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The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

which caused the Coronavirus disease 2019 (COVID-19) pandemic, has posed

significant healthcare challenges. In addition to respiratory complications, it has

led to severe damage in other organs, particularly the cardiovascular system. Of

which, myocardial injury is increasingly recognized as a most significant

complication, contributing to the high mortality. Recent research indicates the

pivotal role of immune dysregulation in mediating myocardial injury in patients

infected with SARS-CoV-2. In this review, we provide a comprehensive analysis

of the immune mechanisms involved in SARS-CoV-2-induced myocardial

damage, focusing on the roles of key immune cells and molecules that

contribute to this pathological process. Aiming at mitigating the myocardial

injury of COVID-19, we review immune-based treatments under evaluation in

preclinical and clinical trials. Along with talking about the similarities and

differences in myocardial injury resulting from SARS-CoV-2, the Middle East

respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory

syndrome coronavirus (SARS-CoV). This article provides a unique perspective on

using past experiences to prevent myocardial injury in the face of ongoing

virus mutations.
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1 Introduction

Coronavirus disease 2019 (COVID-19), a highly contagious respiratory illness caused

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread

worldwide rapidly and inflicted tremendous harm on the population (1). Different from

the two previous pandemics caused by the Middle East respiratory syndrome coronavirus

(MERS-CoV) and the severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-

CoV-2 has a higher rate of transmission, is extremely contagious, and exhibits frequent

mutations (2, 3). SARS-CoV-2 can affect multiple organs in addition to the respiratory
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system (4), resulting in a variety of extrapulmonary symptoms (5,

6). Among these, cardiac researchers are mainly concerned about

myocardial injury induced by the SARS-CoV-2 (7). Infected

patients exhibit a variety of cardiovascular symptoms, including

myocarditis, pericarditis, heart failure, and arrhythmias (8).

Compelling evidence has indicated a compact-connection

between the emergence of myocardial injury and adverse events,

which lead to a higher risk of mortality (9). As a result, early

identification and intervention to avoid myocardial injury plays a

key part in determining the outcome and prognosis of COVID-

19 patients.

Currently, the pathophysiological process in myocardial injury

caused by SARS-CoV-2 infection may be divided into two

categories: direct myocardial injury and indirect myocardial

injury (10). Some viewpoints speculate that immune dysfunction

may participate in the above process and have an obvious impact

(11, 12). Immune intervention is thought to be a treatment strategy

for myocardial injury related to SARS-CoV-2. This article describes

in detail the immune-related factors that contribute to SARS-CoV-

2-induced myocardial injury. It also discusses potential strategies

for preventing and treating this damage. We undertake a

comparison of the myocardial injury induced by SARS-CoV-2,

MERS-CoV, and SARS-CoV. Meanwhile, we provide valuable

insights into how to learn from past experience to prevent

myocardial injury proactively in light of ongoing virus mutations.
2 Excessive inflammation and
abnormal immune responses in SARS-
CoV-2-induced myocardial injury

The immune system is the first line of defense against virus

reproduction and transmission, and is made up of two parts: innate

immunity and adaptive immunity (13). During the initial stages of

SARS-CoV-2 infection, the pathogen-associated molecular patterns

(PAMPs) of SARS-CoV-2 are recognized by pattern recognition

receptors (PRRs) of host cells (14). This recognition triggers a series

of signaling cascades, ultimately inducing the production of type I

and type III interferons (IFNs) along with proinflammatory

cytokines and chemokines (15). The IFNs enhance the antiviral

state of host cells and limit the replication and spread of the SARS-

CoV-2, while cytokines and chemokines recruit innate immune

cells, including neutrophils, monocytes, and macrophages, to

infection sites (16). Dendritic cells (DCs), a kind of innate

immune cell, capture the viral antigen at the site of infection and

migrate to secondary lymphoid organs such as lymph nodes (17).

DCs present the antigen to T cells, thereby activating T cell-

mediated adaptive immune response (18). At the same time,

innate immune-derived cytokines such as interleukin-1 (IL-1),

interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-a) can

serve as warning signals to promote the activation, proliferation

and differentiation of T cells and B cells. Virus-specific antibodies

from B cells and T cell responses synergistically contain the

infection (19). This coordinated response establishes that adaptive

immunity requires innate immune priming through both antigen
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presentation and cytokine signaling (20). However, SARS-CoV-2

employs immune evasion mechanisms that delay innate immune

activation (21). This impairment allows uncontrolled viral

replication while postponing adaptive immunity initiation (22). If

the adaptive immune response is delayed too long, elevated viral

loads trigger compensatory hyperactivation of innate immunity,

resulting in the production of a large number of cytokines and

chemokines (16). The resultant overproduction of inflammatory

mediators disrupts the balance between the anti-inflammatory and

pro-inflammatory responses (23). A large number of cytokines and

chemokines cause cytokine storm, leading to various irreversible

tissue damage, including to the lung, heart, and kidney (4). It is

worth mentioning that cytokine storm-related hyperinflammatory

syndrome is the root cause of many severe COVID-19 symptoms,

which is also considered the underlying mechanism of COVID-19-

related myocardial injury (24).

