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using FAERS database
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1Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, China, 2Department
of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China, 3Department of
Radiology, West China Hospital Sichuan University Jintang Hospital, Chengdu, China, 4Department of
Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China, 5Department of Clinical
Pharmacy, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
Background: With the increasing use of programmed cell death protein 1 and

programmed cell death ligand 1 (PD-1/PD-L1) inhibitors in cancer treatment,

hyponatremia has emerged as a notable adverse event associated with this class

of drugs.

Methods: We extracted adverse event reports related to PD-1/PD-L1 inhibitor-

induced hyponatremia from the FDA Adverse Event Reporting System (FAERS)

database, spanning from Q1–2004 to Q2 2024. The reports were analyzed for

disproportionality using four methods: reporting odds ratio, proportional

reporting ratio, Bayesian confidence propagation neural network, and multi-

item gamma Poisson shrinker. Signals of hyponatremia associated with

nivolumab, pembrolizumab, and atezolizumab were assessed at both the

Standardized MedDRA Query and preferred term levels.

Results: A total of 1,339 reports of hyponatremia involving 1,274 patients were

identified, with nivolumab, pembrolizumab, or atezolizumab as the primary

suspected drugs. All four methods consistently indicated positive signals for

hyponatremia with these drugs. Hyponatremia induced by PD-1/PD-L1 inhibitors

predominantly occurred in patients aged 45 and older, with a higher incidence in

males. The median onset times were 42 days for nivolumab, 35 days for

pembrolizumab, and 20 days for atezolizumab. Except for atezolizumab, the

median onset times for hyponatremia induced by nivolumab and pembrolizumab

differed across genders and age groups.
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Conclusion: This pharmacovigilance analysis reveals the association between

PD-1/PD-L1 inhibitors and hyponatremia, offering valuable insights to refine

treatment strategies and improve risk management for this AE.
KEYWORDS

immune checkpoint inhibitors, PD-1/PD-L1 inhibitors, hyponatremia, disproportionality
analysis, pharmacovigilance, FAERS
1 Introduction

Cancer remains a major global public health challenge and

continues to garner attention due to its rising incidence and

mortality rates. Epidemiological studies suggest that nearly 20

million new cancer cases were diagnosed worldwide in 2022, with

approximately 10 million cancer-related deaths. Projections indicate

that by 2050, the annual global cancer cases will reach nearly 35

million, representing a 177% increase compared to 2022 (1). By 2070,

the incidence is expected to double relative to the 2020 level (2).

Programmed cell death protein 1 and programmed cell death ligand 1

(PD-1/PD-L1) inhibitors, as an important class of immune checkpoint

inhibitors (ICIs), have become increasingly prominent in cancer

treatment. These inhibitors function by blocking the interaction

between PD-1 and PD-L1, thereby activating cytotoxic T

lymphocytes, relieving immune suppression, enhancing the host

immune response against tumor cells, and effectively inhibiting

tumor growth and metastasis (3, 4). Despite their efficacy, PD-1/

PD-L1 inhibitors are associated with a spectrum of adverse events

(AEs), which may affect multiple organ systems. These AEs are closely

linked to disease progression and survival outcomes, underscoring the

importance of vigilant monitoring and management (5–8).

Hyponatremia, the most common electrolyte disturbance in

clinical practice, serves as a critical prognostic indicator in cancer

patients, closely linked to increased hospitalization rates and

prolonged hospital stays (9). Drug-induced hyponatremia is defined

as a serum sodium concentration below 135 mEq/L, with clinical

manifestations that vary widely in severity depending on the rate of

onset, duration, and degree of sodium depletion. Symptoms progress

from fatigue, headache, nausea, vomiting, and muscle cramps to

severe neurological complications such as seizures, confusion, and

altered consciousness, with extreme cases potentially leading to coma

or death. Studies have shown that hyponatremia is commonly

observed among cancer patients receiving ICIs, especially PD-1/PD-

L1 inhibitors (10–14). The development of PD-1/PD-L1 inhibitor-

induced hyponatremia may involve multiple mechanisms, including

the syndrome of inappropriate antidiuretic hormone secretion

(SIADH) (15), immune-related endocrine disorders, and factors

associated with significant fluid loss resulting from immune-related

adverse events (irAEs) (10, 16). These mechanisms may act

synergistically to contribute to the onset of hyponatremia. Given its

prevalence and clinical significance, close monitoring for
02
hyponatremia is important in cancer patients undergoing PD-1/PD-

L1 inhibitor therapy.

