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The tumor microenvironment (TME) is a highly complex and continuous evolving

ecosystem, consisting of a diverse array of cellular and non-cellular components.

Among these, benign non-immune cells, including cancer-associated fibroblasts

(CAFs), adipocytes, endothelial cells (ECs), pericytes (PCs), Schwann cells (SCs)

and others, are crucial factors for tumor development. Benign non-immune cells

within the TME interact with both tumor cells and immune cells. These

interactions contribute to tumor progression through both direct contact and

indirect communication. Numerous studies have highlighted the role that benign

non-immune cells exert on tumor progression and potential tumor-promoting

mechanisms via multiple signaling pathways and factors. However, these benign

non-immune cells may play different roles across cancer types. Therefore, it is

important to understand the potential roles of benign non-immune cells within

the TME based on tumor heterogeneity. A deep understanding allows us to

develop novel cancer therapies by targeting these cells. In this review, we will

introduce several types of benign non-immune cells that exert on different

cancer types according to tumor heterogeneity and their roles in the TME.
KEYWORDS

tumor microenvironment, benign non-immune cells, cancer-associated fibroblasts,
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1 Introduction

Research in neoplasm biology have traditionally focused on the proliferation and

suppression of primary tumors. However, emerging studies have highlighted the

indispensable role of benign non-immune cells surrounding cancer cells. Primary cancer

cells exhibit increased heterogeneity when exposed to diverse stressful environment, such as

hypoxia and acidification. This heterogeneity, in turn, contributes to the changes in the

surrounding tumor microenvironment (TME) which subsequently promotes tumor

progression and enhances aggressiveness (1).

Solid tumors are highly complex tissues composed of cancer cells that exhibit

considerable heterogeneity in composition and evolutionary stages. Various components

in TME, such as stromal cells, extracellular matrix (ECM), immune cells, blood/lymphatic

vessels and nerve terminals, continuously and actively reshape the local immune response,
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through diverse signal molecules (2). The TME of most solid

tumors is characterized by a markedly immunosuppressive

milieu, including hypoxia, acidification, metabolic dysregulation,

immune evasion and aberrant angiogenesis (3, 4). The chemical

properties of hypoxia and acidification effectively inhibit the

activation of immune cells. Hypoxia is a hallmark of most solid

tumors and a defining feature of the TME that often leads to benign

non-immune cells dysregulation, thus facilitating tumor growth (5).

As tumors grow rapidly, an inadequate blood supply leads to

hypoxia, especially in the tumor core (6). Hypoxia, along with the

overexpression of hypoxia-inducible factors 1 and 2 alpha (HIF-1a
and HIF-2a), which are key mediators of the tumor response within

the TME (7). Under hypoxic condition, the activation of HIFs and

their downstream signaling cascades, such as C-X-C chemokine

receptor (CXCR)4, macrophage colony-stimulating factor receptor

(M-CSFR) and CD47, modulates tumor-specific immune responses

by inducing the production of immunosuppressive cytokines and

growth factors, promoting tumor immune evasion and ultimately

stimulating tumorigenesis (8, 9).

In addition, it is well established that TME is characterized by a

low pH (3). Both tumor cells and immune cells, with elevated

glycolytic activity, contribute to the accumulation of lactic acid both

intercellularly and extracellularly. This accumulation results in a

low intratumor pH and high extracellular lactic acid (10). This acid

microenvironment may be associated with enhanced tumor local

invasion and chemotherapy resistance (11, 12). Furthermore, tumor

cells are surrounded by a physical barrier composed of stromal cells

and the ECM (13). This barrier is closely associated with cancer

associated fibroblast (CAFs) that secret a host number of fibers,

contributing to a rigid and dense ECM structure (14), thereby

hindering the infiltration of immune cells into the tumor and

limiting their ability to eliminate cancer cells.

Hematological neoplasms refer to tumors that originate within

hematopoietic tissue, such as the bone marrow and immune cells

(15). These malignancies can originate from either the clonal

evolution of hemopoietic stem cells (HSC) or the differentiation of

progenitors with immune potential (16). Unlike solid tumors,

hematological malignancies exist within a distinct tissue

microenvironment, known as the bone marrow microenvironment

(BMME) or bone marrow niche. This niche consists of HSCs,

secondary lymphoid organs and the bone marrow composition.

Similar to solid tumors, hematological tumors consist of cellular

and non-cellular components. The cellular components include

hematopoietic cells and non-hematopoietic cells, while the non-

cellular components consist of ECM protein and various soluble

factors such as cytokines, chemokines, growth factors, etc. (17).

The TME of hemopoietic malignancies is crucial for its

progression. Various cell types within the proliferative niche of

lymph nodes, bone marrow, and secondary lymphoid organs

produce growth factors that support tumor survival. Non-

hematopoietic stromal cells, the ECM, lymphocytes, and myeloid

cells, within the TME, undergo functional and phenotypic changes.

For example, macrophages within the TME can differentiate into

tumor associated macrophages (TAMs) to promote tumor growth

and immunosuppression. The dynamic interplay between
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hematopoietic tumor cells and the TME actively fosters a tumor-

permissive niche, profoundly influences blood cancer progression

by enabling immune evasion mechanisms and shaping the

subsequent treatment response. Furthermore, alterations in

metabolite availability within the TME, may disrupt immune

homeostasis and impair the functions of microenvironment cells.

Consequently, the essential function of this niche in maintaining

homeostasis in bone marrow and secondary lymphoid organs is

subverted to support cancer development (18–22). Studies have

demonstrated that leukemia cells hijack the BM niche, remodeling it

to create a microenvironment conducive to their survival. As a

result, leukemia cells transform into leukemic stem cells, which

grow more quickly than the hematopoietic cells, by utilizing the

same mechanism as the hematopoietic stem cells (23, 24).

However, the TME varies according to tumor types, which

makes it necessary for us to treat cancers based on tumor

heterogeneity. This heterogeneity may derive from many aspects.

For instance, pancreatic ductal adenocarcinoma (PDAC) is

characterized by secreting large amounts of hyaluronan and an

abundant deposition of ECM components, resulting in a dense

matrix and hypovascular nature. This structure significantly

reduces the delivery of chemotherapy drugs (25, 26).

Hepatocellular carcinoma (HCC) is distinguished by its highly

vascularized nature. HCC cells are capable of producing high

amounts of vascular endothelial growth factor (VEGF) and

angiopoietin (Ang)2, which stimulate the proliferation and

migration of endothelial cells (ECs), leading to a highly vascular

nature (27–29). Breast tissue is rich in fat, which leads to the

occurrence of more adipocytes in breast cancer (BC) compared to

other cancers. These adipocytes are closely related to the

progression of BC (30). Besides, tumors can be classified into hot

tumors and cold tumors based on the presence and arrangement of

immune cells within the TME (31). For example, some patients with

melanoma exhibit characteristics of hot tumors, with high levels of

immune infiltration within the TME (32). Pancreatic cancer and

glioblastoma are often defined as cold tumors due to the low

infiltration of immune cells (33, 34). Genetic mutations also

confer the difference in the TME across cancer types. These

mutations often lead to alterations in the signaling cascades in the

TME. KRAS mutation frequently occurs in pancreatic cancer,

colorectal cancer (CRC) and non-small cell lung cancer (NSCLC)

and this mutation significantly restricts T cell infiltration, recruiting

suppressive immune cells into the TME (35). Therefore,

understanding the heterogeneity is critical to cancer therapy. As

pancreatic cancer is characterized by dense matrix induced by

hyaluronan, strategies to eliminate hyaluronan to promote drug

infiltration shed light on pancreatic cancer treatment. Moreover,

methods that transform cold tumors into hot tumors may effectively

enhance the therapeutic effect of immune checkpoint

inhibitors (ICI).

TME is a highly complicated and dynamic system and the

components of TME may vary across cancer types. Thus, it is

important to understand the mechanisms that these benign non-

immune cells contribute to cancer progression based on

cancer types.
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1.1 TME: History and definition

The concept of TME has undergone significant evolution over

time. In 1863, Rudolph Virchow first documented the interaction

between tumor cells and their microenvironment, and he reported

the leukocyte infiltration within the TME (36). In 1889, Stephen

Paget, proposed the ‘soil and seed’ hypothesis, suggesting that tumor

progression is intimately linked to cellular microenvironment (37). In

1993, Ioannides and Whiteside formally introduced the term ‘TME’

(38), and they thought that the TME not only includes the structure,

function and metabolism of the tumor tissue, but also is related to the

internal environment of the tumor cell itself.

Non-malignant cells within the TME, including immune cells

and benign non-immune cells, have been the subject of extensive

research. CAFs, as the most important components in the TME,

have been studied for a long time. In 1858, Virchow first identified

spindle-like cells capable of secreting collagen. In cancers,

hyperactivated fibroblasts are referred to as CAFs (39). An early

study showed that BC stroma-derived fibroblasts exhibit a strikingly

different morphology and growth properties compared with normal

fibroblasts (40). They co-cultured normal fibroblasts and Hela cells,

proving that fibroblasts showed a cytotoxic effect on tumor cells

(41). However, subsequent research revealed that CAFs could also

support prostatic tumor growth both in vitro and in vivo (42, 43).

The history of immune cells dates back to 1970s (42), Eva Klein

was among the first to highlight the presence of tumor-attacking

cells at tumor cites (44). In the 1980s, Rosenberg reported that

adoptive transfer of tumor infiltrating lymphocytes (TILs)

effectively inhibited tumor progression (45). Numerous studies

have also documented macrophage infiltration in tumors (46, 47).

While early investigations suggested that TAMs might suppress

tumor growth, however, more recent findings indicated that TAMs

promote tumor progression instead (48–50). Myeloid-derived

suppressor cells (MDSCs) were initially described as veto cells,

null cells, or natural inhibitory (NS) cells (51). In the mid-1960s, it

was reported that NS cells could induce a leukemoid reaction in the

tumor-bearing mouse, which was associated with the duration of

mammary carcinoma or A280 tumor growth and myeloid-cell

infiltration (52, 53). Later these cells were formally defined as

MDSCs (54), which play a critical role in immunosuppression

within the TME.

TME is a highly structural ecosystem comprising a diverse array

of cellular and non-cellular components. Non-cellular components

include ECM, tumor vasculature, chemokines and a variety of

soluble factors secreted by different cells. The cellular components

consist of versatile types of cells, including immune cells, stromal

cells, CAFs, ECs and others (55). These components make TME a

dynamic and complex three-dimensional (3D) environment.