Myocardial injury is a common complication of COVID-19. It

is an independent risk factor for in-hospital death (9). Infection

with SARS-CoV-2 in the host may induce cardiac dysfunction and

generate cardiovascular complications (25). In patients with severe

and fatal COVID-19, indicators of inflammation and myocardial

damage increased dramatically (26, 27). Direct virus infection and

the abnormal immune response may be the primary causes of this

type of myocardial injury (28–30). Infection with SARS-CoV-2

causes cardiomyocyte dysfunction, inflammation, and cardiac

fibrosis, as well as significant aggregation of activated T cells and

macrophages (31). The overactive immune response may

contribute greatly to the mechanism of myocardial injury. The

process of myocardial injury in patients with SARS-CoV-2 has been

shown in Figure 1.
2.1 Immune molecules in SARS-CoV-2-
induced myocardial injury

2.1.1 Cytokines——the central mediators of
cytokine storm

Cytokines are a form of small-molecule protein released by

various kinds of immune cells, which are principally engaged in

cellular signal transduction. Cytokines encompass interleukins,

interferons, chemokines, tumor necrosis factors and so on (23). A

previous retrospective study showed that COVID-19 patients

exhibit different degrees of elevated levels of inflammatory factors,

including IL-1b, IL-2, IL-6, IL-7, IL-8, and TNF-a. The sudden

surge in these pro-inflammatory compounds is known as “cytokine

storm” (32). Emerging evidence links COVID-19-associated

myocardial injury to cytokine storm-mediated hyperinflammation

(33). A clinical study indicates that patients with SARS-CoV-2-

induced myocardial injury exhibit characteristic laboratory

findings. In addition to elevated levels of high-sensitivity C-

reactive protein (hs-CRP), COVID-19 patients with myocardial

injury also presented with low lymphocyte count, and high levels of

IL-6, IL-8, N-terminal pro-B-type natriuretic peptide (NT-proBNP)

and TNF-a (34). The above-mentioned biomarker profile implies a

potential pathogenic connection between excessive cytokine release

and myocardial injury, particularly given the established association
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between cardiac involvement and adverse clinical outcomes in

COVID-19 (26, 35). Therefore, it is necessary to clarify the key

role of cytokines in COVID-19-related myocardial injury and,

based on this, inhibit cytokine storm to alleviate myocardial

injury caused by SARS-CoV-2.

IL-6 is one of the primary mediators of cytokine storm, which is

released during infection (36). IL-6 participates in initiating and

ampli fying the cytokine storm and coordinat ing the

proinflammatory response of immune cells (37). Infection with

SARS-CoV-2 may activate T cells, monocytes, macrophages, DCs,

and other immune cells, hence producing IL-6 (38). IL-6 has

antiviral activity during viral infection, which might promote
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inflammation resolution and tissue remodeling (39). However,

high levels of IL-6 induce T helper 17 (Th17) cells to produce IL-

17, which affect the immune defense system and prolong the

duration of viral infection collectively (40).

High levels of IL-6 may be the cause of SARS-CoV-2-induced

myocardial injury (41). When researchers exposed rat

cardiomyocytes to serum from COVID-19 patients, they

discovered a significant expression of acute cardiac inhibition a

and persistent arrhythmogenic effects on the cardiomyocytes.

Serum levels of cytokines including IL-1, IL-6, TNF-a, and others

increased significantly (42). Combinatorial inhibition of IL-6 and

TNF-a partially restores the viability and function of
FIGURE 1

The process of myocardial injury in patients with SARS-CoV-2. (Created in BioRender.com). SARS-CoV-2 infects host cells and activates immune cells,
such as neutrophils, monocytes, macrophages, NK cells, T cells, DCs, etc. Those immune cells release cytokines leading to elevated levels of I L-1b, IL-6,
CXCL1, CXCL2, I IFN, TNF-a, etc. This breaks the balance between pro-inflammatory and anti-inflammatory processes in the body, produces the
cytokine storm, and causes myocardial injury. In clinical practice, myocardial injury may manifest as an increase in CK-MB, cTnI and BNP, with
electrocardiographic and pathological changes. In addition, the entry of SARS-CoV-2 into cells has been shown to suppress ACE2 expression. This
phenomenon leads to the accumulation of Ang II, resulting in an imbalance between the ACE/Ang II/AT1 axis and the ACE2/Ang1-7/Mas axis. An
excessive combination of Ang II and AT1 has the potential to elicit vasoconstriction, inflammation, and myocardial fibrosis. Furthermore, the binding of
the S protein of SARS-CoV-2 to the ACE2 receptor will activate the downstream signal cascade, ultimately causing elevated cytokine levels.
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cardiomyocytes (33). High levels of IL-6 may be associated with

cardiac electrophysiological abnormalities in COVID-19 patients.

According to several research, an increase in IL-6 is the primary

pathogenic factor in COVID-19-related heart rate to repair the QT

interval prolongation (43). In patients with severe COVID-19, the

activation of systemic inflammatory response can promote QTc

prolongation by increasing IL-6, resulting in cardiac electrical

remodeling (44). IL-6 influences myocardial stability by regulating

of Na+, K+ and Ca2+ currents (45, 46). This regulatory process

ultimately contributes to the occurrence of detrimental

cardiovascular events, including arrhythmias associated with

COVID-19. Specifically, COVID-19-related heart failure showed a

positive correlation with IL-6 (47). Injecting IL-6 into mice during

animal studies resulted concentric hypertrophy and cardiac fibrosis,

which increased myocardial stiffness (48). These findings reveal that

IL-6 may both be a biomarker and a possible therapeutic target in

cases of heart failure following SARS-CoV-2 infection. Assessing

the levels of IL-6 in the circulatory system can serve as a reliable

indicator for predicting the likelihood of mortality in COVID-19

patients. Given the key role of IL-6 in triggering cytokine storm and

myocardial injury, targeting IL-6 could be a promising approach to

alleviate over-activated immune responses and myocardial injury.