The FDA Adverse Event Reporting System (FAERS) is a

globally leading spontaneous reporting database that plays a

pivotal role in monitoring the safety of marketed drugs and

biologics. By leveraging advanced data mining algorithms,

potential associations between drugs and AEs can be

quantitatively assessed, enabling pharmacoepidemiological

research and pharmacovigilance analysis. Although cases of

hyponatremia have been reported in patients receiving PD-1/PD-

L1 inhibitors in clinical practice (17–19), evidence from clinical

trials and case reports remains limited due to small sample sizes

(20). To date, no study has systematically investigated PD-1/PD-L1

inhibitor-induced hyponatremia using the FAERS database. To

address this gap, this study performed a comprehensive

pharmacovigilance analysis to evaluate the association between

PD-1/PD-L1 inhibitors and hyponatremia using real-world data

from FAERS. Data from Q1–2004 to Q2–2024 were screened,

focusing on AE reports of hyponatremia where nivolumab,

pembrolizumab, or atezolizumab were identified as the primary

suspected drugs. Signals of hyponatremia related to these agents

were quantitatively assessed using data mining algorithms,

evaluating their distribution and strength of association at both

the Standardized MedDRA Query (SMQ) and preferred term (PT)

levels. Additionally, we analyzed the median onset time of drug-

induced hyponatremia. This study provides valuable insights into

the prevention and management of PD-1/PD-L1 inhibitor-induced

hyponatremia, supporting the development of precise treatment

strategies and promoting safer, more rational drug use.
2 Methods

2.1 Data source

This study utilized data from the FAERS database to perform a

pharmacovigilance analysis of hyponatremia associated with PD-1/

PD-L1 inhibitors. The FAERS database is a publicly accessible

spontaneous reporting system that compiles safety reports on

marketed drugs and biologics from countries worldwide. These

reports are submitted by healthcare professionals, drug

manufacturers, patients, and other stakeholders such as attorneys.
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Since 2004, the FAERS database has been publicly available and

updated quarterly. It includes seven datasets: demographic and

management information (DEMO), drug information (DRUG),

adverse event information (REAC), patient outcome information

(OUTC), report source information (RPSR), drug therapy start and

end dates (THER), and indication/diagnosis information (INDI).

For this study, we extracted data from FAERS covering the period

from Q1–2004 to Q2 2024, following FDA guidelines and official

recommendations. Data selection and processing were performed

using SAS 9.4 software.
2.2 Identification of relevant reports

In this study, AEs were coded using PTs from the Medical

Dictionary for Regulatory Activities (MedDRA, version 26.1),

which provides standardized and precise descriptions of medical

conditions (21). Each PT is linked to multiple high-level terms,

high-level group terms, and system organ classes (22). Additionally,

SMQ is a built-in tool within MedDRA that consists of collections

of PTs representing similar medical conditions, facilitating the

identification of relevant safety reports. To ensure the specificity

and accuracy of AE reports, we referenced the “Hyponatremia

(SMQ)” entry in MedDRA version 26.1. A narrow-scope SMQ

search was conducted to identify relevant PTs for hyponatremia

and extract AE reports listing PD-1/PD-L1 inhibitors as the

primary suspected drugs. According to this SMQ definition,

hyponatremia is defined as a serum sodium concentration below

135 mEq/L. The specific PTs included in this analysis are detailed

in Table 1.
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2.3 Analytical methods

This study analyzed the clinical characteristics of patients

experiencing hyponatremia induced by PD-1/PD-L1 inhibitors,

encompassing report year, patient demographics (age and sex),

reporter type, country of origin, and patient outcomes. A

disproportionality analysis was performed using data mining

algorithms to quantitatively detect AE signals in large

pharmacovigilance databases, identifying potential associations

with PD-1/PD-L1 inhibitors (23, 24). To compare the frequency

of these AEs with their background frequency, a classic 2 × 2

contingency table (Supplementary Table S1) was utilized to

establish statistical associations.