Particularly benign non-immune cells, which are crucial parts of

the TME, contribute to the tumorigenesis by secreting cytokines

and recruiting immunosuppressive cells (56). For example, tumor

associated stromal cells(TASC) can communicate with other types

in the TME through cell-cell interactions or paracrine signaling,

releasing cytokines and mediators to promote the tumor

progression (57). Additionally, emerging mechanisms of cell
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interactions, such as the release of exosomes, digestion of cell-free

DNA and the clearance of apoptotic bodies (58), also play tumor-

promoting or tumor-inhibiting roles depending on tumor

heterogeneity. These findings suggest that targeting benign non-

immune cells within the TME represents a promising strategy to

suppress tumor development and improve cancer prognosis.

Immune cells within the TME are often affected by the

microenvironment to exhibit immunosuppressive effect. However,

extensive evidence highlights the close association between benign

non-immune cells within the TME and tumor progression,

targeting these cells provides a novel pathway for treating cancers.

For example, fibroblast activation protein (FAP), highly expressed

in CAFs across various cancer types but minimally expressed under

normal conditions (59), has emerged as a promising target.

Numerous studies have explored FAP-targeted therapies and yield

encouraging outcomes that underscore the potential of focusing on

benign non-immune cells in the TME to combat cancer (60–62).
2 Benign non-immune cell types

Stromal cells are essential cellular components in the TME that

participate in tumor immune response, metabolism, invasion, drug

resistance, etc. Stromal cells can be classified into multiple subtypes

based on different criteria, with the primary subtypes being CAFs,

ECs, pericytes (PCs) and adipocytes (57). Recent studies also

highlighted that Schwann cells (SCs) within the TME may be

associated with tumor progression (Figure 1).

These cells play different roles in the TME, collectively

contribute to tumor progression (63). For example, CAFs are

benign non-immune cells that have been extensively studied.

CAFs within the TME are capable of secreting a wide array of

factors to inhibit immune response and remodeling the ECM to

promote cancer metastasis or inhibit drug infiltration (64).

Adipocytes serve as an important energy source for tumor

survival and secret adipokines to impact cancer progression (65).

These benign non-immune cells play a pivotal role in tumor

progression and the role may vary across diverse cancer types,

thus understanding the heterogeneity of benign non-immune cells

is crucial for cancer therapy.
2.1 Cancer-associated fibroblasts

Fibroblasts are quiescent cells that participate in sustaining the

homeostasis in connective tissues by producing connective ECM and

secreting various cytokines, such as transforming growth factor-b
(TGF-b) (66). However, fibroblasts are often persistently activated to

participate in tissue repair, resulting in tissue fibrosis in the context

of cancer or persistent inflammatory stimulation (67). The persistent

wound healing-like process in the TME leads to the development

of a particularly active subset of fibroblasts (64), termed CAFs.

Compared with normal fibroblasts, CAFs are endowed with higher

metabolism, increased proliferation and migration capacities, such as

in BC, PDAC and CRC (68–70). In addition, CAFs differ from
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normal fibroblasts in their cellular morphology. While mature

fibroblasts display a thin, wavy and compact spindle-like shape.

CAFs, often classified as immature fibroblasts, have a larger, rounder

spindle-shape with conspicuous nucleoli (57).

CAFs are known to secret diverse cytokines and remodel ECM.

CAFs can secret multiple cytokines, chemokines, including

interleukin (IL)-6, IL-8, IL-10, IL-4, tumor necrosis factor (TNF),

TGF-b, C-X-C motif chemokine ligand (CXCL)9, CXCL10, C-C

motif chemokine ligand (CCL)5, CCL2, etc., that may directly or

indirectly contribute to tumor progression (64). The remodeling of

ECM is a complicated process, including the activation of a wide

array of signaling pathways and participation of transcription

factors (71). CAFs are capable of synthesizing various proteins,

including multiple types of collagens (I, III, IV, V), laminins,

fibronectins and hyaluronan that constitute the ECM (72, 73).

Lysyl oxidase (LOX) or lysyl hydroxylase 2 helps to promote the

cross-link of collagens to enhance ECM stiffness (74, 75). Besides,

TGF-b plays a crucial role in the ECM remodeling mediated by

CAFs. For example, TGF-b stimulates CAFs to synthesize collagen,

thereby facilitating the ECM deposition (76). Also, under the effect

of TGF-b, CAFs are capable of producing hyaluronan that further

increases ECM deposition and enhances its stiffness (77). In gastric

cancer, TGF-b activates downstream Smad2/3 to upregulate the

hyaluronan and proteoglycan link protein 1 (HAPLN1) production,
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which drives ECM remodeling (78). CAFs also remodel the ECM

under the effect of heat shock factor-1 (HSF-1). Mechanically,

Dickkopf-3 (DKK3), highly expressed in BC, CRC and ovarian

cancer, is upregulated under the effect of HSF-1. This upregulation

enhances the activation of classical Wnt signaling, leading to the

reduced degradation of Yes-associated protein (YAP) and

transcriptional coactivator with PDZ-binding motif (TAZ), this,

in turn, results in ECM remodeling mediated by CAFs (79).

However, the formation of ECM is a dynamic process, CAFs

produce matrix metalloproteinases (MMPs) to promote the

degradation of ECM, leading to enhanced motility and invasion

of cancer cells (64, 80). In BC, TGF-b induces significant expression

of MMP2 andMMP9 in a Smad3/4-depend manner. Overexpressed

MMP2 and MMP9 degrade ECM to promote BC metastasis (81).

Moreover, MMPs may serve as crucial components of the

angiogenic switch. CAFs-derived MMPs degrade the ECM that

allows VEGFA to interact with vascular endothelial growth factor

receptor (VEGFR), thus promoting tumor angiogenesis (82).

Beyond the complexity of CAFs modulating the mechanisms of

cancer progression. CAFs also exhibit high heterogeneity in their

origin and phenotype, such heterogeneity is strikingly associated

with tumor progression (83). Three subtypes of CAFs have been

identified across multiple cancers: inflammatory cancer associated

fibroblasts (iCAFs), matrix-remodeling myofibroblastic cancer
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FIGURE 1

Crosstalk between benign non-immune cells and cancer cells. CAFs secret TGF-b to promote ECM deposition and blocking TGF-b effectively
inhibits this procession. Besides, CAFs-derived MMPS contribute to ECM degradation. IL-6 secreted from CAFs promotes the release of SOCS3 and
various pro-tumor molecules via JAK/STAT, MAPK and PI3K pathway. Tumor-derived VEGF promotes EC proliferation and neovascularization.
Adipocytes release FFAs to supply energy for tumor survival and stored as triglycerides and cholesterol esters in tumor cells. Moreover, adipocytes
secret IL-6 and leptin to enhance tumor invasion and metastasis via PI3K/AKT and JAK/STAT3 pathway. CXCL8-derived from adipocytes upregulates
PD-L1 expression on tumors. Tumor cells release CXCL12 to attract SCs to the tumor cite by binding to CXCR4/7 and SCs produce IL-6, collectively
weakening pain signaling. Overproduced Wnt5a promotes the EMT of cancer cells via STAT3 signaling pathway. PCs-derived LIF inhibits tumor
angiogenesis via Src/P53 signaling pathway.
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associated fibroblasts (myCAFs) and antigen-presenting cancer

associated fibroblasts (apCAFs) with histocompatibility complex

class II (MHC-II) expression (84). iCAFs, which have low a-smooth

muscle actin (aSMA) expression, are found scattered throughout

the tumor mesenchyme and often located near to the blood vessels,

producing high amounts of inflammatory cytokines, such as IL-6.

In contrast, myCAFs are located in the periglandular region and

directly interact with tumor cells, exhibiting high aSMA expression

(85, 86). Besides, myCAFs are characterized by high expression of

TGF-b signaling and leucin-rich repeat containing 15 (LRRC15)

(84). Recent studies have also identified additional subtypes of

CAFs in several carcinoma types, such as lipid-laden CAFs, a

subtype of CAFs with adipocyte associated gene expression

identified in CRC and pancreatic cancer (87, 88). Moreover, a

new subtype of CAFs with highly activated metabolic state, termed

metabolic cancer associated fibroblasts (meCAFs), were identified

in loose type PDAC. meCAFs are marked by enhanced glycolytic

activity, while the associated cancer cells predominantly rely on

oxidative phosphorylation as their metabolic pathway, rather than

glycolysis (89). Furthermore, extracellular matrix cancer associated

fibroblasts (eCAFs) were identified in gastric cancer (90). Therefore,

the classification of CAFs exhibits high heterogeneity across

different tumor types and the roles that they exert on tumor cells

may not exactly the same.

One particular sample is the role of CAFs in PDAC, primarily

focusing on the subtypes iCAFs andmyCAFs (91). iCAFs are known to

influence tumor progression through multiple mechanisms. One key

mechanism is the upregulation of IL-6 expression in iCAFs, which

contributes to PDAC development by fostering an immunosuppressive

microenvironment (91). IL-6 activates several signaling pathways,

including JAK/STAT, MAPK and PI3K pathway, leading to the

release of negative regulator suppressor of cytokine signaling 3

(SOCS3) and various pro-tumor molecules (92). Preclinical studies

have shown that blocking IL-6 receptor enhances the therapeutic effect

of programmed cell death ligand 1 (PD-L1) and inhibiting IL-6

expression exhibited promise in suppressing pancreatic cancer

progression (93–95). Besides, CAFs can interact with cancer cells

within the TME to induce the production of iCAF phenotype. iCAFs

are characterized by hypoxia-associated gene expression profile and

metabolic features that are rich in the PDAC. Tumor-derived cytokines

(eg. IL-6) may transform normal fibroblasts (NFs) into iCAF, thereby

promoting the pancreatic cancer progression in a HIF-1a dependent

way (96). Moreover, cirCUL2 is specifically expressed in CAFs, and the

enrichment of cirCUL2 in PDAC can also induce the transformation of

NFs into iCAFs and drive PDAC progression by overexpressing IL-6

(97). myCAFs, on the other hand, have been reported to participate in

pancreatic cancer progression. A study co-cultured naive pancreatic

stellate cells (PSC), a precursor population of CAFs, and KrasLSL-

G12D/+; Trp53LSL-R172H/+; Pdx1-Cre (KPC) mice derived

organoids that demonstrating TGF-b signaling can promote the

transformation of CAFs into myCAFs while inhibiting iCAFs

formation by downregulating interleukin-1 receptor 1 (IL1R1)

expression in CAFs (98). Blocking TGF-b can disrupt the myCAFs

associated barrier and enhance the infiltration of drugs into the

pancreatic cancer (99). Targeting transforming growth factor beta
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receptor 1 (TGFbR1) in combination with gemcitabine increases

drug perfusion into the tumor core and improves the therapeutic

efficacy in pancreatic cancer (100). Furthermore, myCAFs can promote

PDAC progression via SOX4/MMP11 signaling axis. Recently, apCAFs

were identified in the pancreatic cancer, but not as abundant as iCAFs

and myCAFs (91, 101). Though apCAFs sustain low levels in

pancreatic cancer, their expression of MHCII molecules enables

them to present antigenic peptides and participate in tumor immune

regulation (84).