2.1.2 The role of chemokines in myocardial injury
caused by SARS-CoV-2

Chemokines are a subset of cytokines characterized by their tiny

size. They have the ability to attract immune cells to regions of

inflammation or infection, acting as chemical mediators in the

recruitment of immune cells during an immune response (49).

Upon entering the cell, the virus releases its single-stranded RNA

molecules into the cytoplasm. The RNA molecules are then

identified by the host’s intracellular pattern recognition receptor.

As a result, a sequence of cascade signals is activated, eventually

leading to the transcription of proinflammatory cytokines and

chemokines (21). In the human-induced pluripotent stem cell-

derived cardiomyocytes (hiPSC-CMs) model of SARS-Cov-2

infection, inflammatory cytokines like IL-6, IL-8, C-X-C motif

chemokine ligand 1 (CXCL1), C-X-C motif chemokine ligand 2

(CXCL2), and TNF-a are increased (50). Newly generated

chemokines exhibit chemotactic properties towards many

immune cells implicated in innate immune responses, such as

monocytes, macrophages, DCs, and NK cells, among others (51).

Chemokine ligand 2 (CCL2), alternatively referred to as monocyte

chemoattractant protein-1 (MCP-1), is a member of the chemokine

family. This family of molecules has a vital function in attracting

leukocytes to areas of infection or injury, which aids in immune

defense and tissue repair (52). The C-C chemokine receptor type 2

(CCR2), which binds to the chemokine CCL2, is mostly expressed

in monocytes. CCL2 is critical in facilitating the recruitment of

monocytes to inflamed regions (53). Once recruited, circulating

monocytes can induce the production of tissue factor by releasing

cytokines derived from activated platelets and endothelial cells. The

aforementioned procedure facilitates the formation of thrombus

(54). Suppressing the CCL2/CCR2 axis has been proven to impair

the aggregation and adherence of arterial platelets to monocytes,
Frontiers in Immunology 04
hence mitigating plaque development (55). CCL2 levels were shown

to rise progressively in severe COVID-19 patients with high D-

dimer levels. This observation implies that CCL2 may be involved in

the thrombotic inflammatory processes associated with COVID-19

(52). Yang et al. used the hamster model to show that when SARS-

CoV-2 infects cardiomyocytes, it releases CCL2, which attracts

monocytes (56). A recent animal study discovered that SARS-

CoV-2-induced acute respiratory distress syndrome (ARDS)

enhanced cardiac inflammation by enlarging the CCR2+

macrophage subset, potentially leading to cardiomyopathy (57).

The evidence presented suggests that CCL2 plays an integral part in

the development of cardiovascular disease. Suppressing the CCL2/

CCR2 axis may mitigate adverse cardiovascular events in COVID-

19 patients by restricting the aggregation of monocytes and

macrophages at infection sites.

2.1.3 Impaired interferon and immune evasion in
myocardial injury caused by SARS-CoV-2

Interferons are one of the important cytokines in innate

immune responses (58). Following viral infection of the host,

PRRs identify PAMPs and damage-associated molecular patterns

(DAMPs), leading to the synthesis of type I and III interferons and

proinflammatory cytokines to trigger antiviral responses (14). Type

I interferon is mostly composed of IFN-a and IFN-b (59). The IFN-

l family is a subtype of type I interferon, which is also referred to as

type III interferon. Following virus infection, all nucleated cells

release substantial levels of type I and III interferon. T cells, NK

cells, and macrophages produce type II interferon (IFN-g) (60).

Upon entry into the host cell, the viral double-stranded RNA

(dsRNA) is detected by the RIG-I/MDA-5 receptors (61). This

recognition triggers a series of antiviral signaling events, facilitated

by the interaction between RIG-I/MDA-5 and mitochondrial

antiviral signals (MAVS). Following this, the MAVS triggers the

activation of Ik B kinase a/b (IKK) and TBK1/IKK e. Then, these
kinases turn on the transcription factors NF- kB and IRF3, which

causes genes that code for interferon to be transcribed (62). Type I

or Type III interferon interact with certain receptors in order to

initiate antiviral defense mechanisms via the JAK-STAT signal

transduction pathway. The activation of IFN induces the

upregulation of gene expression, specifically the expression of

interferon-stimulated genes (ISG). This subsequently leads to the

production of antiviral effector protein, conferring antiviral

capabilities to the host cells (63, 64) (Figure 2).