Four methods were employed to evaluate signal strength and

potential AE risk: reporting odds ratio (ROR), proportional

reporting ratio (PRR), Bayesian confidence propagation neural

network (BCPNN), and multi-item gamma Poisson shrinker

(MGPS) (25, 26). The formulas and evaluation criteria are

outlined in Table 2. The ROR, PRR, information component (IC),

and empirical Bayes geometric mean (EBGM) values were used as

quantitative metrics to compare AE risks across different drugs.

Higher values reflect stronger correlations and an elevated risk of

hyponatremia linked to the specific drug. Furthermore, the onset

time of drug-induced hyponatremia was determined by calculating

the interval between the start date of the primary suspected

medication and the date of the first reported AE. This study

focused on three widely used and frequently reported PD-1/PD-

L1 inhibitors: nivolumab, pembrolizumab, and atezolizumab. A

process diagram illustrating the study workflow is presented

in Figure 1.
3 Results

3.1 Descriptive analysis

The results revealed that from Q1–2004 to Q2 2024, a narrow-

scope search of “Hyponatremia (SMQ)” in the FAERS database

identified 1,339 AE reports listing PD-1/PD-L1 inhibitors as the

primary suspected drugs, involving 1,274 patients. When

categorized by age, patients over 65 years accounted for the

highest proportion (54.00%) of hyponatremia cases (Figure 2a).

In terms of gender distribution, male patients exhibited a

significantly higher rate of hyponatremia (55.18%) compared to

females (38.38%) (Figure 2b). Physicians constituted the largest

group of reporters (47.33%), followed by pharmacists (18.68%)

(Figure 2c). Reporting trends varied among drugs: for nivolumab,

reports of hyponatremia increased annually until 2018, followed by

a gradual decline from 2018 to 2022, and a sharp decrease

thereafter. In contrast, reports related to pembrolizumab and

atezolizumab demonstrated a general upward trend after market

approval (Figure 2d). Geographically, most reports originated from

the USA (31.79%) and Japan (28.49%). Specifically, reports on

nivolumab were more frequent in the USA, whereas

pembrolizumab and atezolizumab were more prevalent in Japan
TABLE 1 PTs contained in the narrow-scope search of
“Hyponatremia (SMQ)”.

MedDRA code Preferred terms

10021036 Hyponatremia

10005802 Blood sodium decreased

10053198 Inappropriate antidiuretic hormone secretion

10005800 Blood sodium abnormal

10069350 Osmotic demyelination syndrome

10021037 Hyponatremic syndrome

10070604 Rapid correction of hyponatremia

10066151 Hyponatremic encephalopathy

10074867 Hypoosmolar state

10049222 Neonatal hyponatremia

10005335 Blood antidiuretic hormone increased

10002776 Antidiuretic hormone abnormality

10075865 Hyponatremic coma

10005332 Blood antidiuretic hormone abnormal

10014149 Ectopic antidiuretic hormone secretion
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(Figure 2e). Regarding patient outcomes, initial or prolonged

