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Lung cancer (LC) and tuberculosis (TB) represent two major global public health

issues. Prior evidence has suggested a link between TB infection and an

increased risk of LC. As advancements in LC treatment have led to extended

survival rates for LC patients, the co-occurrence of TB and LC has grown more

prevalent and poses novel clinical challenges. The intricate molecular

mechanisms connecting TB and LC are closely intertwined and many issues

remain to be addressed. This review focuses on resemblance between the

immunosuppression in tumor and granuloma microenvironments, exploring

immunometabolism, cell plasticity, inflammatory signaling pathways,

microbiomics, and up-to-date information derived from spatial multi-omics

between TB and LC. Furthermore, we outline immunization-related molecular

mechanisms underlying these two diseases and propose future research

directions. By discussing recent advances and potential targets, this review

aims to establish a foundation for developing future therapeutic strategies

targeting LC with concurrent TB infection.
KEYWORDS

lung cancer, tuberculosis (TB), immunosuppressive microenvironments,
immunometabolism, inflammation
1 Introduction

Globally, about one in five people will develop cancer in their lifetime, with roughly one

in nine men and one in twelve women dying from the disease, as per the 2022 data from the

International Agency for Research on Cancer (IARC) (1). In 2022, lung cancer (LC)

emerged as the most commonly diagnosed cancer, accounting for nearly 2.5 million new
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cases, which is about 12.4% of all cancers worldwide (1). LC was

also the primary cause of cancer-related deaths in 23 countries, with

an estimated 1.8 million deaths (18.7%) (1).

Tuberculosis (TB), a contagious disease triggered by the

bacterium Mycobacterium tuberculosis (Mtb), significantly

contributes to global health issues and ranks among the leading

causes of death worldwide. The World Health Organization’s

(WHO) Global Tuberculosis Report 2024 estimates that there

were an estimated 10.8 million new TB cases worldwide in 2023,

resulting in 1.25 million deaths (2). Yet in 2023, TB probably re-

emerged as the primary global driver of mortality attributed to a

singular infectious pathogen, following 3 years in which it was

overtaken by coronavirus disease (COVID-19) (2). TB primarily

affects the lungs (pulmonary TB, PTB) but can also impact other

body parts.

Emerging evidence reveals a compounding tuberculosis risk

profile in LC patients through both disease pathophysiology and

therapeutic interventions. Population-level analyses consistently

reported that patients with solid cancers face a two to three-fold

higher risk of developing active TB compared to individuals without

cancer (3–6), with LC patients exhibiting particularly pronounced

vulnerability - a meta-analysis of 23 studies quantified this risk at 9-

fold higher than the general population (4). This baseline

predisposition is amplified by oncologic therapies through distinct

immunological mechanisms. Conventional cytotoxic regimens and

molecularly targeted agents have been epidemiologically linked to

progressive TB risk escalation (7–10). Notably, modern

immunotherapies introduce novel immunological susceptibilities:

programmed cell death 1/programmed cell death ligand 1 (PD-1/

PD-L1) blockade demonstrates dramatic TB reactivation rates (7–

17), evidenced by a Singaporean cohort reporting 2.09% incidence

post-ICI treatment (17) and a meta-analysis of 27 studies

quantifying 2,000 TB cases per 100,000 PD-1/PD-L1 individuals -

representing 35-fold population excess risk (18). Moreover, LC

patients treated with ICIs had a 6-fold higher rate of developing

active TB compared to the general population (19–21). LC itself

may increase the risk of TB activation, and the treatment for LC

may further elevate this risk. However, more stratified and detailed

studies are needed to elucidate this correlation.

Several studies (22–26) increasingly suggest a strong correlation

between prior pulmonary TB infection and the development of LC.

Furthermore, several recent meta-analyses (27–29) reported a 2–5-

fold higher risk of LC for PTB patients. A systematic meta-analysis

and review of 29 cohorts and 44 case-control researches (27)

indicated a heightened risk of LC for up to two years following a

diagnosed TB (HR 5.01; two studies). Moreover, a study (24)

discovered that patients with concurrent LC and TB exhibit an 8-

fold higher mortality rate compared to those with LC alone.

Another study (30) demonstrated that the coexistence of TB and

LC increases mortality risk and worsens the prognosis of patients.

However, global epidemiological data on their co-occurrence are

currently unavailable (31). Therefore, the coexistence of these two

diseases warrants significant attention.

The simultaneous occurrence of PTB and LC is becoming more

frequent in clinical settings. This emerging comorbidity constitutes
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a major public health challenge (32), driven by their interrelated

epidemiological connections that potentiate mutual disease

progression. Such bidirectional intersection significantly

complicates clinical diagnosis and treatment approaches.

However, little is currently known about immunization-related

molecular mechanisms underlying these two diseases. Thus, this

review focuses on immunosuppression microenvironments,

immunometabolism, cell plasticity, inflammatory signaling

pathways, and up-to-date knowledge derived from spatial multi-

omics. Such exploration aims to identify viable immunological

intervention targets that can offer significant insights for the

clinical management of patients suffering from both LC and TB.
2 Similarity of molecular mechanisms
in TB and LC

2.1 Resemblance between the
immunosuppression in tumor and
granuloma microenvironments

Both cancer and TB involve processes that reflect a coordinated

and highly evolved program of immune escape strategies that

interfere with innate and adaptive immune response (33). Tumor

cells in LC create an immunosuppressive microenvironment,

including regulatory T cells (Tregs), myeloid-derived suppressor

cells (MDSCs), and exhausted T cells (characterized by impaired

immunity) (34–38). On the other hand, TB primarily affects the

lungs, triggers a robust immune effect, and inhibits bacterial growth.

However, in some cases, the immune system fails to control the

infection, leading to granulomas formation, which is a complex

process involving immune evasion of the mycobacterium through

continued interaction between Mtb-infected macrophages and T

cells in response to chronic inflammation (39).

Tregs (a heterogenous sub-group of CD4+ T cells) are typically

characterized by their role in inhibiting effector cells through

mechanisms dependent on direct cell contact or by releasing anti-

inflammatory cytokines, including interleukin-10 (IL-10),

interleukin-35 (IL-35), and transforming growth factor-beta

(TGF-b) (40, 41). Although Tregs were known for their protective

role in lessening pathological inflammation in tissues, they also

exhibit a suppressive influence on particular anti-tumor and anti-

Mtb effects. Various factors, such as increased production of TGF-b
or IL-10, and immature/tolerogenic DCs (40), might stimulate the

growth of Tregs, leading to negative effector T cell regulation in

both the tumor microenvironments (TMEs) (36, 41) and the

granuloma microenvironments (GMEs) (42–44).