Type I interferon, such as IFN-a and IFN-b, is essential in

fighting against SARS-CoV-2 by effectively regulating the immune

response. It is indispensable in regulating viral replication and

mitigating the risk of illness exacerbation. Host cells treated with

type I interferon significantly inhibit the replication of SARS-CoV

(65). However, patients afflicted with COVID-19 frequently exhibit

impaired type I interferon response, leading to a protracted

elimination of the viral pathogen (66). In the context of influenza

infection, the immune response involves the activation of antiviral

mechanisms mediated by interferon, which typically precedes the

pro-inflammatory response. This temporal sequence seems to

enhance host protection while minimizing potential harm to
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surrounding tissues. But the immunological process described

above is not applicable to COVID-19. In hospitalized patients

with SARS-CoV-2 infection, we found that the production of

IFN- l and I IFN was reduced or delayed, which could only be

produced when a small percentage of patients were in severe

condition. Compared to that, pro-inflammatory cytokines, such

as TNF-a, IL-6, and IL-8, were observed to be generated prior to the
interferon response across all patients (67). During the course of

COVID-19, SARS-CoV-2 has the ability to trigger a delayed release

of type I interferon during the initial stage of infection. This

phenomenon allows the virus to avoid immune system

surveillance, leading to its replication within the host’s body and

ultimately ending in immunological escape (68). The virus

demonstrates the capacity to evade the early innate immune

response, specifically the type I interferon response (69), while the

activation of the adaptive immunological response is contingent
Frontiers in Immunology 05
upon the initiation of the innate immune alarm. Consequently,

immune escape occurs (70, 71). This reaction attenuates and

exacerbates viral replication, leading to excessive activation of

Th1 cells. Moreover, the production of INF-g serves to activate

macrophages, triggering the secretion of inflammatory cytokines.

This, in turn, leads to a cytokine storm, exacerbating the

detrimental effects on the heart.

In the vitro model of manufactured heart tissue, Zhan et al.

discovered that the application of IFN-gmay promote a decrease in

cardiac contractility and lead to cardiomyocyte dysfunction. The

proinflammatory cytokine IFN is linked to an increased risk of

cardiac dysfunction. The structural and functional abnormalities

generated by IFN are attributed to changes in the balance of pro-

and anti-inflammatory cytokines, together with the activation of

JAK/STAT signaling pathways. This validates the preceding

procedure (72). Furthermore, the investigators conducted a

comprehensive examination of the JAK-STAT pathway in

primary cardiomyocytes. Their analysis revealed that SARS-CoV-

2 has the capacity to selectively affect the proximal constituents of

the JAK-STAT pathway. In particular, the virus uses ubiquitin to

disrupt the integrity of type I interferon receptors. This makes cells

less sensitive to type I interferon (73). Several studies have pointed

out that the M protein on the surface of SARS-CoV-2 hinders the

generation of type I and III interferons by targeting the RIG-I/

MDA-5 signal transduction pathway. Consequently, the disruption

weakens the host’s antiviral immune response and facilitates the

replication of the virus (62). A group of studies have shown that

viruses often use interferon signaling suppression to avoid the

body’s natural defenses against viral infections. Targeted therapy

that targets immune evasion mechanisms might hinder the virus

from replicating in people who have COVID-19, which could lower

the risk of serious heart problems.

SARS-CoV-2 is sensitive to IFN treatment, pointing the way for

COVID-19 treatment (74). However, several investigations have

demonstrated that interferon therapy can increase the expression of

host Angiotensin-converting enzyme 2 (ACE2), raising the

likelihood that aggravates COVID-19. The study conducted by

Busnadiego and colleagues revealed that the use of IFN resulted

in an increase in both the transcriptional and cellular expression of

ACE2. However, it was shown that the antiviral properties of IFN

counteracted the viral infection facilitated by ACE2. This

conclusion provides valuable insights for reassessing the

therapeutic efficacy of interferon as a pharmaceutical

intervention (75).
2.2 Immune cells in SARS-CoV-2-induced
myocardial injury

2.2.1 Macrophages
Macrophages are one of the prominent subsets of immune cells

in the cardiac tissue. It assumes a pivotal function in the

pathophysiological progression of cardiovascular disease. The role

of macrophage polarization and macrophage-induced cytokine

storm in the development of cardiovascular problems generated
FIGURE 2

The interferon response and antiviral process after SARS-CoV-2
infection. (Created in BioRender.com).
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by SARS-CoV-2 has sparked significant interest. In the cardiac

tissues of individuals who died from COVID-19, there was a rise in

the density of CD68 macrophage infiltration in the myocardium.

There is an indication that macrophages might play an essential

part in myocardial damage among those affected by COVID-19

(76). Interestingly, recent research has revealed that the spike (S)

protein of SARS-CoV-2 directly binds to macrophages through the

S-protein-angiotensin-converting enzyme 2 interaction (77). The

infected macrophages can increase the levels of reactive oxygen

species and apoptosis in cardiomyocytes by secreting IL-6 and

TNF-a , ultimately resulting in cardiotoxicity (78). The

phenotypic and functional properties of macrophages exhibit

significant variations as monocytes undergo migration to several

tissues and subsequent differentiation. In the course of research, M1

and M2 phenotypic macrophages were discovered in COVID-19

patients and healthy persons (79). M1 macrophages are known to

release pro-inflammatory cytokines, like IL-6, whereas M2

macrophages are characterized by their secretion of anti-

inflammatory cytokines, such as IL-10 (80, 81). Following

entering the host cell, SARS-CoV-2 causes a reduction in ACE2

expression on the cellular surface (82). This leads to a substantial

accumulation of Ang II, which promotes the transformation of

macrophages into the M1 phenotype and triggers the release of pro-

inflammatory cytokines from other immune cells. This exacerbates

the process of cytokine storm, therefore aggravating cardiovascular

damage (83). Therefore, the potential efficacy of mitigating the

cytokine storm induced by macrophage activation in the treatment

of myocardia l damage associated with COVID-19 is

worth considering.
2.2.2 Neutrophils
Neutrophils engage in the host immunological response