hospitalization was the most frequently reported, accounting for

40.20% of all cases (Figure 2f).
3.2 Distribution of AE onset time

The median onset times for hyponatremia are shown in

Figure 3a: 42 days for nivolumab, 35 days for pembrolizumab,

and 20 days for atezolizumab. The peak onset periods also varied,

with nivolumab peaking within 0–60 days, pembrolizumab within

0–7 days, and atezolizumab within 0–30 days (Figure 3b). For

nivolumab, the median onset time was identical for both male and

female patients (42 days), with a trend toward longer onset times in

older age groups. For pembrolizumab, the median onset time was

23 days in male patients and 40 days in females, indicating a

difference of 17 days. For atezolizumab, the median onset times

were similar between sexes, with a difference of only 1 day. Notably,

the shortest median onset (15 days) was observed in patients aged

45–64 years treated with pembrolizumab. For atezolizumab, the

median onset time remained relatively consistent across all age

groups (Figure 3c).
3.3 Proportional distribution of drugs in AE
reports

The proportional distribution of AE reports for nivolumab,

pembrolizumab, and atezolizumab was analyzed at both the SMQ

and PT levels (Figure 4). Nivolumab was associated with reports in

10 PT categories, pembrolizumab in 7 PT categories, and

atezolizumab in 4 PT categories. Among these, “hyponatremia”

(PT) accounted for the highest number of reports across all three

drugs, with 459 reports for nivolumab (75.12% of nivolumab-

related reports), 274 reports for pembrolizumab (65.55% of
Frontiers in Immunology 04
pembrolizumab-related reports), and 254 reports for atezolizumab

(81.94% of atezolizumab-related reports). Other commonly

reported PTs included “blood sodium decreased”, “inappropriate

antidiuretic hormone secretion”, and “blood sodium abnormal”. In

contrast, the remaining PTs were associated with three or fewer

reports for each drug.
3.4 AE signal detection results

To assess the potential risk of hyponatremia induced by

nivolumab, pembrolizumab, and atezolizumab, a comprehensive

AE signal detection analysis was conducted, with the results

presented in Figure 5. All three drugs showed positive signals for

hyponatremia: nivolumab (n = 611, ROR = 2.56, PRR = 2.55, c² =
573.42, IC = 1.35, IC025 = 1.22, EBGM = 2.54), pembrolizumab (n

= 418, ROR = 2.25, PRR = 2.25, c² = 289.24, IC = 1.17, IC025 = 1.02,

EBGM = 2.24), atezolizumab (n = 310, ROR = 4.28, PRR = 4.26, c²
= 772.44, IC = 2.09, IC025 = 1.91, EBGM = 4.25). All four detection

methods (ROR, PRR, BCPNN, and MGPS) consistently identified

positive signals for hyponatremia associated with these PD-1/PD-

L1 inhibitors (Supplementary Figure S1). Additionally, a review of

the drug instructions for these drugs revealed that only the

instructions for pembrolizumab did not list hyponatremia as an

AE or mention it in the precautions.
4 Discussion

With growing public awareness of adverse reactions associated

with drug therapies, drug-induced hyponatremia has become a

noteworthy safety concern for both patients and healthcare

providers. To address the limitations of clinical trials and case

reports in investigating PD-1/PD-L1-induced hyponatremia, our

study is the first to leverage the FAERS database and apply multiple

disproportionality analysis methods, including ROR, PRR, BCPNN,

and MGPS, to quantify the association between PD-1/PD-L1

inhibitors and hyponatremia. Higher signal detection values

demonstrated a stronger association, indicating an increased risk

of hyponatremia in cancer patients treated with these drugs. We

systematically analyzed 1,339 hyponatremia-related reports

involving PD-1/PD-L1 inhibitors (nivolumab, pembrolizumab,

and atezolizumab) as the primary suspected drugs. The basic

characteristics of the patients and reports were described, and

differences in the onset time of hyponatremia associated with

these inhibitors were explored. Additionally, the distribution of

PD-1/PD-L1 inhibitors was examined at both the SMQ and PT

levels to provide a more detailed safety profile.

This study found that hyponatremia induced by PD-1/PD-L1

inhibitors predominantly affects patients aged 45 and older.

Notably, according to the 2022 global cancer statistics, 10.3

million new cancer cases were reported in males (51.50%) and 9.7

million in females (48.50%), with no significant difference in

incidence between the sexes (1). Similarly, previous studies have

suggested that overall cancer incidence is approximately equal
TABLE 2 Overview of algorithms utilized for signal detection.