MDSCs, a diverse group of myeloid cells, proliferate in response

to persistent and low-grade inflammation (45). Along with Tregs,

they play a role in creating an immunosuppressive setting and

blocking T-cell activation in both TB (45) and LC (34, 37). MDSCs

produce elevated amounts of molecules that suppress T-cell

reactions, such as indoleamine 2,3-dioxygenase (IDO), arginase-1,

TGF-b, inducible nitric oxide synthase (iNOS), IL-10, and

cyclooxygenase-2 (COX2) (34, 37, 45). PD-L1, IDO, and
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arginase-1, are crucial in their suppressive functions by breaking

down essential metabolites and producing harmful byproducts that

accumulate in the TME, thereby hindering T cell proliferation (34,

35, 37, 46). Recent spatial investigations have revealed a consistent

structural pattern in TB granulomas, where PD-L1 and IDO1 are

spatially synchronized, with myeloid core-infiltrating Tregs and a

notable absence of activated T cells (44). Elevated levels of MDSCs

have been found in the lungs of patients with TB and LC,

suppressing the growth and cytokine release by CD4+ and CD8+

T cells and regulating T-cell movement (47, 48).

At the core of both the GME and TME is the shared

characteristic of exhausted T cells within their local regions. This

exhaustion is linked to the decline of robust effector functions, the

upregulation of various inhibitory receptors, including immune

checkpoints like CTLA-4, TIM-3, LAG-3, and PD-1 (49), and an

altered transcriptional program (50). These dysfunctional T cells
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exhibit various suppressive receptors and/or immune-modulating

cytokines, triggering negative regulatory pathways linked to

inadequate management of tumors (51, 52), and chronic Mtb

infection (53, 54). Moreover, the reduced levels of perforin and

granzymes in CD8+ T cells has been connected to both Mtb

infection (55) and cancer (56), potentially leading to reduced

target cell killing.

In summary, LC and TB weaken the immune system both

locally and systemically (Figure 1) and highlight the clinical

significance of their coexistence. However, the interplay between

the similar immunosuppressive microenvironments of tumors and

granulomas, particularly the immune subtypes and their differences,

requires further investigation. New detection methods, such as

spatial multi-omics, are needed to provide insights into these

interactions. A recent study (57) demonstrated that the

relationship between KRT80 and the progression of lung
FIGURE 1

Similarity of molecular mechanisms in TB and LC microenvironment. ① Inflammation-driven metabolic and immune reprogramming, such as lactate,
arginine, and glutamine. Expansion and activation of immunosuppressive subsets, including Tregs, MDSCs, and exhausted T cells, leading to immune
escape and disease progression. ② Balanced inflammatory processes (Th1 and Th2) and cell plasticity, including immune cell polarization (e.g. M1
and M2 polarization) and spatiotemporal cellular plasticity. ③ This plasticity provides an opportunity for therapeutic reprogramming of the immune
system to potentiate anti-Mtb and antitumor activity. For instance, JHU083, a glutamine metabolism antagonist, has been shown to enhance
antimycobacterial activity. Abbreviations: Trp, Tryptophan; Kyn, kynurenine; quinolinic acid, a product of the tryptophan/kynurenine pathway; Mø,
macrophage; Th, helper T cell; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; NETs, neutrophil extracellular traps; NO, nitric oxide;
VEGF, vascular endothelial growth factor; IFN-g, interferon-g; iNOS, inducible nitric oxide synthase; CTL, cytotoxic T cell; IDO, indoleamine 2,3-
dioxygenase; Arg1, L-arginase; IL, interleukin; TGF, transforming growth factor; PD-1, programmed cell death 1; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; LAG-3, lymphocyte activating 3; TIM-3, T cell immunoglobulin and mucin-domain containing-3; TCA cycle, tricarboxylic acid
cycle. Created in https://BioRender.com.
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adenocarcinoma was confirmed through both bulk transcriptome

and single-cell transcriptome analyses. However, as the study

cohorts were sourced from public databases and the sample size

was limited, large-scale cohort studies are needed to fully evaluate

the model’s effectiveness. Ideally, sequencing of granuloma and

tumor tissue samples from clinical patients with tuberculosis and

lung cancer would provide valuable insights. The weakened

immune response in TB and LC arises from interactions with

specific cells in their surrounding microenvironment. In the

following sections, we will systematically compare how these two

diseases share common mechanisms in three key areas: persistent

inflammatory signals, cellular adaptation mechanisms, and

metabolic reprogramming of immune cells.
2.2 Inflammation and cell plasticity in TB
and LC

Immune system activity is influenced by the proportion of

different cell types within specific tissues, the stage of tumor

progression or Mtb infection, and the interplay of signaling

within the TME or GME, including pro-inflammatory and anti-

inflammatory processes (44, 58–60) (Figure 1). The characteristics

and roles of immune cells are dynamic, changing with their local

environment (44, 58–60).

First, this plasticity is evident in diverse cell polarization types,

each directed by unique transcriptional programs. For instance,

macrophages associated with Mtb infection or tumors originate

from tissue-resident cells as well as peripheral blood monocytes are

drawn to disease sites as a reaction to inflammatory signals (61–63).

Cytokines from the Th1 class, including IFN-g, encourage the

polarization of classically activated M1 macrophages (61, 62).

These macrophages, in turn, release pro-inflammatory cytokines

such as TNF-a and IL-1b, and exhibit robust antigen processing

capabilities, presenting significant antimicrobial and antitumor

activities (61, 62). Conversely, Th2 or anti-inflammatory

cytokines, such as TGF-b, IL-10, and IL-4, trigger the activation

of M2 macrophages, which express arginase-1. These macrophages

exhibit weak cytotoxicity, and are associated with wound healing

and extracellular matrix remodeling (62, 64, 65).