triggered by SARS-CoV-2 infection and have a distinctive

function in post-inflammatory damage. The activation of

neutrophils and platelets was seen to be significantly heightened

in patients infected with COVID-19 (84). The interplay between

platelets and cells of the innate immune system initiates the

activation of the coagulation cascade, impeding the dissemination

of infections throughout the bloodstream. Excessive inflammation

and aberrant immune thrombosis, however, may raise the risk of

cardiovascular disease. The increased interaction between

neutrophils and platelets results in heightened inflammation and

aberrant immunological thrombosis, exacerbating the progression

of atherosclerosis and heart failure (85–87). The COVID-19 cohort

exhibited a notable presence of thrombosis in both the major and

minor blood arteries inside the circulatory system. Evidence of

neutrophil-platelet aggregation, neutrophil-rich clusters within

significant thrombotic formations, and the creation of neutrophil

extracellular traps (NETs) was found in myocardial thrombosis in

COVID-19 patients, which is a hallmark of neutrophil activation

(88). These data imply that alterations in circulating neutrophils are

the root cause of myocardial thrombosis in COVID-19 patients.

Furthermore, the autopsy findings of COVID-19 patients with

myocarditis revealed a substantial presence of neutrophil

infiltration. There was a notable increase in the rates of troponin
Frontiers in Immunology 06
I, maximal creatine kinase, D-dimer, IL-6, and TNF-a during the

patients’ hospitalization, indicating a considerable occurrence of

cardiac injury (89). Accordingly, it is vital to direct focus towards

the significance of neutrophils in cardiac damage and systemic

disorders among COVID-19 individuals.

2.2.3 Lymphocytes
Patients hospitalized with SARS-CoV-2 frequently have

heightened neutrophil counts and a decrease in lymphocyte

numbers, as indicated by laboratory analyses. Lymphopenia,

characterized by a notable decrease in the count of CD4+ and

CD8+T cells, B cells, and NK cells, is frequently observed in

individuals with severe instances of COVID-19 (5, 90, 91). As a

consequence, there is a notable elevation in the neutrophil-

lymphocyte ratio (NLR). NLR reflects the dynamic between the

innate immune response and the adaptive immune response. The

presence of NLR has been identified as an autonomous risk factor

for the severity and mortality of patients diagnosed with COVID-

19. Several studies have shown a positive correlation between the

levels of NLR and the severity and progression of COVID-19. There

is a positive correlation between elevated NLR and the severity and

duration of a certain disease (92–94). In relation to cardiovascular

illness, there is a potential association between NLR and several

outcomes, including all-cause mortality, coronary heart disease, and

heart failure. The rise in NLR is frequently linked to heightened

morbidity and death rates in cardiovascular illness, serving as a

significant prognosticator for unfavorable cardiovascular outcomes

(95–97).
3 Immune factors in cardiovascular
complications from vaccines

Myocarditis or pericarditis is the prevailing cardiovascular

complications subsequent to the SARS-CoV-2 vaccination,

primarily affecting individuals of the male gender below the age

of 40. This occurrence is particularly prominent following the

second dose of mRNA vaccines (98, 99). There is evidence that

the BNT162b2 and mRNA-1273 vaccines may increase the risk of

myocarditis and pericarditis in many studies (100–102). Typically,

individuals tend to experience the onset of fever and chest pain

within a time frame of 2–4 days after the second dose of the SARS-

CoV-2 vaccine. The laboratory tests revealed heightened

concentrations of troponin T and creatine kinase. The most

common electrocardiogram (ECG) finding was the elevation of

the ST segment. There was typical myocarditis in the patients’

cardiac magnetic resonance (CMR) scans, as shown by the presence

of late gadolinium enhancement (LGE) and myocardial edema

(103–105). Myocarditis typically manifests in persons who

possess predisposing conditions. After follow-up, all the

myocardial injuries healed. Researchers observed an amplified T

cell response in cases of acute myocarditis that occurred four days

after vaccination. Meanwhile, endomyocardial biopsy could identify

the infiltration of CD4+ cells within the myocardium (106, 107).

This observation implies a potential association between vaccine-
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1561946
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1561946
induced myocarditis and the autoimmune response. The

mechanism underlying vaccine-induced myocarditis remains

inconclusive. However, ongoing research efforts persist in this

area. There is evidence that S protein may evade the recognition

of antibodies in the case of people who got myocarditis after being

immunized with SARS-CoV-2. These individuals showed a

consistent rise in levels of free S protein and did not bind to spike

antibodies (108). The potential mechanism by which S protein may

induce myocarditis involves its interaction with ACE2, activation of

cardiac pericytes, and induction of endothelial cell dysfunction,

leading to the mediation of inflammatory processes. Antibody

cross-reaction caused by molecular simulation between

autoantigen and S protein encoded in vaccines is also considered

to be a possible mechanism of vaccine-associated myocarditis.