Algorithms Formulas Criteria

ROR
ROR  ¼  

ad
bc

Lower limit of 95% CI
> 1, a ≥ 3

95% CI  ¼  eIn(ROR)±1:96(
1
a+

1
b+

1
c+

1
d)

0:5

PRR
PRR  ¼  

a=ðaþ bÞ
c=ðcþ dÞ

PRR ≥ 2, c2 ≥ 4, a ≥ 3

c2¼  
(ad� bc)2ðaþ bþ cþ dÞ

ðaþ bÞðcþ dÞðaþ cÞðbþ dÞ

BCPNN
IC  ¼  log2

a(aþ bþ cþ d)
(aþ c)(aþ b)

IC025 > 0

IC025  ¼  EðICÞ � 2½VðICÞ�0:5

MGPS
EBGM  ¼  

aðaþ bþ cþ dÞ
ðaþ cÞðaþ bÞ

EBGM05> 2, a > 0

95% C ¼  eln(EBGM) ± 1:96 (1a + 
1
b + 

1
c + 

1
d)

0:5
CI, confidence interval; c2, chi-squared; IC, information component; E(IC), the IC
expectations; V(IC), the variance of IC; EBGM, empirical Bayes geometric mean.
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FIGURE 1

The flow chart of the study.
FIGURE 2

AE reports related to hyponatremia induced by PD-1/PD-L1 inhibitors in the FAERS database. (a) Age distribution of patients. (b) Gender distribution
of patients. (c) Distribution of reporters by occupation. (d) Annual trends in AE reports. (e) Top 10 countries by number of reports. (f) Distribution of
patient outcomes.
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between males and females when not stratified by cancer type (27).

However, our analysis demonstrated a higher frequency of AE

reports in male patients, with a gender difference of 16.80%. Drug-

specific analyses further supported this trend, as nivolumab,

pembrolizumab, and atezolizumab each showed more reports in

male patients. These findings underscore the importance of greater

vigilance regarding hyponatremia in male patients undergoing PD-

1/PD-L1 inhibitor therapy. From 2015 to 2022, reports associated

with nivolumab surpassed those for pembrolizumab and

atezolizumab. However, in 2023, reports for nivolumab declined

sharply. This trend may be attributed to market competition and

evolving treatment strategies. The emergence of alternative

therapies, such as atezolizumab or newer ICIs, likely contributed
Frontiers in Immunology 06
to the reduced use of nivolumab. Additionally, the accumulation of

safety data may have influenced prescribing behaviors. Early reports

of specific AEs associated with nivolumab might have led physicians

to prefer alternative options perceived as safer, thereby mitigating

the risk of adverse outcomes. Furthermore, our data indicate that

the clinical outcomes of AE reports for nivolumab, pembrolizumab,

and atezolizumab were severe, with proportions of 95.20%, 93.61%,

and 97.67%, respectively. These findings highlight the significant

impact of hyponatremia linked to PD-1/PD-L1 inhibitors in cancer

patients, emphasizing the need for vigilant monitoring and risk

mitigation in clinical practice.

This study systematically summarized the onset time of

hyponatremia induced by nivolumab, pembrolizumab, and
FIGURE 3

Overview of median onset times for hyponatremia associated with nivolumab, pembrolizumab, and atezolizumab. (a) Median onset times of drug-
induced hyponatremia. (b) Proportional distribution of hyponatremia incidence across different time intervals. Red blocks indicate significant
associations between hyponatremia occurrence and specific time intervals, while gray blocks represent weaker associations. (c) Median onset times
for hyponatremia incidence among different genders and age groups. Red blocks highlight shorter median times, whereas gray blocks correspond to
longer median times.
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atezolizumab. Overall, nivolumab-induced hyponatremia