Macrophages balance pro-inflammatory and anti-inflammatory

responses to fight against Mtb infection and tumor cells while

controlling tissue pathology. High-dimensional profiling techniques

have recently enabled more precise, marker-based definitions of the

diverse macrophage populations within tumors and their plastic

evolution throughout disease progression or therapy (63, 66). A

recent study (67) revealed that patients with PTB exhibit numerous

non-necrotizing leukocyte aggregates around necrotizing

granulomas. These lesions were more compositionally diverse

than the necrotizing type and can be classified into four

categories based on the cellular composition and spatial

distribution of B cells and macrophages (67). This inherent

macrophage plasticity poses a challenge when understanding their

complex biology and presents therapeutic targeting opportunities.
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Second, spatiotemporal cellular plasticity enables cells to

transition between different states during cell migration and

metastasis (58). Over the past decade, spatial multi-omics

technologies have been employed to study the transcriptomes,

proteomes , and metabolomes of the tumor immune

microenvironment (TIME) in various cancers (68). For instance,

Mark Sorin et al. (38) used highly multiplexed imaging mass

cytometry (IMC) to analyze the cellular TIME landscape in lung

adenocarcinoma. This approach revealed dynamic cellular

behaviors and spatial patterns that were correlated with specific

clinical outcomes, including variations in patient survival. Similarly,

the polymorphic and elastic nature of TB granulomas is

demonstrated by the coexistence of distinct GMEs within an

infected individual, each with unique phenotypical and functional

properties. Recent studies using MIBI-TOF technology

(multiplexed ion beam imaging by time of flight) have identified

eight representative microenvironments within TB granulomas

(44). These microenvironments are characterized by local

immunosuppression markers like PD-L1 and IDO-1 on

expanding Tregs, myeloid cells, and elevated levels of TGF-b in

the absence of IFN-g (44). Moreover, the cellular composition of

granulomas evolves with the infection stage; early high-burden

granulomas (four weeks post-infection) show a type 2 wound

healing effect, driven by IL-13 and IL-4, while late low-bacterial-

burden granulomas (ten weeks post-infection) are dominated by a

type 1 response, characterized by a greater presence of cytotoxic

CD8+ T cells by pro-inflammatory signaling networks (69). These

analyses illustrate that during various stages of tumor development

and Mtb infection, cell types exhibit significant plasticity, which is

shaped and controlled by factors such as cytokines, inflammation

and growth signals, highlighting the importance of spatial

relationships in understanding TIME and GME biology.
2.3 Immunometabolism in TB that
resembles LC

The tumor microenvironment and tuberculous infection are

associated with three primary immunity-related metabolic

pathways (glucose, fatty acids, and amino acids) and their

products (70–72). The three major nutrients and their derivatives

produce a broad range of metabolites, which are detected by specific

sensors (metabolite sensing). This triggers a series of signal

transduction pathways and epigenetic changes that influence gene

expression (70). Metabolite sensing in cancer has emerged as a

significant area of interest in recent years, but many questions

remain unanswered. The regulation of metabolism, immunity, and

inflammation via metabolite sensing allows the human body to

coordinate its pathophysiology and maintain equilibrium with its

external environment (70, 73, 74). Metabolic reprogramming in

cancer cells causes them to exhibit different phenotypic

characteristics from normal cells, including increased cell

proliferation, migration, invasion, and angiogenesis (70, 73, 74).

This metabolic disruption in cancer cells further fosters a
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microenvironment rich in various oncometabolites that promote

cancer growth, thereby creating a vicious cycle. Meanwhile, baseline

metabolic heterogeneity and inflammation-driven metabolic

reprogramming during Mtb infection are associated with crucial

immune functions, including mycobacterial growth control and the

guidance of protective immunity (71).

The ways metabolites influence these immune cells and aid

tumor and TB immune evasion (by impacting the function of

immune cells) require further exploration. Given that both the

pro- and anti-inflammatory immune cell phenotypes are connected

to their cellular metabolism, it is crucial to define the molecular

mechanisms that govern their metabolism (71). Arginine, lactate,

and glutamine are among the metabolites that display commonality

in LC and TB (Table 1). This section details how these metabolites

and metabolic reprogramming influence immune cells in the tumor

and granuloma microenvironments.

2.3.1 Arginine dynamics in macrophage
polarization and T-Cell function

Classically activated M1 macrophages transform arginine into

NO via iNOS activity, while M2 macrophages metabolize arginine

to ornithine and urea by arginase-1 (64, 75). Pro-inflammatory

glycolytic M1 macrophages, known for their antimicrobial

activities, can transition to anti-inflammatory M2 macrophages,

which depend on oxidative phosphorylation metabolism and lack

antimicrobial effect (71, 76–78). This transition helps regulate

inflammation and fosters tissue repair throughout the chronic

stage of Mtb infection (71, 76–78). Increasing L-arginine levels

have also been demonstrated to trigger metabolic alterations,

inc lud ing a t rans i t ion from glyco lys i s to ox idat ive

phosphorylation in activated T cells, promoting the formation of

central memory-like cells with enhanced survival capacity and anti-

tumor activity (46). Arginase-1 breaks down arginine into ornithine

and contributes to the regulation of immune function in activated

T-cells by depleting arginine in the local microenvironment

(controlling arginine bioavailability results in nitric oxide
Frontiers in Immunology 05
production control), as demonstrated in cancer and tuberculosis

experimental models (46, 79, 80). Overall, arginine influences

macrophage polarization and affects T-cell function in both TB

and LC. However, the specific impact of arginine on the immune

microenvironment and systemic immune status in patients with

concurrent TB-LC needs further investigation.

2.3.2 Lactate’s role in the tumor and
granuloma microenvironments

In solid tumors, lactate buildup occurs in the TME under

hypoxic conditions and even in the presence of oxygen, driven by

the Warburg Effect. This shift toward increased glycolytic flux is

closely correlated with malignant transformation (81). Lactic acid

has been linked to histone regulation and epigenetic lactylation in

macrophage genomes (82–84). It promotes the transformation of

macrophages from the pro-inflammatory, anti-cancer M1 to the

anti-inflammatory, pro-cancer M2 type (82–84). Lactic acid can

also enhance the immune suppressive function of Tregs (85), be

converted to acetic acid by tumor-associated fibroblasts for cancer

cell utilization (86), and subvert PD-1 inhibitor function to promote

immune suppression (87). A recent study demonstrated that alanyl-

tRNA synthetase (AARS1), which functions as a lactate sensor and

lactyltransferase, can lactylate p53 and contribute to tumorigenesis

(88). Additionally, lactate-induced lactylation of NBS1 was reported

by Chen et al. (89) to promote homologous recombination (HR)-

mediated DNA repair and lead to chemotherapy resistance.

Macrophages shift toward glycolytic metabolism in the early

stages of Mtb infection, increasing lactate production (90, 91).

Granuloma lesions can exhibit high lactate concentrations,

reaching levels comparable to those observed in tumors (92, 93).