However, after comparing the sequence homology between SARS-

CoV-2 stimulating protein-derived peptides and myocarditis-

associated antigens, Marrama et al. found that the frequency of

spike-derived peptides similar to myocarditis-related antigens was

not significantly enriched (109). The empirical findings do not

substantiate the perspective that molecular simulation engenders

cross-reaction. In addition, Gill et al. highlighted the distinction

between some cases and typical myocarditis in their article,

specifically noting the presence of catecholamine-mediated stress

cardiomyopathy (110). The emotional and physiological response

elicited by the SARS-CoV-2 vaccine has the potential to generate an

excessive release of catecholamines, initiating an inflammatory

response, which may be the cause of vaccine-induced Takotsubo

cardiomyopathy (111). In contrast with the adverse events

associated with SARS-CoV-2 infection, the incidence of adverse

events resulting from vaccination tends to be lower. Furthermore, it

is worth noting that some consequences primarily present in

individuals with pre-existing medical conditions. Hence, it is

imperative to perform a comprehensive physical assessment

before administering vaccinations to individuals afflicted with

malignancies, cardio-cerebral blood disorders, and other

fundamental ailments. Vaccination remains a highly effective and

essential strategy for mitigating the COVID-19 pandemic.
4 Genetic susceptibility to SARS-CoV-
2-induced myocardial injury

SARS-CoV-2 invades host cells through S protein binding to the

host ACE2 receptor. High expression of ACE2 promotes the

activation of neutrophils, monocytes/macrophages, NK cells, T-

helper-1 (Th 1) cells, Th 2 cells and Th 17 cells to secrete cytokines

(112). ACE2 polymorphism may be related to the genetic

susceptibility of SARS-CoV-2 (113). Compared to wild-type

ACE2, K31R and E37K variants of ACE2 have reduced affinity

and the K26R and T92I variants show increased S-protein affinity,

which makes the host more susceptible (114). The TT genotype of

ACE2 is associated with the severity of COVID-19 (115). ACE2

rs2285666 is greatly associated with both the probability of long-

term COVID-19 symptoms and the cumulative incidence of Long

COVID (116). Research has shown that variations of ACE2 maybe
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affect the levels of D-dimer, lactate dehydrogenase (LDH), and CRP.

The differences of these biomarkers COVID-19 related give a

support for the view that ACE2 rs2285666 may be regarded as a

genetic susceptibility marker of COVID19 results (117).

Because of the critical role of genes encoding human leukocyte

antigen (HLA) molecules in T cell antigen presentation, HLA has

become a major focus of genetic association studies for a variety of

infectious and immune-mediated diseases (118). HLA genotypes

and related polymorphisms can influence the susceptibility and

severity of SARS-CoV-2 infections. Augusto et al. demonstrated a

strong and significant association between HLA-B * 15:01 and

asymptomatic COVID-19 infection (119). The HLA-C * 01 allele

demonstrates a significant association with increased susceptibility

to SARS-CoV-2 infection. It serves as a specific ligand for KIR2DL2

and KIR2DL3, which are the receptors that inhibit the activity of

NK cells. HLA-C * 01 allele affects the early immune response via its

specific interaction with inhibitory NK cell receptors (120). HLA

haplotypes may impact the incidence of cytokine storm by

interference with immune cell activation. The distinctions among

other demographic categories should be taken into account (121).

Moreover, variants in cytokine genes, including IL1B, IL1R1,

IL1RN, IL6, IL17A, FCGR2A, and TNF may correlate with illness

vulnerability and cytokine storm (122). For example, the rs1800629

and rs1800795 variations of proinflammatory cytokines

significantly influence the clinical outcomes and systemic

inflammatory profiles of COVID-19, elevating TNF-a and IL-6

levels, respectively (123). The effective application of genome-wide

association studies (GWASs) and Mendelian randomization can

help to identify host genetic variation related to diseases which

contribute to explore new mechanisms and therapeutic targets.
5 Long-term cardiovascular sequelae:
from PASC to chronic dysfunction

Many patients frequently experience a range of symptoms that

are challenging to recover after the improvement of acute covid-19

infection. We refer to it as the post-acute sequelae of COVID-19

(PASC), commonly termed “Long COVID.” Long COVID may

impact the cardiovascular system and lead to sequelae, including

coronary artery disease, arrhythmias, autonomic dysfunctions,

thromboembolic events, and myocarditis (124). Certain

individuals endure chronic chest pain and dyspnea after an acute

infection, potentially attributable to cardiac injury or persistent

inflammation (125). Others may exhibit postural orthostatic

tachycardia syndrome (POTS), inappropriate sinus tachycardia

(IST), and orthostatic hypotension (OH), which may be related to

cardiovascular autonomic dysfunction, with symptoms including

tachycardia, orthostatic intolerance, fatigue, and cognitive

impairment (126). Thrombotic events described in the context of

coronavirus pneumonia are multifactorial and may be associated

with platelet activation, leukocyte recruitment, and excessive

inflammatory response due to endothelial dysfunction (127). Of

note, adverse cardiovascular outcomes may occur in people with no

previous history of cardiovascular disease, even in mild or
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asymptomatic patients. At present, the treatment strategy is limited

to symptomatic treatment. Therefore, the establishment of

predictive models based on multi-omics technology to develop

multi-target intervention schemes for endothelial repair,

neuroimmune regulation and coagulation homeostasis is expected

to become the key direction of translational medicine research in

the future.
6 Strategies for preventing and
treating myocardial injury caused by
SARS-CoV-2

6.1 Immunomodulatory therapy

SARS-CoV-2 commonly induces damage to several organs

beyond the respiratory system, such as the heart. The multi-organ

injury observed in COVID-19 patients is a result of the combination

of cytokine storm and host immune system dysregulation,

ultimately resulting in deteriorated clinical outcomes. Therefore,

employing immunomodulatory therapy targeting cytokine storm

triggered by excessive inflammatory responses may be beneficial to

improving patients’ outcomes.