At least four distinct CAFs’ subtypes have been identified in

human BC, each with unique properties and characteristics: CAF-S1,

CAF-S2, CAF-S3, CAF-S4 (102). CAF-S1 and CAF-S4 are

myofibroblasts that accumulate in aggressive BC, whereas CAF-S2

and CAF-S3 are present both in tumor cells and normal cells (102),

implicating that they may serve as NFs in the TME. CAF-S1 attracts

CD4+CD25+ T lymphocytes by secreting CXCL12 and sustain their

presence through OX40 ligand (OX40L) and junctional adhesion

molecule 2 (JAM2). CAF-S1 supports T lymphocytes survival and

transforms them into CD25HighFOXP3High phenotype, namely

regulatory T cells (Tregs), through the B7 homolog 3 (B7H3),

CD73, and dipeptidyl peptidase 4 (DPP4). Additionally, CAF-S1

enhances the efficacy of these cells to further impair T cell

proliferation (102). In the meanwhile, CAF-S1 is capable of

promoting luminal BC metastasis through cadherin 11 (CDH11)/

osteoblast cadherin (103). The infiltration of Tregs into the BC stroma

is associated with CD73 expression in CAF-S1 and the blockade of

CD73 can effectively reduce CD73 mediated immunosuppression

(104). These findings suggest that CD73 could serve as a promising

therapeutic target to overcome the immunosuppressive

microenvironment induced by CAF-S1. In contrast, CAF-S4

exhibits a negative correlation with Tregs’ infiltration, suggesting

that CAF-S4 may exert positive anti-tumor effect in the TME of BC.

Similarly, CAFs are also crucial components in the progression of

hepatic pathogenesis. Single-cell RNA sequencing has classified CAFs

subpopulation in liver cancer into iCAFs and myCAFs (105). The

hyaluronan synthase 2 (HAS2) is strikingly upregulated in myCAFs

and has been demonstrated to promote cholangiocarcinoma (ICC)

progression. iCAFs can directly interact with tumor cells through

secreting hepatocyte growth factor (HGF), thereby enhancing ICC

growth (105). Additionally, some new subtypes of CAFs have been

identified in HCC, namely vascular cancer associated fibroblasts

(vCAFs), mesenchymal cancer associated fibroblasts (mCAFs), lipid

processing cancer associated fibroblasts (lpCAFs), apCAFs and

CD36+ CAFs. Among these, CD36+ CAFs are particularly notable

for promoting HCC progression. CD36 facilitates the uptake of

oxidized low-density lipoprotein (LDL), which induces macrophage

migration inhibitory factor (MIF) expression in CD36+ CAFs via a

lipid peroxidation/p38/CEBPb signaling pathway. Consequently,

CD33+ MDSCs, which are associated with immunosuppressive

microenvironment, are recruited into the HCC tissue in a manner

dependent on both macrophage MIF and CD74 (106). CD36 may

serve as a potential target for tumor treatment, and combining CD36

inhibitors with anti-programmed death protein 1 (PD-1) has been

shown to restore the anti-tumor immune response of T cells (106). A

recent study also found a new subpopulation of CAFs in liver cancer,
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termed F5-CAF, which is associated with increased cancer stemness

and poor prognosis. Although the exact tumor-promoting

mechanisms remain unclear, F5-CAF may facilitate liver cancer

progression by enhancing the stemness of tumor cells (107).

The study of CAFs’ subpopulation in lung cancer is not as clear

as that studied in pancreatic cancer. CAFs in NSCLC can be divided

into three subtypes based on their function in the TME, termed

subtype-1, subtype-2 and subtype-3. Subtype-1 plays a robust

protective role of cancer cells. Subtype-2 provides moderate

tumor protection effect, while subtype-3 plays a minimal

protective role (108). Both subtype-1 and subtype-2 highly

express HGF and fibroblast growth factor (FGF)7, which supports

NSCLC cell survival through inhibiting anaplastic lymphoma

kinase (ALK) inhibitors and epidermal growth factor receptor

(EGFR) inhibitors. In contrast, subtype-3 is often associated with

good prognosis, enhancing T lymphocytes and monocytes

infiltration via a wide array of chemokines, such as CXCL11,

CXCL12 and CXCL14 (108). For cases with subtype-1or -2 CAFs,

targeting HGF and FGF7 may hold promise for improving lung

cancer therapy. But TME is a complicated system, including the

participation of various signaling pathways, whether targeting these

factors has an influence on other pathways that are associated with

tumor progression needs further exploration. Another study

divided CAFs into seven subtypes in lung cancer: clusters 1 to

clusters 7 (109). These subtypes likely influence tumor progression

through various mechanisms. For example, cluster-1 is associated

with epithelial-mesenchymal transition (EMT) and is characterized

by high expression of ECM proteins and TGF-b. TGF-b is often

thought to promote tumor growth by enhancing glycolysis and

lactic acid production in CAFs, providing metabolic substrates for

tumor cells (110). This suggests that cluster-1 is probably a tumor-

promoting phenotype of CAFs in lung cancer.

CAFs, as one of the most studied benign non-immune cells in

the TME, play a diverse role in different cancers and exhibit a

significant heterogeneity. Strategies to target CAFs hold promise to

cancer therapy. There are already many methods to treat cancer

based on CAFs, including blocking TGF-b mediated signaling,

targeting FAP, etc. Some of these methods have already moved

into clinical research. A study used galunisertib, a TGF-b receptor

inhibitor, plus gemcitabine effectively improve the overall survival

rate of patients with pancreatic cancer compared to gemcitabine

alone. And this combination only added minimal toxicity (111).

Additionally, galunisertibl plus neoadjuvant chemotherapy allowed

most patients with locally advanced rectal cancer to garner better

complete response rate (112). It is reported that a dual-target agonist

aimed at FAP and 4-1BB induced effective drug response in patients

with advanced solid tumor without the occurrence of liver toxicity

(113). These clinical trials revealed that targeting CAFs within the

TME is promising for cancer therapy. However, there are potential

risks behind these strategies. For instance, the blocking of TGF-b
may lead to unexpected adverse effect. An inhibitor of TGF-b1
receptor, was reported to induce anemia, fatigue, hypoalbuminemia,

etc. (114). The potential mechanism can be attributed to the

autoimmune response. Moreover, it is of great significance to

combine TGF-b with other therapies, such as chemotherapy drugs
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and ICI. Single drug therapy may not acquire persistent therapeutic

effect and the drug tolerance often occurred. As for FAP targeted

therapy, the expression of FAP in normal tissue may result in

unexpected toxicity in normal tissues or organs and it would

benefit from muti-target and drug combination.
2.2 Endothelial cells

The formation of tumor blood vessels is crucial for tumor growth

and metastasis, supplying the necessary energy and nutrients to

sustain tumor progression (115). ECs, as indispensable components

of the vascular system, construct the inner lining of all sub-vascular

compartments, ensuring the delivery of nutrients and energy to

distant tissues and organs (116). Under normal physiological

condition, ECs remain in a quiescent state, but can be activated

into tumor-associated endothelial cells (TECs) through multiple

mechanisms. For example, the TME is often characterized by

hypoxia, which upregulates VEGF release in a paracrine manner,

stimulating EC proliferation and blood vessel formation (117). The

regulation of ECs is closely related to tumor angiogenesis in the

context of cancer or tumor. VEGF/VEGFR is a classical signaling

pathway that promotes EC proliferation. There are also other

pathways that may contribute to EC proliferation. Ang-Tie axis on

ECs helps to regulate blood vessel formation, stability and

inflammation (118). In normal condition, Ang1 binds to Tie2 and

activates Tie2 through phosphorylating Tie2, which activates

downstream signals to regulate vascular stability. However, Ang1

and Ang2 may play opposite roles in blood vessel formation in the

context of cancer. Ang2, low in the normal physiological condition

but often highly expressed in the context of cancer, competitively

binds to the Tie2 receptor with Ang1, reducing the stability of blood

vessels and establishing a vascular environment that facilitates cancer

cell metastasis (118). Notch signaling pathway is also actively

involved in the process of tumor angiogenesis. ECs express delta-

like protein 4 (DLL4) and Notch 1 when stimulated by VEGF. The

DLL4/Notch transduction is able to negatively reduce the sensitivity

of ECs to VEGF, thus suppressing EC proliferation and sprouting. At

the same time, DLL4 reduces VEGFR2 expression in ECs to further

inhibit tumor angiogenesis (119). In addition to their role in vascular

formation, ECs interact closely with immune cells due to their

location on the interior surface of blood vessels, influencing the

tumor immune therapy. For example, TECs highly express natural

killer group 2D (NKG2D) ligands, inducing nature killer (NK)-

intrinsic signal that desensitizes the immune response of NK cells,

weakening pro-inflammatory cytokines and cytotoxic granule

mediated tumor-killing effects (120). Targeting ECs has emerged

as one of the most promising strategies for cancer adjuvant therapy.

However, the heterogeneity of ECs across different cancer types

necessitates a deeper understanding of their roles in diverse tumoral

contexts. Elucidating the specific functions of ECs in various cancers

is essential for developing more effective therapeutic approaches.

HCC is often associated with poor prognosis partly due to its

highly vascularized nature. HCC cells can produce significant amounts

of VEGF, ECs specific vasculogenic and angiogenic growth factors,
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contributing to the angiogenesis of many solid tumors. Tumor-derived

VEGF activates quiescent ECs in a paracrine manner, thereby driving

ECs’ proliferation and HCC metastasis (27–29). However, researchers

have discovered additional mechanisms through which ECs contribute

to HCC invasion and metastasis. Diacylglycerol kinase gamma

(DGKG), specifically hyper-expressed in tumor vascular ECs of

HCC, promotes tumor angiogenesis and facilitates the formation of

an immunosuppressive microenvironment under hypoxia (121).