Mtb expresses cytochrome bd oxidase to oxidize lactate into

pyruvate, fueling bacterial respiration in human macrophages

(94). This lactate oxidation capacity correlates with enhanced

intracellular growth rates under hypoxia, suggesting lactate serves

dual roles as both an immunosuppressive modulator and a

pathogen nutrient source. The regulation of T-cell balance is
TABLE 1 Comparative analysis of immune-metabolic crosstalk in LC and TB microenvironments.

Category LC TB Shared Mechanisms References

Upstream Pathways
- Warburg Effect (glycolysis)
- HIF-1a signaling
- Oncogenic mutations (e.g., KRAS)

- Glycolytic reprogramming in early
infection
- Inflammatory cytokine signaling

Metabolic reprogramming driven by
hypoxia/inflammation

(71, 81, 96)

Downstream Effects

- Immunosuppression (Treg/MDSC
expansion)
- Angiogenesis
- Chemoresistance

- Macrophage polarization (M1/M2)
- Granuloma formation
- Bacterial persistence

Altered T-cell function,
macrophage plasticity

(76–78, 82)

Arginine Dynamics
- Arg-1 activity depletes arginine →
T-cell suppression
- M2 polarization

- iNOS-driven NO production (M1)
- Arg-1 promotes tissue repair (M2)

Arg-1/iNOS balance regulates immune
cell function

(46, 79, 80)

Lactate Role
- Lactate induces M2 polarization,
PD-1 signaling
- Promotes chemoresistance

- Lactate accumulation in granulomas
→ T-cell dysfunction
- Links to chronicity

Lactate drives
immunosuppressive microenvironment

(81–96)

Glutamine Dependency
- Fuels tumor growth
- MDSCs and Tregs recruitment
- Suppresses effector T-cells

- Elevated glutamine recruits MDSCs
- Suppresses effector T-cells

Glutamine supports
immunosuppressive cell populations

(97–100)
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crucial for either exacerbating or resolving TB pathology. The

buildup of lactate within the granuloma lesions may significantly

influence this balance, ultimately determining whether an anti-

inflammatory or pro-inflammatory microenvironment develops

(95). Therefore, it is promising to consider whether research

approaches related to lactate in the tumor field can be applied to

tuberculosis, particularly in exploring the mechanisms of drug-

resistant tuberculosis.

2.3.3 Glutamine metabolism
and immunosuppression

High glutamine metabolism in tumors was discovered to have a

strong correlation with the increased presence of immunosuppressive

cells such as MDSCs and Tregs and concomitant suppression of

effector T cells, which contributes to the spread of cancer and tumor

development (70, 96, 97). Similarly, several studies have indicated

that Mtb lung infection creates localized microenvironments

characterized by increased elevated glutamine levels (98–100),

subsequently leading to the accumulation of MDSCs, diminished

effector T-cell activity, and reduced production of NO and citrulline

(98). Treatment with JHU083, a glutamine metabolism antagonist,

was linked with increased citrulline and NO production levels and

potentiated antimycobacterial activity (98). Given the accumulation

of glutamine in the tissue microenvironment and its association with

immunosuppression, glutamine can be considered a potent target for

immunometabolism in TB and LC.

To summarize, the function and persistence of immune cells in

TB and cancer can be influenced by metabolic pathways through

alterations in inflammatory processes within the tissue

microenvironment (101) (Figure 1). Dynamic alterations in

intracellular and extracellular metabolites, particularly variations

in nutrient concentrations, can influence cell signaling pathways

and epigenetic gene expression by acting as metabolite sensors (70).

This creates a favorable microenvironment for tumor progression

(70) or Mtb infection (90). It is important to emphasize that

individual metabolic processes have been involved in eliciting

effects during Mtb infection and LC progression. However, the

inherent interconnectedness of metabolic reactions presents a

significant challenge for researchers in identifying the specific

contributions of these and other pathways to Mtb infection and

LC progression, especially regarding the immune reprogramming

related to metabolic pathways and host immune suppression.

Additionally, metabolomics is closely intertwined with

microbiomics. Notably, recent study (102) on the lung

microbiome underscores its critical role in respiratory disease

mechanisms, suggesting that spatial multi-omics analyses

integrating metabolomics and microbiomics represent a

promising direction for future research to further explore the

molecular mechanisms linking TB and LC.

LC and TB show similarities in their shared immunosuppressive

mechanisms, dysregulated inflammatory signaling, cellular plasticity,

and immunometabolic reprogramming. These overlapping features

may partially explain the pathophysiological basis for their clinical co-

occurrence. However, it is important to note that distinct molecular

mechanisms exist between the immunemicroenvironments of TB and
Frontiers in Immunology 06
LC. While a comprehensive comparative analysis of these nuanced

differences is beyond the scope of this review due to space constraints,

their exploration remains a critical frontier for future research—a

primary motivation for this review. The following section will

emphasis the specific molecular pathways, underlying their

bidirectional pathological interactions.
3 Immunization-related molecular
mechanisms in LC→TB

3.1 TB activation following immune
checkpoint inhibitors

Clinical case observations have shown that enhancing T-cell

immunity in cancer patients by blocking the PD-1/PD-L1 axis may

lead to latent tuberculosis reactivation (7–21). Studies in mice have

demonstrated that PD-1-deficient mice experience intense

inflammation and rapid mortality following Mtb infection (9, 103,

104). Additionally, in rhesus macaques, PD-1 inhibition results in

larger TB granulomas (105). Several mechanisms may elucidate

why ICIs are effective in treating lung cancer but also lead to TB

re-activation.

The immune checkpoints balance pro-inflammatory and anti-

inflammatory effects to control infections while avoiding

immunopathology. In patients infected with Mtb, immune cells

like CD4+ T cells, NK cells, neutrophils, and monocytes exhibit

elevated PD-1 (106–108). In TB patients, PD-1 is present in

granuloma areas where the interaction between host and

pathogen is balanced but is missing in areas with caseating

granulomas and marked immunopathology (107). Inhibiting PD-

1 may disrupt the anti-Mtb-specific T-cell balance. This imbalance

results in a pro-inflammatory environment rich in TNF-a, IL-6,
and IL-12, which can promote Mtb growth, particularly TNF-a
(107). It has been demonstrated that TNF-a can trigger necrosis in

macrophages infected with Mtb. ROS production is essential for this

effective immune response to TB (109–111). However, excessive

TNF-a may impair macrophage function (109, 110). By enhancing

the immune system’s response, immune checkpoint inhibition may

cause inflammatory side activities, commonly known as immune-

related adverse events (irAEs), which are autoimmune in nature

(112). It has been found that autoreactive T-cells increase in TB

patients, suggesting that autoimmunity maybe significant in TB

pathology (113). Notably, irAEs caused by ICIs can be treated with

anti-TNF-a antibodies (114), indicating that TNF-a may be a key

factor in autoimmunity and TB pathology following PD-1

inhibition (107).