In COVID-19 patients, elevated levels of IL-6 are crucial in the

occurrence of cytokine storm, QT syndrome, and Torsades de

Pointes (45, 128). Higher levels of IL-6 are related to severe

COVID-19 and adverse prognosis (129). The study has found

that using anti-IL-6 receptor monoclonal antibody tocilizumab in

COVID-19 patients reduced the risk of inflammation-driven

arrhythmias (128). So, using IL-6 inhibitors might ultimately

diminish the detrimental consequences of elevated IL-6 levels and

also protect the heart. In a prospective analysis conducted on

clinical trials including patients who were hospitalized with

COVID-19, administration of IL-6 antagonists showed a

reduction in 28-day all-cause mortality in comparison to

traditional treatment or placebo (130). Tocilizumab, a humanized

monoclonal antibody that targets to the IL-6 receptor, has the

capability to suppress the physiological activity of IL-6 effectively

(131). Treatment with tocilizumab in COVID-19 patients led to a

decrease in mortality, lower rates of admission to the intensive care

unit (ICU), and reduced reliance on mechanical ventilation

compared to patients who did not receive tocilizumab medication

(132, 133). Particularly, researchers have found that concurrently

administering corticosteroids and tocilizumab enhances clinical

benefits, thereby establishing it as a potentially safe and

advantageous therapeutic approach (134). In addition to

tocilizumab, various additional monoclonal antibodies (mAbs)

that have the potential to inhibit the physiological impacts of IL-6

are being evaluated in clinical studies for the treatment of COVID-

19, including sarilumab, siltuximab, sirukumab (135, 136).

Cenicriviroc (CVC) functions as an antagonist for both C-C

chemokine receptor type 5 (CCR5) and C-C chemokine receptor

type 2 (CCR2). Cells within atherosclerotic plaques express both

CCR5 and its corresponding ligands (137). CVC demonstrates its

anti-inflammatory and immunomodulatory characteristics through
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the antagonism of CCR2 and CCR5, making it a potentially effective

treatment option for myocardial infarction. Research findings have

indicated that CVC can impede the replication of the SARS-Cov-2

virus (138). The intervention exhibits the capacity to mitigate the

occurrence of respiratory and cardiovascular system dysfunction

commonly linked to COVID-19 (139). Current clinical trials are

examining the effectiveness of CVC, whether used in conjunction

with routine care or in combination with other pharmaceutical

agents (140). The purpose of these trials is to utilize the anti-

inflammatory properties of CVC to improve the clinical

advancement of COVID-19 and mitigate the occurrence

of comorbidities.
6.2 Cell -based therapy

Mesenchymal stem cells (MSCs) are a type of stem cell with the

ability of self-renewal and multi-lineage differentiation. MSCs

perform diverse functions in reducing inflammation, preventing

fibrosis, regulating the immune system, and facilitating tissue

regeneration (141). Within the realm of cardiac regeneration,

MSCs have been shown to enhance cardiac function through

various mechanisms, including immune response regulation,

promotion of tissue perfusion, inhibition of fibrosis, and

stimulation of cardiomyocyte proliferation (142, 143). Multiple

groups of clinical trials have found that the application of MSCs

can effectively ameliorate the prognosis of moderate and severe

COVID-19 patients, as well as increase the survival rate of COVID-

19 patients with ARDS (144, 145). Due to the absence of ACE2 and

TMPRSS2 expression, MSCs are less susceptible to SARS-CoV-2

infection (146). Thus, MSCs could serve as a potent therapeutic

approach for preventing or treating SARS-CoV-2-induced

cardiac injury.

The beneficial effects of MSCs are manifold. MSCs regulate

immune cell subsets by secreting paracrine substances, which help

coordinate the immune response. Research has shown that

intravenous infusion of MSCs can regulate B cell subsets and

boost CD28 expression on costimulatory T cells (147). Also,

MSCs have the potential to alleviate SARS-CoV-2-related

cytokine storm (148). Preclinical models of ARDS have indicated

that MSCs exert inflammation suppression effects on host tissues

through the release of IL-4, IL-10, transforming growth factor b
(TGF-b) and prostaglandin E2 (149). Infusion of MSCs in severe

and critically ill COVID-19 patients resulted in a considerable

reduction in levels of CRP, pro-inflammatory cytokines, and

NETs, as evidenced by clinical trials (147). CPR serves as a

biomarker for myocardial damage (150). It is worth noting that

patients with elevated IL-6 levels have better infusion effects of

human umbilical cord-derived mesenchymal stem cells (hUC-

MSCs), as seen by a significant reduction in IL-6 levels and a

substantial increase in the oxygenation index (145). This suggests

that the inflammatory environment may augment the immune

regulatory properties of MSCs. On top of that, MSCs treatment

also demonstrates a commendable capacity to stimulate tissue

differentiation and regeneration. MSCs migrate to areas of injury

and release abundant amounts of growth factors, prompting tissue
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regeneration and diminishing cellular demise (151). At present,

studies in humans have confirmed the safety and efficacy of MSCs.