Mechanically, HIF-a upregulates DGKG expression and recruits

ubiquitin-specific peptidase 16 to stabilize ZEB2 through

deubiquitination, enhancing TGF-b1 secretion. This cascade

promotes blood vessel formation and Treg differentiation, forming

an immunosuppressive microenvironment to further support HCC

survival (121). Besides, ECs in HCC exhibit increased activity in the

fructose metabolism pathway, notably through the upregulation of

fructose transporter SLC2A5 and the fructose-metabolizing enzyme

ketohexokinase (KHK). Hypoxia-induced elevated fructose

metabolism, activating AMPK to fuel mitochondrial respiration and

enhance EC migration (122). Targeting this pathway may present a

promising strategy to inhibit HCC angiogenesis. Additionally,

sphingosine-1-phosphate receptor 1 (S1PR1), which is specifically

and highly expressed in HCC compared to para-tumor tissues, has

been shown to promote HCC angiogenesis by reducing ceramide

levels (123). This suggests that S1PR1 may be a new target to liver

cancer therapy. ECs can also influence the function of immune cells in

the TME. A recent study discovered a novel subtype of CXCL12+

TECs that promote the immune resistance of HCC. These cells secret

CXCL12, blocking the differentiation of CD8+ naive T cells to CD8+

cytotoxic T cells. CXCL12+ TECs also recruit MDSCs to the TME,

establishing an immunosuppressive environment that impairs

immune responses against HCC (124). Moreover, another study

exhibited that TECs induce the exhaustion of tumor-infiltrating

CD8+ T cells in HCC by expressing glycoprotein nonmetastatic

melanoma protein B (GPNMB). Silencing GPNMB largely reversed

this immunosuppressive effect (125).

Lymph nodes metastasis is an important hallmark of gastric

cancer progression. A co-culture experiment with gastric cancer cells

and lymphatic endothelial cells (LECs) demonstrated that cancer

cells can stimulate LECs to secret CXCL1 via NF-kB pathway.

CXCL1, in turn, promote LECs’ migration and tube formation,

thereby facilitating gastric cancer metastasis (126). Similarly,

CXCL1 secreted by tumor associated lymphatic endothelial cells

(TLECs) contributes to gastric cancer adhesion, invasion and

metastasis by activating integrin b1-FAK-AKT signaling pathway

(127). These findings suggested that targeting CXCL1 may be a

promising strategy to treat gastric cancer. Furthermore, gastric

cancer cells overexpress Biglycan (BGN), which stimulates VEGF

expression through the interaction between NF-kB and HIF-a.
Overexpressed VEGF leads to gastric cancer angiogenesis in a

chronic activation manner (128). Neuropilin-2, which is highly

expressed in the tumor vessel lining has been shown to enhance

VEGF-induced ECs’ proliferation and migration, highlighting its

role in gastric cancer progression (129). Additional studies have

identified other potential targets associated with gastric cancer

metastasis. For instance, transglutaminase-2 (TGM2) and neuro
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oncological ventral antigen 2 (NOVA2) have been implicated in

poor prognosis for gastric cancer patients (130, 131).

BC dissemination frequently involves in lymphatic vessels.

Tumor-conditioned LECs promote BC angiogenesis and direct its

dissemination and proliferation via CCL5. BC cells secret IL-6,

which triggers STAT3 phosphorylation and downstream signal

activation in LECs, thereby driving CCL5 expression in these cells

(132). Besides, triple-negative breast cancer (TNBC) cells are

capable of secreting plasminogen activator inhibitor-1 (PAI-1),

which stimulates CCL5 secretion from LECs in a paracrine

manner. CCL5, in turn, accelerates PAI-1 secretion, forming a

positive loop that accelerates TNBC invasion and metastasis

(133). Recently, a study proposed a novel mechanism through

which ECs contribute to BC dispersion. Regulator of G-protein

signaling 5 (RGS5)+ ECs can promote tumor lymph nodes

dissemination and drug resistance by sensing oxidative stress

(134), which provides a potential target for BC therapy.

ECs are also actively involved in CRC progression. The

expression of G protein-coupled receptor 63 (GPR63) is

significantly elevated in CRC. EC-derived sphingosine-1-

phosphate (S1P) promotes CRC migration by enhancing the

interaction between Src and GPR63, which subsequently initiates

JAK2/STAT3 pathway activation (135). In CRC, adipocyte

enhancer-binding protein 1 (AEBP1) is frequently upregulated in

ECs. Knockdown of AEBP1 was proved to suppress tumorigenesis

and micro-vessel formation. This has implications that AEBP1 may

regulate genes that are closely associated with angiogenesis,

including aquaporin 1 (AQP1) and periostin (POSTN) (136).

Furthermore, CRC cells also actively interact with ECs within the

TME. miR-221-3p is significantly upregulated in patients with CRC

compared to healthy individuals. CRC derived extracellular vesicles

(EVs) containing miR-221-3p regulate STAT3/VEGFR-2 signaling

axis by targeting SOCS3, leading to enhanced EC proliferation,

migration and angiogenesis (137). CRC-derived cationic amino acid

transporter 1 (CAT-1) positive EVs, known for transporting extra

arginine, facilitate ECs’ growth and blood vessel formation by

upregulating arginine transport and cGMP metabolism (138).

ECs are also convinced to enhance stemness of cancer cells when

GLTSCR1 is knocked down. The depletion of GLTSCR1 promotes

the transition of ECs into tip cells by regulating neuropilin-1

expression and upregulates JAG1 expression which is closely

related to enhanced cancer cell stemness via activating notch

signaling pathway (139).

ECs in the TME are often associated with tumor angiogenesis

and dissemination. In addition to the classical angiogenesis signals,

studies revealed other potential pro-angiogenic targets based on

cancer types, such as DGKG in HCC, BGN in gastric cancer and

AEBP1 in CRC. The emergence of these targets sheds light on

cancer therapy. Besides, there are already many drugs gained good

outcomes in the clinical practice. Bevacizumab, a VEGF receptor

blocker, effectively slowed the progression of metastatic renal cancer

(140). Bevacizumab in combination with atezolizumab (a type of

PD-L1 inhibitor), exhibited encouraging outcome in patients with

unresectable HCC (141). However, more than half of the subjects

experienced grade 3 or 4 hypertension. Trebananib (a recombinant
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peptide-Fc fusion protein capable of disrupting the interaction

between Ang1/2 and Tie2) may enhance the anti-tumor effect of

Sunitinib (a VEGF receptor blocker) but as well as elevating the

drug toxicity (142). Most of the drugs in the clinical practice based

on muti-pathway blockade, such as VEGF, platelet derived growth

factor (PDGF) and FGF. The blockade of a single pathway can

trigger the compensatory effects in tumors, leading to drug

resistance and increased tumor angiogenesis by activating other

pro - angiogenic pathways (143, 144).
2.3 Pericytes

PCs are referred to as mural cells that envelop the capillaries,

which actively interact with ECs to collectively regulate vascular

formation, stabilization, remodeling and function (145). The

common markers of PCs include chondroitin sulfate proteoglycan

4 (CSPG4), CD146 and platelet-derived growth factor receptor-beta

(PDGFR-b) (146). As important components in the TME, PCs are

involved in tumor progression, invasion and migration.

Endothelium, an abundant source of platelet-derived growth

factor B (PDGFB), is capable of recruiting PCs into the blood

vessel by binding to PDGFR-b to sustain the integrity and stability

of tumor blood vessels (147). Also, ECs produce nitric oxide (NO)

to stimulate the release of VEGF from PCs, supporting EC

proliferation and survival (148). This interaction between PDGFB

and PDGFR-b also promotes PCs proliferation and migration by

activating Ras superfamily proteins (147). However, high levels of

PDGFB activate the PDGFR - b/cyclooxygenase-2 (COX-2)

signaling pathway, increasing the levels of pro-inflammatory

factors, thereby exacerbating the hematogenous metastasis of BC

(149). Additionally, PCs also contribute to the formation of a pre-

metastatic microenvironment. The ablation of krüppel-like factor 4

(KLF4) effectively suppresses PCs’ proliferation and lung metastasis

(150). This suggests that PCs are endowed with high metastatic

property in the context of cancer without knocking KLF4. Also,

tumor-derived exosomes activate KLF4 in PCs, leading to enhanced

ECM production and establishment of a fibronectin-rich niche

which is conducive to the hematogenous metastasis (151). The

metabolism of PCs may also undergo certain changes. Hexokinase 2

(HK2)-driven glycolysis elevates in PCs and upregulates ROCK2-

MLC2 mediated contractility. This contractility may lead to

impaired blood vessel function (152). Additionally, PCs also

interact with immune cells within the TME. PCs are capable of

recruiting TAMs into the TME to form an immunosuppressive

microenvironment by secreting large amounts of IL-33.

Mechanically, PDGF-BB stimulates PCs and activates SOX7

transcriptional factor, leading to the release of IL-33 (153). PCs

secret CXCL9 and CXCL12 to recruit CD8+ T cells expressing

CXCR3 and CXCR4 into the TME. At the same time, CXCL12

promotes the expression of TGF-b and IL-10, which weakens the

proliferation and antigen-presenting capacity of T cells (154).

However, the function of PCs may vary across cancer types that it

is better to understand the function of PCs based on

cancer heterogeneity.
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In addition to regulating the integrity and stability of the

tumoral blood vessel. PCs may exert specific roles on CRC. PCs

may serve as a potential promoter in the process of colorectal cancer

liver metastasis (CRCLM). TRP channel-associated factor 2

(TCAF2), which serves as a partner protein of the transient

receptor potential cation channel subfamily M member 8

(TRPM8), is overexpressed in PCs of CRCLM patients. TCAF2

inhibits TRPM8 expression and activation, leading to the secretion

of Wnt5a. Overproduced Wnt5a is able to promote EMT via the

activation of STAT3 signaling pathway (155). Furthermore, PCs

secret high levels of TGF-b in response to the stimulation from CRC

cells. TGF-b initiates the autocrine activation loop that produces

insulin-like growth factor binding protein-3 (IGFBP-3) to promote

cancer invasion and migration (156). Moreover, a study identified a

novel subpopulation of PCs that highly express transcription factor

21 (TCF21) (157). The increased TCF21 is able to remodel the

perivascular metastatic microenvironment which benefits from

enhanced perivascular ECM stiffness, collagen rearrangement and

basement membrane degradation (157). However, this pro-tumor

effect can be reversed by increasing the production of integrin-a5,
which activates FAK/PI3K/AKT/DNMT1 axis.

PCs exhibit a unique secretome, with high secretion of IL-32, in

EGFR mutated lung cancer patients. The potential mechanism is that

Yin-Yang 1 (YY1) signaling pathway upregulates the production of

IL-32. IL-32 subsequently activates the b5-integrin-Src-Akt pathway
to reduce the sensitivity to the third-generation tyrosine kinase

inhibitors (TKIs) in EGFR mutated lung cancer patients (158).