Moreover, Mtb may possess pathogen-specific characteristics

that enable it to thrive in a hyper-inflammatory environment (such

as those induced by ICIs) (115). Enhanced T-helper (Th) type 1

(Th1) responses triggered by ICIs can lead to overproduction of

cytokines and increased MMP expression, resulting in tissue

damage and destabilizing the delicate host-pathogen balance in

the lungs. It has been suggested that various inhibitory receptors

play crucial roles in modulating TB immune control. For instance,
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mice deficient in the chemokine scavenger D6 or the negative

regulator of the IL-1 system (Toll/IL-1 receptor 8; TIR8)

succumbed quickly to low-dose Mtb challenges, experiencing

considerable local and systemic inflammation (116, 117).

Heightened inflammation can lead to several detrimental

outcomes, including an over-recruitment of inflammatory cells

and the breakdown of the extracellular matrix, which promote

Mtb proliferation (118–120). In this context, blocking PD-1 can

induce T-cell dysfunction marked by hyperactive inflammatory

responses, leading to a loss of immune regulation (121, 122).

In summary, the emerging clinical findings, together with studies

in animal models and advanced cell cultures, collectively indicate that

PD-1/PD-L1 disruption may create hyperinflammatory environments

that favor mycobacterial growth. However, immune checkpoint

inhibition does not necessarily result in autoimmune disorders or

excessive inflammation; it depends on whether the balance is

disrupted. Immune checkpoint inhibitors are widely used in cancer

therapy, but their potential application in the treatment of tuberculosis

remains controversial and needs further investigation (123). The key is

to identify which patient groups are at higher risk for tuberculosis

reactivation when receiving immune checkpoint inhibitors, thereby

providing guidance for clinical practice.
3.2 TB activation following surgery,
chemotherapy, and/or radiotherapy

Epidemiological studies found that anti-tumor therapy (surgery,

chemotherapy, or radiotherapy) further increased the risk of Mtb

infection in cancer patients (20, 21). Recent case reports have

indicated that triple cancer therapy -which combines

immunotherapy and chemoradiotherapy- may be linked to an

increased risk of TB reactivation (124, 125). Lung cancer itself may

increase the risk of tuberculosis activation, and the treatment for lung

cancer may further elevate this risk. However, more stratified and

detailed studies are needed to elucidate this correlation.

The induction of lymphopenia in cancer patients treated with

most chemotherapeutic drugs has been acknowledged since the

1980s (126). Radiotherapy can cause lymphopenia as a direct result

of blood or bone marrow irradiation (127–129). Additionally, 30%

of patients undergoing anti-EGFR therapy develop lymphopenia

(130). Multi-tyrosine kinase inhibitors can also induce grade III/IV

lymphopenia in 10–15% of patients (131). As the combination of

immunotherapy with chemotherapy, chemoradiotherapy, or

targeted therapy becomes increasingly common in lung cancer

treatment (132–135), combined treatment-induced lymphopenia

warrants greater attention (128, 129).

Lymphocytes are susceptible to radiotherapy, and a reduction in

peripheral total lymphocyte count (TLC) following ionizing

radiation indicates an impaired host immune response to cancer.

Numerous studies have established a connection between radiation-

induced lymphopenia and poor prognosis across various cancers,

including lung cancer (127–129, 136). One study involving 268

patients with advanced NSCLC who received ICIs, with 146 of them

also undergoing radiotherapy, found that patients with
Frontiers in Immunology 07
lymphopenia at the start of immunotherapy had markedly poorer

progression-free survival (PFS) (2.2 vs. 5.9 months) and overall

survival (OS) (5.7 vs. 12.1 months) (136). Another recent study

(129) reported that the median TLC dropped from 1.52 × 10^9

cells/L to 0.72 × 10^9 cells/L after chemoradiation in patients with

locally advanced NSCLC, with 23% developing severe lymphopenia

(<0.5 × 10^9 cells/L). Severe lymphopenia presented at the start of

immunotherapy continued to be an independent negative predictor

of PFS, with an HR of 4.90 and p < 0.001. Additionally, higher TLCs

have been associated with a higher response rate and more durable

treatment effects in patients treated with ICIs (137–139). In recent

years, stereotactic body radiation therapy (SBRT) for lung cancer

has garnered significant attention. Compared to conventional

fractionated radiotherapy, SBRT can reduce lymphocyte

depletion, improve prognosis, alleviate immunosuppression, and

synergistically enhance the efficacy of ICIs, thereby boosting

antitumor effects (140).

To conclude, a primary commonality between TB and LC is

immunosuppression. The immunosuppression resulting from LC

itself could potentially heighten the risk of TB activation.

Furthermore, cancer treatments, such as immunotherapy, surgery,

chemotherapy, and radiotherapy, might cause myelosuppression

and immune dysregulation, thereby elevating the risk of active

tuberculosis (Figure 2). While this statement is a hypothesis, and the

detailed immunization-related molecular mechanisms involved

need to be further explored. In clinical practice, we need to be

aware of the immunosuppression that occurs during anti-tumor

treatment, particularly the reduction in lymphocyte counts, and

disruptions in immune function. Additionally, high-risk

populations for tuberculosis activation should be screened and

monitored before and during lung cancer treatment.
4 Immunization-related molecular
mechanisms in TB→LC

4.1 TB contributes to tumor initiation
and promotion

Successful tumor initiation requires two main interconnected

events. 1) The buildup of mutations or epigenetic changes in genes

and cellular signaling networks involved in tumor suppression

(inactivation) and the activation of oncogenic signals is crucial

(58). Inflammatory effects possess potent mechanisms that

contribute to the accumulation of mutations and epigenetic

changes in nearby epithelial cells, while these have traditionally

been associated with environmental factors (such as variable

radiation, carcinogens, and/or UV), and errors in DNA

replication and repair. The initiation phase of tumorigenesis often

involves irreversible DNA changes induced by reactive nitrogen

species (RNS) and reactive oxygen species (ROS). These reactive

species are mainly produced by macrophages and neutrophils,

which is involved in inflammatory response derived from Mtb

infection (58, 141–144). 2) For transformed or malignant clones to

progress into a fully developed tumor, their emergence must be
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accompanied by substantial growth, a process significantly driven

by inflammatory mechanisms (58).

The ‘initiation’ phase involves permanent DNA alterations that

can remain in normal cells until the ‘promotion’ stage is triggered.

