12

qPCR validation. Comparison of gene expression between IS rat model and control in CFL1, HMCES and GIMAP1. *P < 0.05, **P < 0.01 vs. CON.
FIGURE 11

Molecular docking patterns of liquiritigenin or varenicline with three target proteins. Docking results of (A) CFL1, (B) GIMAP1, (C) HMCES with
liquiritigenin and varenicline. LYS, lysine; VAL, valine; TYR, Tyrosinase; ASP, aspartic acid; THR, L-Threonine; GLU, glutamate; ARG, arginine; ASN,
asparticacid; TRP, L-tryptophan.
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To further validate these findings, we used single-cell

transcriptome sequencing data to investigate the expression

patterns of these genes in different cell types and analysed the

cellular communication networks between these cell types using

CellChat. These analyses revealed the interaction of multiple

immune cells in stroke pathogenesis through the TNF pathway.

For example, early studies demonstrated the regulation of TNF

expression in microglia and its role in stroke mechanisms (33) and

the role of TNF-a in exacerbating ischaemic conditions after stroke

(34). In addition, microglia/macrophages deficient in vitamin D

receptors exhibit a pro-inflammatory phenotype characterised by

significant secretion of TNF-a, which is strongly associated with

poor stroke outcome (35). Taken together, the three genes CFL1,

HMCES and GIMAP1 may not only serve as diagnostic biomarkers

for stroke, but also play a key role in the pathophysiological process

of stroke. By revealing the regulatory role of the TNF pathway in the

pathogenesis of stroke, our study provides an important scientific

basis for exploring new therapeutic targets.

To further understand the interaction between nucleotide

metabolism and immune infiltration, we hypothesised that these

key genes may influence the pathological process of ischemic stroke

through multiple mechanisms. First, nucleotide metabolites (e.g.,

ATP and adenosine) play an important role in immune regulation.

ATP, as a key effector molecule of damage-associated molecular

patterns (DAMPs), mediates neutrophil chemotactic migration via

the P2Y2 receptor (36) and exacerbates acute inflammatory

responses by activating the NLRP3-inflammasome-IL-1b
signalling axis (37). In contrast, adenosine inhibits NF-kB nuclear

translocation through an A2A receptor-dependent pathway,

significantly downregulates the expression of pro-inflammatory

factors such as TNF-a and IL-6, and blocks neutrophil

infiltration (38), forming a metabolism-dependent negative

feedback regulatory mechanism for inflammation. Second,

activated immune cells exhibit a significant metabolic phenotypic

switch from oxidative phosphorylation to aerobic glycolysis and

nucleotide de novo synthesis pathways. This metabolic remodelling

not only meets the bioenergetic demands of rapid proliferation, but

the metabolic intermediates (e.g. adenosine) also form a metabolic-

immunoregulatory loop via the autocrine/paracrine pathway. In

particular, theHMCES-mediated DNA damage repair pathway may

influence the time course and intensity of inflammatory responses

by regulating genomic stability (39), whereas CFL1-dependent

cytoskeletal remodelling directly regulates the tissue infiltration

capacity of immune cells (40). These findings reveal a complex

network of interactions between metabolic regulation and immune

response, and provide a theoretical basis for the development of

small molecule intervention strategies (e.g. purine analogues,

adenosine receptor modulators) targeting nucleotide pathways.

The CMap database predicts highly relevant molecular drugs

for the treatment of IS (linkage score > 0.7). Liquiritigenin is a

flavonoid extracted from liquorice, which has been shown to have a

variety of biological activities, including anti-inflammatory and

antioxidant activities; it is able to inhibit the inflammatory

cascade induced by cerebral ischaemia/reperfusion (41), such as

reducing the expression of cytokines, chemokines and
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inflammatory enzymes. Varenicline is a partial agonist of the

nicotinic acid receptor, which can increase the excitability and

activity of neurons and improve neuronal function. Varenicline

has some antioxidant activity, which may scavenge free radicals and

reduce damage to neurons caused by oxidative stress (42, 43).

Further research is needed to analyse the effects of these

molecules on behavioural tests in IS patients.

Currently, the diagnosis of IS relies heavily on neuroimaging.

An accurate diagnosis of IS and early preventive measures are

essential to alleviate suffering and improve the prognosis of the

disease. Based on a bioinformatics approach, this is the first study to

identify three key genes involved in nucleotide metabolism (CFL1,

HMCES and GIMAP1) that are closely associated with IS. CFL1 is

an ATP-dependent cytoskeletal regulatory protein that is mainly

involved in the dynamic reorganisation of the cytoskeleton (44). Its

activity is directly influenced by nucleotide metabolism, in

particular ATP availability, and plays a key role in neuronal

development, synaptic function and synaptic plasticity (40). Its

abnormal expression and function have been implicated in

neurodegenerative diseases such as Alzheimer’s disease and

Parkinson’s disease. In Alzheimer’s disease, CFL1 is enriched in

pathological protein aggregates, leading to disruption of the

neuronal cytoskeletal structure and impairing neuronal function

and survival (45). In Parkinson’s disease, overactivation leads to an

imbalance in F-actin dynamics, triggering neuronal synaptic

dysfunction and neuronal death (46). HMCES is a DNA repair

protein involved in the maintenance of genome integrity and plays a

key role in the maintenance of genome integrity (47). Dysregulation

of nucleotide metabolism can affect the function of HMCES, leading

to the accumulation of DNA damage and increasing cellular

susceptibility to damage (48). Impaired repair of DNA damage

leads to genomic instability, which is particularly evident in

neurodevelopmental and neurodegenerative diseases. For

example, patients with Alzheimer’s disease often have functional

defects in DNA damage and repair mechanisms that are closely

associated with reduced HMCES activity (49). GIMAP1 is a GTPase

that regulates immune cell activity and is involved in cell

proliferation and apoptosis (50, 51). Its function is closely linked

to nucleotide metabolism, as activation of the immune response

requires sufficient energy and nucleotide support (52). Abnormal

metabolism can lead to dysregulation of GIMAP1 function, which

in turn triggers abnormal immune responses. This immune

dysregulation may lead to chronic inflammation in the central

nervous system, which has been shown to be closely associated

with the development of several neurological diseases, including

multiple sclerosis and Alzheimer’s disease (53). Taken together,

these three genes and their encoded proteins play important roles in

the development of neuronal cell injury, neuroinflammatory

response and neurological dysfunction. They provide new

research ideas and potential therapeutic targets for the prevention

and treatment of post-stroke sequelae.

However, the study has some limitations. First, the model

approach may not be able to fully mimic IS by identifying the 3

hub genes by qPCR and validating their localisation and

distribution; second, the scope of this study was insufficient to
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include detailed in vivo and in vitro validation. Third, the study

should have included additional clinical and demographic

characteristics of the patients for further subgroup analyses.

Addressing these limitations in future studies will improve the

reliability and translational potential of our findings.
5 Conclusion

By integrating machine learning and transcriptomic

approaches, our study provides an in-depth analysis of nucleotide

metabolism-related gene profiles in ischemic stroke patients and

identifies three potential key regulatory genes that are closely related

to immune system activity. This provides a new perspective for

understanding the complex pathogenesis of ischemic stroke, lays

the foundation for future drug development based on key targets,

and has important clinical translational value.
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