CD248 is expressed across tumor stromal cells, especially fibroblasts

and PCs. However, the role that CD248+ PCs play on tumor is less

studied than CD248+ fibroblasts. A recent study revealed that CD248

could suppress Wnt signaling and upregulates the expression of

Osteopontin (OPN) and SERPINE1, which are associated with

increased tumor volume. The upregulation of OPN and SERPINE1

collectively promotes tumor angiogenesis and supports lung cancer

cell growth (159). HK2 positive PCs are characterized by elevated

glycolysis, this elevation could upregulate ROCK2-MLC2 mediated

contractility, resulting in aberrant blood vessel function, such as

decreased blood vessel diameter and collagen, which are

advantageous to lung cancer metastasis (152).

PCs are also involved in BC progression through multiple

mechanisms. PDGFB is originally thought to sustain the stability

and integrity of blood vessel. However, PDGFB-to-PDGFR-b tumor–

stroma signaling also promotes the initiation and metastasis of cancer

cells in the context of BC (160). Moreover, purified PCs are capable of

supporting the rapid growth of BC cells when co-cultured with them.

This supporting effect could be attributed to the establishment of a

niche beneficial to BC proliferation (161). A recent study exhibited

that PCs secret insulin-like growth factor 2 (IGF2), which plays a

significant and specific pro- proliferative effect on BC. This pro-

proliferative effect could be inhibited through suppressing IGF2-

mediated signaling (162). Besides, extracellular nicotinamide

phosphoribosyltransferase (eNAMPT), which is highly expressed in

the TNBC, can promote the angiogenesis of TNBC by attracting and

activating NG2+ PCs. This process can be achieved through

synergizing with the classic factor PDGF-BB. It triggers the pro-
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inflammatory activation of PCs through the NF-kB signaling pathway,

manifested by the overexpression of key chemokines (CXCL8,

CXCL1, CCL2) and vascular cell adhesion molecule 1 (VCAM1)

(163). However, PCs may also serve as potential inhibitors of BC

progression. KAI1 (CD82), specific and highly expressed in PCs rather

than ECs, is able to inhibit tumor angiogenesis through promoting the

release of leukemia inhibitory factor (LIF) of PCs via Src/P53 pathway.

In the meanwhile, KAI1 directly interacts with VEGF and PDGF to

prevent binding to the receptors (164). This mechanism may provide

us with a novel anti-angiogenic method.

PCs are crucial components that regulate the blood vessel

stability. However, PCs are also involved in cancer progression by

promoting cancer metastasis and angiogenesis. The study of PCs in

multiple cancers provide us with some attractive targets. There are

already drugs targeting PDGFR in the phase of clinical trial.

However, single-target drugs do not acquire satisfying clinical

outcomes. Combined therapy can synergistically exert anti-tumor

effects, reduce the occurrence of adverse effect and drug tolerance.

Olaratumab combined with doxorubicin prolongs the overall

survival rate and reduces the occurrence of adverse events

compared to single drug therapy of doxorubicin (165).
2.4 Adipocytes

Adipose tissue, an active metabolic store and endocrine organ

capable of secreting a wide array of adipokines, plays a significant

role in promoting tumor development (166). Adipocytes primarily

store long-chain fatty acids as triacylglycerol and cholesterol esters

in the form of lipid droplets (167). Adipose tissue can be divided

into three types based on adipocytes constituents: brown adipose

tissue, white adipose tissue and beige adipose tissue (168). White

adipose tissue constitutes more than 95% of the total fat tissue,

while brown adipose tissue accounts for 1-2%. Beige adipose tissue

is more difficult to be quantified, as it is scattered under the skin

near the spine and clavicle and can-not be isolated as a whole (169).

White adipose tissue is responsible for storing energy such as lipid

and is relatively abundant, whereas brown adipose tissue is a highly

specialized type that consumes energy and generates heat in a

mitochondrial uncoupling protein 1 (UPC1)-dependent manner,

thus sustaining glucose homeostasis and enhancing insulin

sensitivity. UPC1 is a mitochondrial carrier that mainly expressed

in brown adipose tissue, facilitating heat generation by dissipating

the protonmotive force rather than adenosine triphosphate (ATP).

Beige adipose tissue also generates heat in a mitochondrial UPC1-

dependent and independent manner (170–172).

Adipocytes can be activated into cancer-associated adipocytes

(CAAs)in the presence of tumor cells, leading to the altered adipose

function and paracrine signaling (167). CAAs play an essential role

in promoting tumor progression by secreting multiple adipokines,

such as CCL2, CCL5, leptin, and adiponectin (173). Besides,

adipocytes can undergo metabolism reprogramming in the

context of cancer. For instance, the secretions of BC cells can

trigger the breakdown of adipocytes, releasing free fatty acids

(FFA), which cancer cells can then utilize as an energy source to
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support their survival (174). However, adipocytes may also exert

different roles depending on cancer types. Thus, it is important to

elucidate the mechanisms through which adipocytes promote

tumor development and select appropriate targeted therapies

according to these mechanisms.

BC is a highly malignant cancer type characterized by its

aggressive invasion, rapid proliferation and extensive dissemination.

Adipocytes play an important role in the progression of BC (173).

Adipokines, which are key secretions from adipocytes, promote BC

progression. Leptin, as one of the most important adipokine, can

promote the EMT of BC cells, thereby enhancing tumor metastasis,

through the activation of the PI3K/AKT signaling pathway and the

upregulation of pyruvate kinase M2 (PKM2) (175). Besides,

adipocyte-derived leptin and IL-6 accelerate BC metastasis via Lysyl

Hydroxylase-2 upregulation mediated by PI3K/AKT and JAK/

STAT3 pathway (176). Adiponectin, another important adipokine

secreted by adipocytes, has been shown to inhibit BC development. It

is reported that adiponectin induces a robust autophagosomes

accumulation, leading to BC cells apoptosis via STK11/LKB1-

mediated activation of the AMPK-ULK1 axis (177). Moreover,

adiponectin may inhibit BC development by reprogramming

metabolism, suppressing fatty acid synthesis and stimulating

lipophagy-mediated lipolysis fatty acid oxidation (FAO) (178). EVs

are also important factors that are involved in tumor progression.

CAA derived EVs have been shown to protect BC cells from drug-

induced apoptosis in vitro. This protection may be associated with

Hippo signaling pathway and blocking this pathway showed promise

to suppress growth- promoting effect by CAA derived EVs (179).

Adipocytes are also capable of secreting oleic acid, protecting TNBC

cells from lipid peroxidation and ferroptosis when ACSL3 exists

(180). Additionally, adipocytes also influence the function of immune

cells in the BC microenvironment. Adipocytes-derived CXCL8

remodels the immune microenvironment of BC by suppressing the

infiltration of CD4+/CD8+ T cells and upregulating CD274 (namely

PD-L1) expression in TNBC (181).

Adipocytes can also regulate the progression of hematological

neoplasms, such as acute lymphoblastic leukemia (ALL) and acute

myeloid leukemia (AML) (182, 183). Marrow adipocytes (MATs) are

crucial components of the bone marrow microenvironment and play

an active role in promoting hematological neoplasms (182). AML

blasts can hijack MATs metabolic procession and transfer fatty acids

from the MATs to the AML blasts, providing energy to support

tumor survival (182). As we elucidated before, adipocytes secret

multiple adipokines to influence tumor progression. For instance,

leptin, has been shown to contribute to hematological malignancies

development via JAK/STAT pathway, which regulates the

downstream signaling pathway such as PI3K/AKT signaling and

ERK1/2 (184). Besides, high levels of leptin in concert with low

adiponectin can increase the risk of blood cancer occurrence (185).

However, MATs may also inhibit blood cancer growth. A study

revealed that AML can suppress MATs, leading the dysregulation of

endogenous hematopoietic stem and progenitor balance. The

researchers subsequently administered a peroxisome proliferators-

activated receptor (PPAR)g agonist in vivo to induce adipocytes

production and found that leukemia growth was repressed,
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suggesting that MATs may play dual roles in blood cancer

development (186).

Adipocytes may also affect CRC progression through multiple

mechanisms. CRC cells can reprogram adipocytes into CRC-

associated adipocytes in vivo. They support cancer cell survival

through secreting metabolites, such as lactate, and promote the lipid

storage in cancer cells, thus providing energy to support their

survival (187). Moreover, adipocytes are capable of secreting

various adipokines. Adipocytes-derived leptin promotes colorectal

carcinogenesis by binding to OB-R, a leptin specific receptor,

causing a cascade of signals, including c-Jun, Akt, and JAK/

STAT3 signaling pathways. Adiponectin, as another important

adipokines, may serves as a potential anti-cancer factor that

suppress CRC development via the activation of AMPK (188).

Besides, adipocytes release TNF-a and IL-6 through Fas, NF-kB
and MAPK signaling pathway. Increased TNF-a also promotes the

lung metastasis of colon cancer (189). Adipocytes within the TME,

may also contribute to the chemoresistance of CRC. Microsomal

triglyceride transfer protein (MTTP) is especially increased in CRC

patients with high fat ratio, this adipocyte-derived MMTP reduces

the CRC patients’ reactivity to chemotherapy drug, oxaliplatin. The

potential mechanism may be that the interaction between MMTP

and proline-rich acidic protein 1 (PRAP1) reduces polyunsaturated

fatty acids ratio and lipid reactive oxygen species (ROS) levels (190).

Adipocytes derived EVs can impact several critical traits of

prostate cancer, such as elevated glucose consumption, lactate

release and ATP production, thus promoting cancer proliferation,

invasion and migration (191). This promoting effect may be

associated with enhanced Akt/HIF-a axis-related Warburg effect

(191). Besides, adipocytes directly stimulate the release of

macrophage inhibitory cytokine-1 (MIC-1) from pancreatic cancer

cells, which is associated with enhanced tumor progression, and IL-8

from prostate stromal fibroblasts through upregulating lipolysis and

FFAs release (192). IL-8 recruits granulocytic/polymorphonuclear

MDSCs (PMN-MDSCs) into the TME via IL-8/CXCR2 axis,

continuously contributing to prostate cancer development (193).

In addition, IL-8 hyperactivates PPARa to reduce glucose utilization

and increase fatty acid catabolism. This effect significantly inhibits

CD8+ T cell proliferation and weakens their anti-tumor effects (194).

However, adipocytes may also serve as a potential protecter in the

development of prostate cancer. Exogenous adiponectin protects

normal tissues from the damage caused by radiotherapy. Meanwhile,

it confers no protection for the prostate cancer cells (195). This

suggests that adipocytes may also play a positive effect in prostate

cancer. However, it remains unclear whether the administration of

exogenous adiponectin interferes other signaling pathways in cancer

cells, thereby promoting cancer progression. Therefore, more careful

evaluations are needed to ensure the safety of exogenous

adiponectin administration.