predominantly occurs within the first two months of treatment, as

reported in multiple case reports and observational studies (16, 18, 28–

30). Additionally, some studies have reported cases occurring within

four months after nivolumab initiation (13, 31, 32). There is also a

documented case of severe hyponatremia developing within 24 h after

the first dose (17). The onset pattern of atezolizumab-induced

hyponatremia is consistent with existing literature, typically occurring

within the first 1.5 months of treatment (33). Case reports on

pembrolizumab suggest that hyponatremia may emerge three to four

months after treatment initiation (34–37). However, in our study,

pembrolizumab-induced hyponatremia showed no clear clustering in

time to onset, with a median onset time of 35 days. This discrepancy

may be attributed to the inherent variability and limited sample sizes in

case report studies. In our study, no significant differences in the median

onset time of hyponatremia were observed between genders for

nivolumab and atezolizumab. However, a notable gender difference

was found for pembrolizumab-induced hyponatremia, with males

experiencing onset earlier than females. These findings suggest that

healthcare providers should consider gender differences, especially in

monitoring male patients, when evaluating hyponatremia risk in those

treated with pembrolizumab. Regarding age-related trends, the median

onset time for nivolumab-induced hyponatremia increases with age,

indicating a need for heightened vigilance in middle-aged and older

patients receiving nivolumab. For pembrolizumab, the median onset

time is shortest in patients aged 45–64 years, with a median of just 15

days. This highlights the necessity for close monitoring of hyponatremia

risk in this age group, especially within the first two weeks of treatment

initiation. Compared with nivolumab and pembrolizumab,

atezolizumab is associated with a shorter median onset time for

hyponatremia across all age groups and genders, underscoring the

need for increased vigilance during its use.
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Although this study primarily focused on AE reports of

hyponatremia in which nivolumab, pembrolizumab, or

atezolizumab were identified as the primary suspected drugs, a

total of 71 concomitant medications associated with PD-1/PD-L1

inhibitors were also analyzed using the shrinkage measure method

for signal detection (38, 39). Detailed results are presented in

Supplementary Table S2. Only a few drug combinations had

more than 10 reports, including: nivolumab and ipilimumab (n =

107, W = –0.89, W025 = –1.16); nivolumab and cabozantinib (n =

12, W = –0.51, W025 = –1.33); pembrolizumab and lenvatinib (n =

81, W = –0.23, W025 = –0.54); and atezolizumab and bevacizumab

(n = 17,W = –1.68,W025 = –2.36). All of these combinations yielded

W025 values below zero, indicating negative signals. Among the 71

concomitant medications analyzed, only two showed positive

signals. Previous studies have suggested that small sample sizes

may impair the performance of signal detection algorithms, making

it difficult to distinguish true safety signals from background noise

(40). Therefore, due to the limited number of reports and

corresponding statistical limitations, we currently lack sufficient

evidence to explore potential associations between PD-1/PD-L1

inhibitors and concomitant medications in the development

of hyponatremia.

Existing studies have established an association between

nivolumab and hyponatremia in the treatment of various cancers,

including epithelial cancer (41), squamous cell carcinoma (42–44),

cervical cancer (45), squamous non-small cell lung cancer (32),

cholangiocarcinoma (46) , melanoma (16) , and rectal

adenocarcinoma (31). Similarly, pembrolizumab has been

implicated in causing hyponatremia during the treatment of non-

small cell lung cancer (47, 48), epithelial cancer (49, 50), and non-

muscle invasive bladder cancer (51). In comparison, evidence

linking atezolizumab to hyponatremia is relatively limited, with
FIGURE 4

Proportional reporting of AEs at the SMQ and PT levels. Red blocks demonstrate significant associations between hyponatremia and the respective
PTs, whereas gray blocks indicate non-significant associations.
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reports primarily focused on non-small cell lung cancer and

hepatocellular carcinoma (33). The mechanisms underlying PD-1/

PD-L1 inhibitor-induced hyponatremia remain not fully

understood, but it is widely believed that multiple mechanisms

are involved (10, 15, 16). A commonly recognized mechanism is the

SIADH, which is considered a major cause of hyponatremia

induced by these inhibitors (15). Additionally, endocrine

disorders associated with irAEs, such as pituitary insufficiency,

adrenal insufficiency, and hypothyroidism, play an important role

in the pathogenesis of hyponatremia (13, 14, 32–34, 52). Immune-

mediated conditions, including hypophysit is , isolated
Frontiers in Immunology 08
adrenocorticotropic hormone deficiency, renal injury, and