The ‘promotion’ phase is crucial as it facilitates cell proliferation,

ROS and RNS production, recruitment of inflammatory cells, and

oxidative DNA damage (58, 59). Inflammatory cytokines such as

IL-6, IL-17, and IL-11 play a vital role in shaping cell plasticity

within the TME and enhancing tumor cell proliferation, particularly

under sub-optimal in vivo conditions such as hypoxia, nutrient

deficiency, and limited production of growth factors, while also

counteracting anti-tumor immunity (58, 145). Moreover,

inflammatory signals modulate the structural and metabolic

properties of tumor and stromal cells by modulating the

extracellular matrix, growth factor availability, and key

metabolites linked to redox and amino acid metabolism (145).

Prolonged pathogen-induced chronic inflammation significantly

elevates the risk of cancer (58). Chronic inflammation triggered

by TB infection induces DNA damage, DNA repair, heightened

production of ROS and RNS, cell death, as well as cell proliferation

(146). These processes remain in chronic inflammatory tissues,

leading to uncontrolled DNA replication and cell proliferation,

possibly contributing to LC initiation and promotion (Figure 3).
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4.2 TB promotes tumor progression
and metastasis

As previously discussed, the formation of granulomas is a

complex process that involves Mtb immune evasion through

ongoing interactions between infected macrophages and T cells in

response to chronic inflammation (39). The TME and TB

granulomas exhibit a central theme of exhausted T cell

phenotypes (33). Numerous immune checkpoints, such as CTLA-

4, TIM-3, LAG-3, and PD-1, are enriched in these exhausted T cells

and are crucial in inhibiting T cell effects (49). The development of

tumors may be influenced by the exhausted phenotype of T cells

and the immunosuppressive effects triggered by Mtb infection.

Furthermore, neutrophils are important in the prolonged

pulmonary inflammation associated with TB. As innate immune

cells, neutrophils are involved in the early phases of Mtb infection

and crucial for killing the bacteria (147). Beyond their phagocytic

and lytic roles, neutrophils undergo necrosis and release neutrophil

extracellular traps (NETs), which act to capture and sequester

extracellular bacteria, thereby restricting their dissemination

(148). However, during later phases of infection, uncontrolled

neutrophil activity leads to neutrophil-driven inflammation,

exacerbating lung tissue damage (147, 149–152). Studies show
FIGURE 2

The relationship between cancer treatments and increased risk of active tuberculosis. (a) Immune checkpoint inhibitors (ICIs) can cause T-cell
dysfunction and hyperinflammatory conditions, including excessive TNF-a, IL-6, and IL-12, resulting in tissue damage and mycobacterial growth.
(b) Treatments such as radiotherapy, surgery, and chemotherapy lead to lymphopenia, decreased CD8+ T cells, systemic immunosuppression, and
reduced infection barriers, ultimately increasing the susceptibility to active tuberculosis. Created in https://BioRender.com.
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that NET formation can promote Mtb growth and contribute to

disease severity and inflammation-mediated tissue damage (147,

149, 150). The inflammatory response is primarily driven by three

neutrophil functions: oxidative burst, necrosis, and NETosis (153).

The buildup of neutrophils at inflammation sites results in

uncontrolled necrosis and inflammation in the surrounding

tissues. Similarly, NETs are detected in necrotic lung lesions of

TB patients who show poor responses to antibiotic therapy,

highlighting their involvement in the pathogenesis of late-stage

TB (141, 150, 154, 155).

Meanwhile, cancer cells can manipulate neutrophil recruitment

and behavior by converting some into a pro-tumor phenotype (156,

157). Pro-tumor neutrophils can interact with cancer cells and other

TME cells, including T cells, macrophages, and stromal cells, to

promote tumor initiation, growth, and metastasis (156–159). This

indicates that neutrophil-driven inflammation, characterized by the

buildup of proinflammatory proteins linked to neutrophils and the

formation of NETs, which work together to harm lung tissue in TB

may contribute to LC progression and metastasis. However, the

precise molecular mechanisms underlying this process require

further investigation.
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Repeated tissue damage and repair, caused by prolonged and

intense TB pulmonary inflammation, ultimately lead to fibrotic

scarring that is linked to a heightened risk of lung cancer (160–

162). Recent studies in mouse models have documented that

tuberculous fibrosis can elevate the tumorigenic potential of lung

cells, potentially mediated by NOX4-associated autophagy (163).

Inflammatory monocytes (IMs), identified as the “CCR2highCD14+

CD16low” phenotype in humans, are present in lung cancer and

critical in forming scar tissue and promoting tumors (164–167). A

recent study demonstrated that CCR2+ monocytes in the lungs of

mice with cystic fibrosis drive pathogenic TGF-b signaling and

maintain a pro-inflammatory environment by facilitating

neutrophil recruitment (167). Lung squamous cell carcinomas

(SCC) are marked by poor survival outcomes and significant

infiltration of IMs, creating conditions that facilitate the distant

metastasis of SCC (166). Tumors attract IMs by secreting

monocyte chemoattractant protein-1 (MCP-1 or CCL2) (166),

which can promote tumor cell proliferation, migration, and

survival (168). High levels of CCL2 expression and increased

macrophage infiltration have been linked to a poor prognosis and

the development of metastatic disease in cancer (169). Additionally,
FIGURE 3

Molecular mechanisms in TB→LC. ① Chronic inflammation driven by Mtb may contribute to LC initiation, promotion, progression, and metastasis
through mechanisms such as ROS and RNS production, DNA damage and repair, exhausted T cell phenotypes, induced immunosuppression,
angiogenesis, tuberculous fibrosis, NOX-autophagy axis, excessive ECM deposition, and the infiltration of neutrophils, macrophages, and
inflammatory monocytes. ② Microbial dysbiosis and reduced gut microbiome diversity, resulting from prolonged antibiotic treatment for
tuberculosis, may be associated with the development and progression of LC through microbiome-driven immunomodulation. Abbreviations: ROS,
reactive oxygen species; RNS, reactive nitrogen species; ECM, extracellular matrix; Neu, neutrophil; Mø, macrophage; NOX, non-phagocytic cell
oxidase. Created in https://BioRender.com.
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elevated levels of CCL2 are also found in patients with pulmonary

tuberculosis (170).