Adipocytes, traditionally regarded as energy storage cells, also

serve as critical components in the TME. In the context of cancer,

adipocytes supply energy, particularly in the form of FFAs to

support tumor growth. Besides, adipokines secreted from

adipocytes have been reported to be involved in multiple cancer

progression. The study of adipocytes in the context of different
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cancer also provides us with more strategies to treat cancer based on

adipocytes. It is promising to block the adipokines from adipocytes

and disrupt adipocytes mediated metabolism. However, most of the

drugs targeting adipocyte associated signaling still stay in the

preclinical research. It is of great significance to transform the

preclinical research into clinical practice.
2.5 Schwann cells

SCs, the most abundant glial cells in the peripheral nervous

system (PNS) and indispensable components of the TME (196), play

vital roles in nerve repair and regeneration. Schwann cell precursors

(SCPs), originating from neural crest cells, first differentiate into

immature SCs and later progress into different lineages: myelinating

SCs and non-myelinating SCs (197). SCs are widely distributed

throughout the body and they become an attractive target for

cancer cells, particularly during the early stages of the tumor

progression and TME formation (198, 199). In the early stage of

tumor development, SCs can directly attract tumor cells, creating an

injury-like microenvironment that facilitates perineural invasion

(PNI) and tumor innervation (200). Through PNI, cancer cells

spread to distant organs, leading to unfavorable dissemination.

Additionally, SCs interact indirectly with other non-malignant

cells, such as immune cells and CAFs in the TME, contributing to

an immunosuppressive microenvironment (200). However, the role

of SCs in the TME varies across different tumor types due to the

tumor heterogeneity and understanding the cancer-promoting

mechanisms of SCs in different cancers is crucial for cancer therapy.

Numerous studies have shown that SCs contribute to pancreatic

cancer development through multiple mechanisms. SCs have been

linked to delayed diagnosis of PDAC. PDAC-derived CXCL12 can

induce the infiltration of SCs into the tumor site. By binding to

CXCR4/CXCR7 on the SCs, SCs downregulate the expression of

multiple pain associated targets to attenuate pain perception, while

IL-6 secreted by activated SCs suppresses pain signaling, collectively

delaying pancreatic cancer diagnosis (198, 201). Another example is

that PDAC-derived tissue inhibitor of metalloproteinase 1 (TIMP1)

stimulates CCL7 secretion from SCs and forms a paracrine feedback

loop that continuously drives the invasion and metastasis of PDAC

(202). Tumor-associated non-myelinating Schwann cell abundance

was associated with an immunosuppressive environment and poor

prognosis. These cells expressed plasmacytoma variant translocation

1 (PVT1) to promote the activation of kynurenine pathway in

pancreatic cancer, contributing to tumor immune exclusion (203).

Additionally, SCs secrete significant amounts of TGF-b, activating
the TGF-b-SMAD signaling pathway in cancer cells, which is

correlated with enhanced PDAC invasiveness (204). Moreover,

another example that injecting cancer cells into sciatic nerve of

nude mice to establish a dorsal root ganglion (DRG) co-culture

system with cancer cell lines, found that pancreatic cancer cells

induce SCs autophagy via NGF/ATG7 pathway, thus promoting

pancreatic cancer PNI (205). Beyond these direct interactions, SCs

engage with other cells in PDAC microenvironment. For instance, a

study showed that SCs stimulate the proliferation and migration of
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1561577
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1561577
PDAC cells through the Midkine signaling pathway and facilitate the

transition of CAFs into iCAFs through the release of IL-1a (206).

Previously, it has been elucidated that TGF-b signaling promotes the

transformation of NFs into myCAFs instead of iCAFs by

downregulating IL1R expression (98).

Several other studies have also demonstrated that SCs act as a

potential promoter in melanoma. Melanoma cells can reprogram

SCs into repair-like SCs (rSCs), initiating a nerve injury-like

response. Once activated, rSCs significantly alter the melanoma

microenvironment and promote tumor growth by modulating the

immune system and remodeling the ECM both in vitro and in vivo

(207). Moreover, SCs in the skin suppress anti-tumor response by

downregulating pro-inflammatory signaling. Reprogrammed rSCs

in melanoma increase the production of anti-inflammatory factors,

such as prostaglandin E2 (PGE2), COX-2 and lipoxins A4/B4 to

suppress anti-tumor T cells in a SCs-dependent manner (208).

Furthermore, PGE produced by SCs also effectively inhibits

proliferation of CD3/CD28 activated T cells and upregulates PD-

1 expression on both CD4+ and CD8+ T cells (209). In addition to

suppressing T cell proliferation, evidence also exhibited that SCs

may inhibit dendritic cells (DCs) function. DCs co-cultured with

melanoma-activated SCs can-not stimulate T cell activation and

proliferation in vitro, suggesting that SCs may transform DCs into

an immunosuppressive phenotype (210). Additionally, a recent

finding indicated that dietary palmitic acid (PA) induced

melanoma metastasis is associated with a pro-regenerative state of

tumor-activated SCs (211).

Recent findings also reported that SCs may be involved in lung

cancer progression. SCs can promote EMT and motility of lung

cancer cells by elevating transcription factors Snail and Twist

expressions. Blocking Snail and Twist expression significantly

eliminated this enhanced motility. The potential mechanism is

that SCs-derived CCL5 is responsible for lung cancer EMT. At

the same time, CCL5 activates the PI3K/AKT/GSK-3 b/Snail-Twist
pathway by binding to CXCR2, contributing to enhanced lung

cancer invasiveness and dissemination (212). Additionally, SCs-

derived exosomes containing miRNA-21-5p were proved to

promote lung cancer proliferation and lymph nodes metastasis

both in vitro and in vivo, suggesting that miRNA-21-5p may

serve as a new therapeutic target for lung cancer (213).

Furthermore, a previous study showed that stress-induced

epinephrine elevation facilitates BC tumorigenesis by enhancing

cancer stem cell (CSC) factors secretion (214). Besides, SCs

contribute to lung cancer chemotherapy resistance by establishing

an adrenergic microenvironment. Mechanistically, SCs express

catecholamine-synthesizing enzymes and produce adrenaline,

leading to enhanced chemoresistance of lung cancer via activating

YAP/TAZ (215). In the meanwhile, SCs are reported to interact

with immune cells in lung cancer, so that they help to establish an

immunosuppressive microenvironment. SCs secret high levels of

CCL2, promoting the M2 polarization of macrophages. In this

study, CD14+ macrophages isolated from the co-culture system

with SCs were used to treat A549 and H1299 lung cancer cells. It

was observed that the proliferation of lung cancer cells increased.

This finding suggests that SCs have the ability to interact with
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immune cells, thereby promoting the progression of lung

cancer (216).

The PNS which has recently emerged as an important

component of the TME, highlights SCs as key players in nerve-

regulatory tumors. However, the studies of SCs are not as clear as

other benign non-immune cells in the TME and there are no

relevant specific strategies targeting SCs. However, the current

studies offer us many enlightenments. IL-6 and CXCL12 have

been reported to delay the early diagnose of pancreatic cancer in

mice. But there are no relevant studies in human. It is promising to

explore whether these two cytokines work in human, which would

be beneficial to the diagnose of pancreatic cancer. Additionally, SCs

also actively interact with immune cells, such as T cells and DCs, in

the TME to form an immunosuppressive microenvironment. This

could be also considered as a promising point to treat cancer.

Targeting SCs not only holds promise for melanoma therapy but

also provides a novel strategy for the early detection and treatment

of pancreatic cancer.
2.6 Other cells

2.5.1 Oligodendrocytes in glioblastoma
In addition to the benign non-immune cells mentioned above,

there are also benign non-immune cells that participate in the

development of certain cancer. For example, oligodendrocytes are

important glial cells in the central nervous system and some studies

have revealed that oligodendrocytes may support glioblastoma

(GBM) development. The GBM border microenvironment has

been reported to contribute to GBM’s chemo-radio resistance

(217). They found an increase in oligodendrocyte progenitor cells

(OPCs) and macrophages/microglia at the tumor border and

observed enhanced stemness and chemo-radio resistance in GBM,

suggesting that OPCs are critical components of this resistance

(217, 218). Another study found that oligodendrocytes may

promote GBM invasion through the Ang2 signaling pathway

(219). Furthermore, GBM with oligodendrocyte components

show a high mutation rate of IDH1 (220). A mathematical model

further demonstrated that IDH1 mutated GBM shows a more

invasive property compared to IDH1 wild type (221). However,

oligodendrocytes may also be a promising target to treat GBM. A

recent study revealed that GBM exhibit two different cell states in

the core region and border, astrocyte-like cells and OPC-like cells,

in the process of GBM invasion. Activator protein 1 (AP-1) exhibits

high activity in the core region but low in the border, while BTB

domain and CNC homolog1 (BACH1) shows the opposite.

Combining AP-1 with BACH1 inhibitors produced a synergistic

effect, significantly enhancing the tumor-suppressing capabilities

compared to the use of single reagent (222). This study implicated

that oligodendrocytes may be a promising target in the future study,

which also offer us a new strategy to treat GBM.

2.5.2 Mesenchymal stem cells in GBM
Mesenchymal stem cells (MSCs) are pluripotent stem cells with

robust differentiation capacity. These cells are capable of
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differentiating into adipocytes, osteoblasts, myoblasts, etc. upon

subjected to stimulation and serve as crucial components in

maintaining tissue homeostasis and repair (223, 224). However,

MSCs can also promote or suppress cancer progression through

the secretion of cytokines, chemokines and exosomes (225). Recent

studies exhibited that MSCs are critical components that are involved

in GBM progression and the infiltration level of MSCs into GBM are

always associated with poor prognosis (226). MSCs can promote

GBM development through multiple mechanisms. For instance,

mesenchymal stem like cells (MSLCs) enhance GBM invasiveness

through the secretion of C5a, which activates p38 MAPK-ZEB1

signaling pathway (227). Tumor-associated mesenchymal stem cells

(TMSCs) can induce the production of HAS2, which increases

hyaluronan abundance in the TME, thereby promoting GBM

invasiveness in a signaling ligand manner (228). Also, a co-culture

experiment of MSCs and GBM cells proved that MSCs-derived

secretions promote the activity, proliferation and migration of

GBM cells (229). However, MSCs may also serve as a potential

tumor-inhibiter in the TME of GBM. A recent study revealed that

MSCs with high expression of CXCL10 and Nrf2 (an anti-apoptosis

gene), remodeled the TME by recruiting CD8+ T lymphocytes (230).