thyroiditis, are frequently reported during PD-1/PD-L1 inhibitor

treatment (12, 53, 54). Moreover, immune-mediated enteritis may

cause substantial fluid loss and hypovolemia, potentially leading to

hemodynamic instabil ity and subsequent hypovolemic

hyponatremia (10, 16). It is important to note that these

mechanisms may interact synergistically, collectively contributing

to the development of hyponatremia. For instance, irAE-induced

adrenal insufficiency may contribute to both SIADH and

hypovolemia, thereby exacerbating electrolyte imbalances.

Furthermore, individual patient characteristics, such as age,
FIGURE 5

Signal detection analysis of hyponatremia associated with PD-1/PD-L1 inhibitors using (a) ROR, (b) PRR, (c) BCPNN, and (d) MGPS methods.
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baseline renal function, and preexisting endocrine disorders, may

influence the susceptibility to PD-1/PD-L1 inhibitor-induced

hyponatremia. Those with adrenal insufficiency or thyroid

dysfunction may be at an increased risk, necessitating closer

monitoring. In patients receiving PD-1/PD-L1 inhibitors, the

development of SIADH, endocrine disorders related to irAEs, or

other conditions discussed above warrants heightened vigilance for

the onset of hyponatremia.

Although this study provides a comprehensive analysis of PD-1/

PD-L1 inhibitor-induced hyponatremia using a large

pharmacovigilance database, it still has certain limitations. First, the

reports in the FAERS database may be incomplete or duplicated.

Additionally, these reports can be submitted by healthcare

professionals, patients, lawyers, and other non-medical personnel,

which introduces the possibility of data inaccuracies. Second, while

large pharmacovigilance databases can reveal statistical associations

between PD-1/PD-L1 inhibitors and hyponatremia, they do not

establish direct causal relationships. Long-term prospective studies

are required to validate these connections and elucidate causal

mechanisms. Third, the FAERS database lacks information on

pembrolizumab and atezolizumab use in patients under 18 years of

age, leading to gaps in the dataset for this age group. Finally, cancer

patients often receive combination therapies, particularly older

patients with multiple comorbidities. The potential interactions

between drugs and their collective impact on the risk of

hyponatremia require further investigation to ensure the rational

use of PD-1/PD-L1 inhibitors.
5 Conclusion

In conclusion, this study systematically analyzed FAERS data from

Q1–2004 to Q2 2024, providing a comprehensive evaluation of

hyponatremia induced by PD-1/PD-L1 inhibitors. A total of 1,339

hyponatremia-related reports, in which PD-1/PD-L1 inhibitors were

the primary suspected drugs, involving 1,274 patients, were identified

and summarized. Hyponatremia primarily occurs in patients aged 45

and older, with a significantly higher incidence in males. Differences in

the median onset time of hyponatremia were evident for nivolumab

and pembrolizumab in terms of gender and age, while atezolizumab

exhibited no such variations. Despite certain limitations, our findings

provide important real-world evidence on the risk of hyponatremia

induced by PD-1/PD-L1 inhibitors. This study provides valuable

insights for healthcare professionals in recognizing, preventing, and

managing this AE. By contributing clinical evidence, this research

aims to enhance the safety of drug therapies and support the

optimization of clinical practices for cancer treatment.
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50. Powles T, Csőszi T, Özgüroğlu M, Matsubara N, Géczi L, Cheng SYS, et al.
Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-
line therapy for advanced urothelial carcinoma (Keynote-361): A randomised, open-
label, phase 3 trial. Lancet Oncol. (2021) 22:931–45. doi: 10.1016/S1470-2045(21)
00152-2

51. Balar AV, Kamat AM, Kulkarni GS, Uchio EM, Boormans JL, Roumiguié M,
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