In summary, inflammatory signals can modify the TME to

promote immunosuppression through the actions of Tregs,

immature myeloid cells, and other suppressive elements. These

signals also enhance the recruitment and proliferation of various

pro-tumorigenic auxiliary cells within the TME while promoting

their specialized functions (58). Chronic inflammation driven by

Mtb may contribute to the progression and metastasis of lung

cancer through mechanisms such as ROS and RNS production,

DNA damage and repair, exhausted T cell phenotypes, induced

immunosuppression, tuberculous fibrosis, and the infiltration of

neutrophils and inflammatory monocytes (IMs) (Figure 3).
4.3 Risk factors for LC induced by anti-
TB therapy

Advancements in sequencing technologies and analytical

methods have enabled researchers to demonstrate that the gut

microbiota performs various functions that impact the host’s

overall health, such as nutrient metabolism and the regulation of

the immune system by influencing immunological, inflammatory,

neurological, metabolic, and endocrine functions (171–173).

Studies have indicated that certain gut bacterial groups, like

Bacteroides and Ruminococcus, in the microbiota of lung cancer

patients are linked with early-stage lung cancer (174). Recent

research has revealed that reduced gut (and lung) microbiota

diversity, the abundance of specific microbiota, and enriched

metabolic pathways may be related to lung adenocarcinoma

development/progression (175, 176). A study analyzing lung

cancer tissues found that bacterial genera such as Romboutsia,

Novosphingobium, and Acinetobacter were more abundant than in

adjacent normal tissues (177).

Broad-spectrum antibiotic treatment has been shown to

heighten susceptibility to Mtb infection and modulate pulmonary

inflammatory responses in a murine model (178). Analysis using

random forest regression on microbiome-transcriptome-sputum

data indicates that normalizing the TB inflammatory state is

linked to the clearance of Mtb pathogens, a higher abundance of

Clostridia Clusters IV and XIVa, a reduced presence of Bacilli and

Proteobacteria (179). Mtb pathogen clearance is associated with the

renormalization of the TB inflammatory state. This process is linked

to an increase in Clostridia Clusters IV and XIVa and a decrease in

Bacilli and Proteobacteria. Additionally, the alterations in

inflammatory gene expression accompanying TB treatment are

linked to the antimicrobial effects of the drugs, resulting in

pathogen clearance and antibiotic-induced shifts in microbiome

composition (179).

Moreover, another study demonstrated that gut microbiome

dynamics and TB clearance are predictive cofactors in resolving TB-

driven inflammation, thereby guiding therapeutic strategies for

multi-drug-resistant tuberculosis (180). Antibiotic-induced

reductions in pathogen load and microbiome alterations induced

by antibiotics are independently linked to changes in inflammatory
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responses to the treatment of active TB (179). Microbial dysbiosis

and decreased gut microbiome diversity (induced by long-term

antibiotic treatment against TB) may be related to the occurrence

and progression of lung cancer through microbiome-driven

immunomodulation (Figure 3). However, more detailed research

is needed to confirm this relationship. It is also important to explore

which specific microbes are involved and play a key role.

Additionally, investigating whether probiotics can help modulate

the immune system, reduce drug-resistant tuberculosis, and lower

the risk of cancer development is a promising area for

future research.
5 Treatment strategies and
future perspective

5.1 Discriminating TB and LC:
emerging techniques

The concurrent LC and PTB pose substantial difficulties for

differential diagnosis. The primary diagnosis methods rely on

clinical symptoms, distinctive imaging findings, and pathogen

detection. While clinical symptoms may provide indications, they

often lack high specificity. Imaging signs reveal that patients with

coexisting PTB and LC demonstrate a higher frequency of pleural

indentations, satellite lesions, masses, spicule features, small vacuole

features, nodular shadows, vacuole features, and lobulation features

than those with PTB alone (181). Lung biopsy pathology remains

the definitive standard for distinguishing LC from PTB, but

acquiring biopsy samples from certain puncture-unfriendly

locations can be problematic.

As an alternative, blood-based pathogen detection has emerged.

The Hu laboratory (182) has pioneered an ultrasensitive CRISPR-

mediated tuberculosis (CRISPR-TB) assay for detecting Mtb-cfDNA

in serum, showing potential for improving the identification of

pediatric tuberculosis and HIV-associated tuberculosis and allowing

for early diagnosis and swift monitoring of tuberculosis treatment

responses. Moreover, they have employed a nanoparticle-enhanced

immunoassay for the multiplex detection of two interacting Mtb

biomarkers on the surface of circulating extracellular vesicles,

enhancing tuberculosis diagnosis in immunosuppressed children

with HIV (183). Recently, circulating tumor DNA (ctDNA) has

surfaced as a minimally invasive biomarker for tumor molecular

profiling. The European Society of Medical Oncology (ESMO) has

endorsed ctDNA testing in routine clinical practice for tumor

genotyping, guiding molecularly targeted therapies in patients with

metastatic cancer (184, 185).

With the advent of these non-invasive, highly sensitive

technologies for detecting free DNA, the differentiation between

PTB and LC is set to become more refined, paving the way for

subsequent TB and LC treatments. In PTB-LC differential

diagnosis, this CRISPR-TB technology provides two critical

functions: 1) Active TB exclusion: A negative CRISPR-TB result

(Mtb-cfDNA <5 copies/mL) in patients with lung masses strongly

suggests LC-driven pathology, prompting immediate oncological
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intervention. 2) Treatment response monitoring: In confirmed

PTB-LC cases, longitudinal Mtb-cfDNA quantitation (e.g., 80%

reduction after 2-month HRZE therapy) helps distinguish TB

recurrence from cancer progression when radiographic

abnormalities persist. While CRISPR-TB and ctDNA were

initially developed for standalone applications, their integration

creates a synergistic diagnostic paradigm. The CRISPR-TB assay’s

capacity to quantify Mtb-cfDNA load complements ctDNA’s ability

to track tumor evolution, enabling real-time differentiation between

TB-driven inflammation and LC progression. This dual-liquid

biopsy approach may redefine clinical guidelines for TB-LC co-

diagnosis in high-burden settings. However, its high cost currently

limits widespread adoption.
5.2 Advancements in therapeutic targets

5.2.1 Strategies for modulating inflammatory
signaling pathways

Pulmonary complications such as fibrosis and cavitation, arise

from persistent inflammation driven by host pro-inflammatory

signals triggered by a substantial Mtb burden. The effort to

shorten treatment durations and enhance clinical outcomes has

prompted a two-fold strategy: developing new antimicrobials and

host-directed therapies (HDT) that positively influence immune

responses to Mtb (147). Targets for HDT in PTB include lipid

mediators, matrix metalloproteinases, cytokines, and NETs (147).