In recent years, studies have highlighted the crucial roles of MSCs,

serving as a carrier loaded with anti-tumor drugs to treat GBM due to

their strong tropism towards tumors. MSCs can be homed to the

GBM site under the effect of multiple cytokines, such as TGF-b,
CXCL12 (231, 232). MMP1 is also considered as an indispensable

factor derived from MSCs that contributes to MSCs migration (233).

According to this property of MSCs, many researchers try to develop

MSCs loaded with different drugs, proteins, etc. to overcome GBM.

For instance, a study constructed bone marrow derived-MSCs

expressing miRNA-30c that effectively induce GBM cell apoptosis

and impair tumor invasion (234). Another study designed more

complicated MSCs that overexpress CXCL10 and Nrf2. These MSCs

are capable of attracting CD8+ T cells to the GBM site and decreasing

the levels of Tregs and exhausted CD8+/CD4+ T cells. Such

recombinational MSCs have been demonstrated to significantly

inhibit GBM growth (230). In conclusion, MSCs may serve as a

potential drug carrier and in concert with T cells to overcome the

challenges of tumor treatment.

2.5.3 Epithelial cells in Esophageal Cancer
The role of epithelial cells in the progression of esophageal

cancer has not been well studied, but some recent studies provided

evidence that epithelial cells may participate in esophageal cancer

development via several mechanisms. For example, the aberrant

interaction of epithelial cells within the basal layer at early

precancerous stage involves Ephrin-B1 (EFNB1) –Eph receptor

B4 (EPHB4) which triggers EMT, leading to esophageal cancer

tumorigenesis and progression (235). It is well studied that EMT

can promote the invasion and metastasis of multiple cancers (236).

Besides, epithelial cells promote esophageal cancer progression by

activating fibroblasts into CAFs. Annexin1 (ANXA1), a ligand for

the formyl peptide receptor type 2 (FPR2) on fibroblasts that can

maintain fibroblasts stability, but gradually decreases as esophageal

cancer progressed. The absence of ANXA1 leads to the uncontrolled
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transformation of fibroblasts into CAFs, and this transformation is

enhanced by epithelial cells derived TGF-b (237). Epithelial cells

may also be involved in tumor distant dissemination. In addition, a

new subpopulation of epithelial cells have been identified in

esophageal cancer, namely SAA1+ epithelial cells, that contribute

to esophageal cancer distant metastasis by single cell profiling (238).

Thus, targeting epithelial cells may also offer potential strategies to

suppress esophageal cancer progression.
3 Role of immune cell types in
the TME

Immune cells, which are primarily responsible for maintaining

the immune balance of the body, paradoxically contribute to the

creation of a tumor-promoting environment within TME (239).

Immune cells within TME can be broadly categorized into two

groups: lymphocytes and myeloid-derived immune cells. Both

lymphatic cells and myeloid cells play critical roles as the drivers

of tumor progression, demonstrating the dual and context-

dependent functions of the immune system in cancer.
3.1 Myeloid-derived immune cells

Myeloid-derived immune cells are important immune cells in the

TME, and are associated with tumor development. Myeloid-derived

immune cells in the TME, including TAMs, MDSCs, etc., exert a dual

role within the TME, typically exhibiting immunosuppressive effects

(240). For example, TAMs in the TME secret multiple cytokines and

proteins, such as epidermal growth factor (EGF), FGF, IL-10, VEGF,

PDGF, etc., these factors not only promote tumor invasion andmetastasis

but also may contribute to the formation of tumor blood vessels,

providing nutrition and energy for tumor growth (241–243). Moreover,

TAMs recruit FOXP3+ Tregs, which exhibit immunosuppressive effects in

the TME, in response to hypoxia, leading to the impaired T cell activation

(244). MDSCs represent another major immunosuppressive population

in the TME and can be classified into two subpopulations: PMN-MDSCs

and monocytic MDSCs (M-MDSCs) based on their origin from the

granulocytic or monocytic myeloid cell lineages (245). M-MDSCs are

capable of producing high levels of NO to inhibit T cell proliferation and

differentiation (246), while PMN-MDSCs exert their immunosuppressive

effect through different mechanisms. These cells produce TGF-b, a potent
immunosuppressive factor, to inhibit immune response (247). Besides,

PMN-MDSCs suppress immune function in an antigen presenting

manner and inhibit the production of ROS. The production of ROS

also plays a crucial role in suppressing T cell immune response (248).

Given the critical role of myeloid cells in TME, targeting these cells

presents a promising therapeutic strategy for cancer treatment.

Therapeutic strategies targeting CXCR2, C-C motif chemokine receptor

(CCR)2, colony stimulating factor 1 receptor (CSF1R), PI3K-g and

STAT3 signaling pathways have also shown potential in inhibiting the

immunosuppressive and inflammatory effects of myeloid-derived

immune cells in cancers (249). In conclusion, myeloid cells in the TME

are critical to tumor progression, so targeting myeloid cells in TME,
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especially those that play a powerful immunosuppressive role, provides a

new strategy to cancer therapy.
3.2 Lymphatic cells

Lymphatic cells are also important components in the TME,

including T cells, B cells and NK cells. T cells, upon activation by

DCs and CD4+ T cell help signals, can differentiate into effector T

cells (Teffs). Teffs are cytotoxic T cells that effectively eliminate target

cells through mechanisms such as granule exocytosis, Fas/FasL

interactions, and the secretion of cytokines like interferon-g (IFN-

g) and TNF-a (250). Moreover, CD4+ cytotoxic T lymphocytes

(CTL) may exhibit tumor-suppressing effect independent of CD8+ T

cells. These CD4+ T cells showed tumor-suppressing effect on CRC

growth in mice with humanized immune system by recognizing

human leukocyte antigen class II (HLA-II) on tumors (251). NK cells

are important immune cells that effectively eliminate cancer cells,

especially blood cancers. However, these cells exhibit limited tumor-

killing effects in solid tumors due to the complicated

microenvironment that leads to NK cell inactivation and reduced

tumor infiltration (252). Another important subtype of T cells, Tregs,

displays immunosuppressive roles and can be attracted into the

tumor site through the chemokine gradients, including CCL17/22,

CCR8‐CCL1, CCR10‐CCL28 etc. Once there, they subsequently

become activated and exhibit tumor-inhibiting functions (253).

Tregs within the TME, can induce CD8+ T cell and NK cell death

by releasing perforin and granzyme B, leading to impaired anti-

tumoral immune response (254). Additionally, ATP-derived from

Tregs inhibits the activation of T cells and antigen-presenting cells

(APCs) (255). Immune checkpoints are proteins that regulate

immune cell activity especially T cells, inhibiting their

hyperactivation. Evidence showed that Tregs express co-

stimulatory molecules including cytotoxic T lymphocyte-associated

protein 4 (CTLA-4), PD-1, lymphocyte activation gene-3 (LAG-3),

etc. to suppress immune response (256–258), and ICI are promising

methods to reverse the immunosuppressive effect induced by Tregs.

Additionally, reinvigorating exhausted CD8+ CTLs also holds

promise for cancer therapy. Together, lymphocytes, particularly

Tregs, play significantly immunosuppressive roles in the TME, and

targeting these cells presents promising therapeutic options for

enhancing cancer treatment.
4 Conclusion

TME is an intricately complex niche that has garnered significant

attention in recent year. The TME of hematological malignancies

differs substantially from that of solid tumors. While numerous

promising strategies, such as chimeric antigen receptor T-cell

(CAR-T) therapy, have demonstrated effective outcomes in treating

hematological cancers, the treatment of solid tumors remains

challenging due to their complex microenvironment and deep

anatomical locations, which hinder drug infiltration into the tumor

core. Additionally, the composition of the microenvironment varies
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across tumor types, presenting a significant challenge for cancer

treatment. Recently, increasing attention has been directed towards

benign non-immune cells within the TME, which may offer novel

avenues for cancer therapy.

CAFs are abundant and heterogenous benign non-immune cells

comprising diverse subtypes in the TME that have been extensively

studied. CAFs in the TME secret multiple tumor-promoting

cytokines, such as IL-6 and TGF-b to support tumor growth.

Additionally, CAFs contribute to ECM remodeling, which restricts

drug infiltration and promotes cancer dissemination. Targeting CAFs

may represent a promising strategy to inhibit tumor development.

FAP are proteins that highly expressed in CAFs across multiple

cancers. Targeting FAP to eliminate CAFs combined with

chemotherapy drugs maybe an effective way to inhibit tumor

growth. A study showed that FAP-targeted vaccine effectively

enhanced the CAFs-killing effect mediated by CD8+ T cells and

increased drug uptake by colon cancer and BC (259). TGF-b is a

critical factor that actively participates in tumor progression, such as

immunosuppressive effect and ECM remodeling. Blocking TGF-b
holds promise for new cancer therapies. CTL are often suppressed by

elevated immune checkpoints and can-not effectively infiltrate into

the tumor core due to the physical barrier. Inhibiting TGF-b
combined with immunotherapies to enhance T cells infiltration

also holds promise. M7824, a fusion protein against PD-L1 and

TGF-b extended overall survival and provided long term protective

effects (260). Additionally, some CAFs derived cytokines also

participate in tumor development. Blocking these cytokines also

sheds light on cancer therapy. IL-6 has been reported to promote

cancer progression through multiple pathways. Antibodies blocking

IL-6 combined with PD-1 were proved to strikingly elevate survival

rate of mice with pancreatic cancer (95). However, there are also

potential limitations behind these therapies. CAFs exhibit high

heterogeneity and could be divided into multiple subtypes with

different markers. Some normal tissues have low levels of FAP

expression, FAP-targeted methods effectively eliminate CAFs as

well as hurting normal tissues or organs. A study revealed that the

depletion of FAP+ stromal cells leads to the cachexia and anemia

(261). Besides, not all CAFs express FAP so that targeting FAP+ CAFs

to reverse the immunosuppressive effect is not realistic (262). Single

FAP-targeted therapy does not achieve good outcomes, so it is better

to be used in combination with ICI. At the same time, FAP-targeted

therapy does not guarantee the elimination of CAFs that are

detrimental to tumor progression, and it may also eliminate CAFs

that inhibit tumor growth. For example, a study revealed that the

depletion of myCAFs increased CD4+Foxp3+ Tregs infiltration into

tumor, leading to an aggressive tumor progression (263). Blocking

TGF-b or degrading ECM represents another method to promote

drug infiltration into cancers, such as pancreatic cancer which are

surrounded by dense ECM barrier, thus contributing to cancer

therapy. The degradation of ECM may increase the risk of tumor

metastasis, so it is important to apply these methods based on tumor

types. Appropriate ECM allows drug infiltration and reduced tumor

metastasis. To overcome these obstacles, it is pivotal to develop new

therapies or improve the existing methods. Considering that the

direct elimination of CAFsmay lead to unintended tumor-promoting
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effect, the transformation of tumor-promoting CAFs into tumor-

suppressing CAFs may shed light on tumor therapy. An advanced

technology, termed hydrogen therapy, was proved to reverse the

immunosuppressive and tumor-promoting phenotype of CAFs, thus

remodeling the immunosuppressive TME. This therapy directly kills

cancer cells, suppresses immunosuppressive factor derived from

CAFs and stimulates systematic immune response (264). As for

FAP-targeted therapy, enhancing the target specificity and in

concert with other therapies may provide better treatment. A novel

FAP-based method, molecular pro-theranostic probe (FMP) with

activatable fluorescence, photoacoustic (PA) imaging, and

photodynamic therapy (PDT), is able to completely repress

primary tumor. And the tumor-killing effect could be further

enhanced in combination with ICI (265). The development of

nano-drugs, also offers us some enlightenments. These drugs play a

role by interfering the immunosuppressive effect mediated by CAFs,

eliminating CAFs and inhibiting CAFs activation (266).

ECs within the TME often promote the formation of tumor

neovascularization, supplying energy to promote tumor growth and

metastasis. Targeting ECs to suppress blood vessel formation in

tumor mass may be an effective adjuvant therapy. Bevacizumab was

approved to treat metastatic CRC by specifically blocking VEGF

(267). Sunitinib and sorafenib can inhibit VEGF receptor tyrosine

kinase, thus suppressing tumor blood vessel formation (268, 269).

Besides, targeting Ang-Tie2 axis is also a promising method. Dual

inhibition of VEGFR and Ang2 was proved to normalize tumor

blood vessel and prolong overall survival (270). This experiment has

demonstrated the therapeutic effects of anti-Ang2 drugs in mice,

but remains unclear in humans. There are also potential risks

behind anti-angiogenic therapy. Drug resistance often emerges in

this therapy, this is partly due to the complicated angiogenic

mechanism of cancers. Since drugs target the relevant signaling

pathways to inhibit tumor vascular formation, tumor cells rapidly

evolve to upregulate other pro-angiogenic factors, such as FGF,

PDGF, and switch to other pro-angiogenic pathways, resulting in

drug resistance (143, 144). Furthermore, the destruction of tumor

vascular system may lead to hypoxic microenvironment that

contributes to an enhanced drug resistance and angiogenic

capacity of cancer cells (271, 272). Therefore, it is better to

develop combinational therapies. Drugs that target multiple

angiogenic signaling pathways or anti-angiogenic drugs in concert

with ICI may achieve better outcomes. Additionally, a recent study

revealed that fructose transporter SLC2A5 is significantly

upregulated in ECs of HCC, this alteration facilitates the

angiogenesis of HCC especially under hypoxia (122). It suggests

that targeting EC associated metabolic pathway may be also a

promising strategy. However, whether this target plays a role on

human needs further exploration.

PCs can be considered as the gatekeeper of the blood vessel,

playing a significant role in sustaining vascular stability. PCs are

also actively involved in tumor vascular formation and stability.

However, most anti-angiogenic strategies predominantly focused

on ECs. Targeting PCs associated markers offers additional

methods to suppress tumor angiogenesis. Sustaining PDGFR-b in
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a non-active state showed significant anti-angiogenic and tumor-

suppressing effect in mice with pancreatic cancer and renal

carcinoma (273). Imatinib effectively reduced vascular density

and increased blood vessel permeability, thus inhibiting

lymphoma growth (274). This method is based on targeting

PDGFR-b+ PCs. However, targeting PCs faces the common

problems of anti-angiogenic drugs. Drug resistance and drug-

induced hypoxia in the TME make drug combination necessary.

Combining PCs-targeted drugs with chemotherapy drugs or ICI

may achieve better outcome compared to single drug. As for novel

therapies, a a-polarized DC vaccine targeting PC antigen DLK1,

protected mice from CRC progression by enhancing CD8+ T Cell

mediated anti-tumor immunity (275). In the future, it is possible to

identify specific markers of PCs and develop novel combinational

drug therapies.

Adipocytes are energy store and endocrine cells that provide

energy to support tumor growth, secret factors to suppress immune

cell function and transform them into immunosuppressive

phenotypes. There are already many strategies to reduce the pro-

tumor effect induced by adipocytes. Such as blocking adipocytes

derived factors, disrupting the energy source of tumor cells and

reversing the immunosuppressive microenvironment. Leptin has

been proved to promote the progression of multiple cancers, such as

BC, blood cancer and CRC. Blocking leptin is promising to reduce

adipocytes mediated tumor-promoting effect. Celastrol, a substrate

that binds to leptin receptor, significantly inhibits BC proliferation

and migration by suppressing leptin mediated PI3K/AKT signaling

pathway (276). FAO is known for fueling tumor cells and support

their survival. Etomoxir can interrupt the progression of FAO and

acquired better outcome when combined with temozolomide to

combat GBM (277). However, there are also many obstacles need to

be overcame. Tumor cells are surrounded by dense ECM, which

makes it difficult for drug to infiltrate. Off-target effects and drug

resistance are also worth considering. Tumor cells may upregulate

other signaling pathways when certain signal is blocked. In recent

years, there are also some novel strategies to cure cancer based on

adipocytes, which would enlighten us. Adipocytes can be

engineered to specifically deliver drugs to tumor cells. Adipocytes

loaded with anti-cancer fatty acid, rumenic acid, and a doxorubicin

prodrug can specifically deliver drugs to the tumor via lipolysis

(278). According to this property, adipocytes may also serve as a

potential drug carrier to delivery diverse drugs to tumor to

overcome the physical barrier. A recent study developed a

ground-breaking strategy, they designed engineered adipocytes

which significantly compete for the energy and nutrition required

for tumor cell survival. This method has been shown to strikingly

reduce tumor growth, angiogenesis and hypoxia in mice with

pancreatic cancer or BC (279). But whether this method works in

human remains unclear. A recent study also revealed that a

ketogenic diet in concert with eFT508, a P-eIF4E inhibitor,

effectively inhibit pancreatic cancer growth by blocking fat

metabolism that supplies energy for cancer cells (280). Therefore,

blocking blood vessels derived energy, such as muti-target anti-

angiogenic drugs, combined with fat metabolism inhibitors may be
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FIGURE 2

Crosstalk between benign non-immune cells and immune cells. (a), CD36+ CAFs facilitate the uptake of LDL, thereby inducing MIF secretion and
recruiting CD33+ MDSCs into the HCC microenvironment by binding to CD74 receptor on CD33+ MDSCs. (b) CAF-S1 attracts T cells by secreting
CXCL12 and transforms T cells into Tregs via CD73, B7H4 and DPP4, leading to an immunosuppressive microenvironment in BC. (c) ECs desensitize
NK cells through expressing NKG2D ligands, blocking NK cells-dependent tumor-killing effects. (d) CXCL12+ ECs block the differentiation of CD8+

naive T cells into CD8+ cytotoxic T cells by secreting CXCL12, as well as recruiting MDSCs into the TME of HCC by binding to the receptors on
MDSCs. (e), SCs secret PGE to inhibit T cell proliferation and upregulate PD-1 expression on T cells. Besides, SCs-derived CCL2 polarizes
macrophages into M2- like phenotype, which is associated with reduced proinflammatory capacity. SCs co-cultured with DCs can transform DCs
into immunosuppressive phenotype, weakening the antigen-presenting capacity of DCs. (f), Adipocytes-derived CXCL8 reduces T cell infiltration
into BC microenvironment. (g), Under the stimulation of PDGF-BB, PCs secret IL-33 to recruit TAMs into the TME and form an immunosuppressive
microenvironment. (h), PCs secret CXCL9 and CXCL12 to recruit CD8+ T cells into the TME. CXCL12, in turn, promotes the release of TGF-b and IL-
10, which weaken the proliferation and antigen-presenting capacity of T cells.
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a promising method to inhibit tumor growth. However, further

studies are needed to prove its feasibility.

SCs, largely unexplored benign non-immune cells in the TME,

may not serve as a negative bystander but an active promoter in

tumor progression, especially nerve-rich organs, such as pancreatic

cancer. Most SCs-targeted strategies remain in the pre-clinical phase.

It is unclear how much SCs contribute to tumor progression

compared to other benign non-immune cells in the TME. SCs are

able to secret multiple pro-tumor factors, such as IL-6, CXCL12,

PGE2, etc. to participate in tumor progression. IL-6 and CXCL12

have been reported to delay the early diagnose of pancreatic cancer.

However, no clinical studies have shown that these two cytokines also

cause the delay of diagnosis in human with pancreatic cancer. In the

meanwhile, SCs are capable of interacting with other non-malignant

cells in the TME, such as DCs, TAMs and CAFs, to form an

immunosuppressive microenvironment. Such microenvironment

could be reversed to a certain extent under the effect of ICI. In the

future, it is important to develop SCs-specific targeted therapy. YAP

is a key molecule that promotes the proliferation and remyelinating of

SCs via activating Hippo pathway in patients with neurofibromatosis

type 1 (NF1) and SCs are characterized by high levels expression of

YAP in NF1 (281). Therefore, YAP maybe a promising target to

achieve targeted therapy based on SCs.

In conclusion, understanding the complex and dynamic nature

of the TME and the specific mechanisms by which benign non-

immune cells contribute to tumor progression remains a

considerable challenge. This review highlights the multifaceted

roles of benign non-immune cells in the TME but does not

exhaustively elucidate their underlying mechanisms due to the

complexity of this system (Figure 2). Future research should focus

on tumor heterogeneity and the functional roles of benign non-

immune cells in various cancers. In order to provide more cancer

therapies, it is better to find out more specific markers on benign

non-immune cells, which allows more accurate targeted therapy.

Additionally, novel drug delivery systems offer us opportunities to

orient cancer cells accurately, such as nanoparticle drugs,

overcoming the difficulties of drug infiltration. At the same time,

the combination of drugs significantly improves the therapeutic

effects, reduces drug resistance and tumor compensatory effect.

Patients will benefit from more effective combinational methods

used in the clinical practice. This review has elucidated many

promising targets on benign non-immune cell, but most research
Frontiers in Immunology 16
still stay in the preclinical stage, translating these findings into

clinical practice would hold great promise for enhancing the overall

efficacy of cancer treatment.
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