HDT strategies focus on modulating the immune system by

boosting antimicrobial response while suppressing excessive or

unhelpful inflammatory effects, thereby reducing lung damage

and hastening symptom resolution (147).yole of inflammation as

a link between LC and PTB was discussed in Section 2.2; this section

will highlight the progress in targeting inflammatory signaling

pathways with nonsteroidal anti-inflammatory drugs (NSAIDs).

NSAIDs, widely used to manage various chronic conditions,

function as anti-inflammatory medications by inhibiting

cyclooxygenase enzymes. Maintaining a balance between LXA-4

and PGE-2 plays a vital role in controlling inflammation derived

by TB. The promotion of LXA-4 generation and the reduction of

PGE-2 production by NSAIDs contribute to a decrease in TNF levels,

ultimately resulting in reduced tissue inflammation (186, 187). A

randomized phase II clinical trial revealed that aspirin has been

employed as an adjuvant to standard anti-TB therapy for tuberculous

meningitis, demonstrating a reduction in stroke risk and mortality

rates (188). In a C3HeB/FeJ mouse model of Mtb infection, ibuprofen

significantly decreased neutrophil infiltration and reduced

pathological lung inflammation in mice (189). Recently, another

phase IIb randomized control trial (NCT04575519) has been

registered to evaluate the potential benefits of adding acetylsalicylic

and acid ibuprofen to the standard TB therapy protocol, targeting

both drug-sensitive and multidrug-resistant TB cases.

In line with inflammation’s role in promoting tumorigenesis,

long-term NSAID use is linked to reduced cancer incidence (190),

including a significant decrease in lung cancer incidence among

chronic smokers (191). Furthermore, a phase III trial observed a
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notable reduction in LC incidence while investigating a blocking

antibody aimed at the inflammatory mediator IL-1b for

atherosclerosis (CANTOS; NCT01327846) (192). It is worth

noting that not every chronic inflammatory disease is associated

with an increased cancer risk. Rheumatoid arthritis and psoriasis,

for instance, do not seem to contribute to cancer development.

However, the use of anti-inflammatory drugs to manage these

inflammatory conditions, including TB, might influence cancer

risk. Therefore, targeting inflammatory pathways might reduce

the severity of both TB and LC, offering a potentially effective

approach to enhance long-term outcomes in patients affected by

these conditions. Nevertheless, future challenges lie in validating the

dose-response relationships of repurposed drugs (e.g., NSAIDs).
5.2.2 Modulation of immunometabolism
pathways: novel approaches

The previously discussed roles of immunometabolism in TB

and LC highlight their similarities. As an emerging area of research,

therapeutic approaches focusing on immunometabolism pathways

have seen notable advancements. For example, the glutamine

metabolism pathway could be a therapeutic target for tumors and

TB. On one side, glutamate’s biological impacts can be lessened by

blocking its receptors, including genetic alterations (193) or the use

of metabolic glutamate receptor 5 antagonists (194). On the other

side, direct inhibition of tumor growth can be achieved by blocking

glutamine transport (195, 196), including using the recombinant

solute carrier family 7, member 11 (SLC7A11 or xCT). Glutamic

acid (a byproduct of glutamine hydrolysis) is able to be expelled

from tumor cells via transporters like xCT. The disruption of the

glutamate-cysteine anti-transporter xCT results in cellular

glutamate retention, causing glutamate to lose its function outside

the cells, leading to decreased NSCLC proliferation and

invasion (197).

Similarly, several studies have indicated that Mtb lung infection

creates localized microenvironments characterized by increased

glutamine levels (98–100), subsequently leading to MDSC

accumulation, diminished effector T-cell functionality, and a

decrease in the synthesis of NO and citrulline (98). Parveen et al.

(98) demonstrated that JHU083, a glutamine metabolism

antagonist, could trigger earlier recruitment of T-cells, boost

infiltration of proinflammatory myeloid cells, and decrease IL-10-

producing MDSCs. Inhibiting glutamine metabolism with JHU083

provides both antibacterial and host-targeted actions against

tuberculosis (98), offering new perspectives for treating drug-

resistant TB. However, its penetration capability into human

granuloma microenvironments remains to be validated.

Metabolic disturbances in the tumor microenvironment result

in spatial gradients arising from varying lactate sensitivity among

tumor cells and stromal cells, including tumor-associated

macrophages. Limited perfusion plays a role in creating metabolic

gradients, enabling cancer cells to endure high lactate and low

oxygen (198). Comparable spatial gradients also exist within TB

granulomas, which exhibit unique immune transcripts, proteomic

profiles, and diverse cell subsets. These granulomas have locally
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coordinated immunoregulatory programs with broader systemic

impacts that define active TB (44, 67, 69, 199).

Oxygen tension gradients and changes in vasculature linked to

granulomas cause limited perfusion and central hypoxia (200, 201).

Redox balance within granulomas also plays a critical role (202).

Redox-modulating agents such as the thioredoxin reductase

inhibitor auranofin (203) and cysteine-reactive inhibitors like

ebselen (204, 205) may regulate the redox balance and immune

effects in the granuloma microenvironment through distinct

mechanisms, thereby exhibiting potential antimicrobial

properties. In addition, it’s probable that spatial variations in

lactate metabolism and varied interactions among different cell

types occur within the context of TB granulomas, given the

similarities between tumor and TB microenvironments. These

factors might serve as potential HDT targets for TB treatment.

Furthermore, Chen et al. (89) have shown that lactate

dehydrogenase expression and NBS1 lactylation are associated

with clinical resistance to neoadjuvant chemotherapy, resulting in

reduced patient survival rates. They also demonstrated that

stiripentol, an anti-epileptic drug, significantly reduced lactate

production and NBS1 lactylation. In mouse models, stiripentol

combined with chemotherapy or radiotherapy showed strong

synergistic antitumor effects and prolonged survival time. Related

clinical trials have been registered (registration number:

ChicTR2400083649). Overall, lactate has demonstrated great

potential in treating tuberculosis and lung cancer.

There has been substantial advancement in identifying

therapeutic targets that exploit metabolite-sensing signaling

pathways to halt cancer progression (70). Therefore, targeting

shared metabolic changes in TB and LC, such as those involving

arginine, lactate, and glutamine, might provide common

therapeutic targets for TB and LC.

In summary, we have provided a comprehensive review of the

complex relationship between LC and TB, covering topics from

epidemiology to underlying molecular mechanisms. We focus on

the latest advancements in spatial multi-omics, as well as

developments in immune microenvironments, cellular elasticity,

immunometabolism, and microbiomics. Based on these insights, we

propose future research directions and potential treatment

strategies for TB-LC.
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