Several clinical trials have verified the effectiveness of intravenous

infusion of hUC-MSCs in patients with moderate and severe

COVID-19, and it has a beneficial impact on patient-related

sequelae after infection (152–154). The enduring safety and

efficacy of MSCs therapy has been confirmed and are not

associated with serious adverse events (155, 156). Autologous

stem cells, especially patient-derived ones, pose no danger of

immunological rejection (157).

Cardiosphere-derived cells (CDCs) are stem cells originated

from heart tissue (158). CDCs, like MSCs, actively contribute to

cardiac repair and point out greater myocardial repair potential

than MSCs. The beneficial effects of CDCs in promoting

cardiomyocyte regeneration, stimulating angiogenesis, inhibiting

inflammation and myocardial fibrosis, enhancing cardiac

function, and regulating immunity have been confirmed by

research (159–162). Several sets of clinical trials have shown the

therapeutic efficacy of CDCs in treating various conditions such as

myocardial infarction, heart failure with reduced and preserved

ejection fraction, non-ischemic cardiomyopathy, Duchenne

muscular dystrophy, and others (161, 163–166). CDCs may have

the potential to induce the transformation of M1-like macrophages

(pro-inflammatory) into M2-type macrophages (anti-

inflammatory), and enhance the ability of macrophages to clear

cell debris (167, 168). Due to their capacity to suppress excessive

inflammation and facilitate the restoration of myocardium, CDCs

could potentially be beneficial for COVID-19 patients suffering

myocardial injury (169). Clinical study data indicates that

intravenous allogeneic CDCs (CAP-1002) is safe in individuals

with severe COVID-19. After administration of CAP-1002, the

levels of pro-inflammatory biomarkers were reduced in the majority

of patients. Additionally, increased levels of cardiac troponin I and

D-dimer were dramatically decreased. And the clinical condition of

patients showed improvement (170).
6.3 Cell-free therapy based on exosomes

Exosomes are a specific type of nanoparticles with a diameter

ranging from 40 to 150 nanometers. Cell-free therapy based on

exosomes has shown promise in treating various cardiovascular

diseases such as myocardial infarction, myocardial ischemia-

reperfusion injury, inflammation of myocardium, and ventricular

remodeling (171–173). The therapeutic benefits of MSCs are

primarily attributed to exosomes (174). Extracellular vesicles,

derived from MSCs, possess comprehensive immunomodulatory

and regenerative properties (175). Despite several advantages of

MSC-based cell therapy, its potential for causing tumors, the risk of

pulmonary embolism, the low in vivo survival rate, and challenges

with storage present hurdles. As a result, exosome therapy emerges

as a promising option (176). Exosomes exhibit lower

immunogenicity in comparison to MSCs, hence diminishing the

likelihood of thrombosis and the incidence of adverse

cardiovascular events (177). Besides, exosomes exhibit robust
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sustainability and stability within the body, enabling them to

effectively and enduringly mitigate inflammation and modulate

the immune response, consequently suppressing the onset of

cytokine storm (175). As a kind of nanoparticles, exosomes

possess the ability to cross the blood-brain barrier, circumventing

the risk of pulmonary embolism, which is associated with MSC

transplantation. Significantly, exosomes circumvent the potential

hazard of tumor development caused by MSCs (141). Exosomes

consist of lipids, proteins, mRNA, LncRNA, microRNA, and

various other bioactive compounds. Studies revealed that non-

coding RNAs contained in exosomes play a pivotal role in cardiac

protection (178). The efficacy and security of exosome-based cell-

free treatments for patients with COVID-19 have been validated

(142). Similarly, extracellular vesicles derived from CDCs are the

key mediators of their therapeutic effects (164, 179). In pig models

of acute myocardial infarction, intramyocardial injection of CDCs-

exosomes significantly reduced cardiac remodeling and enhanced

cardiac functions (180). The study discovered that extracellular

vesicles derived from CDCs may be involved in regulating the IL-6/

IL-6R axis and suppressing the impacts of diseases mediated by

inflammation (181). Currently, exosome treatment is primarily

applied by either aerosol inhalation or intravenous injection

(182). The precise targeting of the heart is a subject of ongoing

research, and its potential for transformation is a topic that

warrants further discussion.
6.4 Cardioprotective agents

The invasion of SARS-CoV-2 can result in severe injury to

myocardial tissue, necessitating the creation of a novel medication

to counteract the myocardial injury induced by SARS-CoV-2.

However, the process of developing and implementing novel

drugs requires a certain amount of time. Considering the

unpredictability and urgency of the novel coronavirus, looking for

cardioprotective agents with antiviral effects among existing clinical

drugs is a reliable option. Statins are frequently employed in clinical

settings as lipid-lowering medications. It serves a crucial function in

the regulation of blood lipid abnormalities and cardioprotective

therapy (183). Different observational research has shown that the

use of statins diminishes mortality and improves outcomes in

COVID-19 patients (184, 185). As a possible candidate for

adjuvant treatment of COVID-19 patients with myocardial injury,

statins have multiple effects. Research analysis speculates that

statins may impede the entry of SARS-CoV-2 into host cells as

well as hinder the replication and proliferation of the virus in vivo

(186, 187). Secondly, statins may have a capacity to reduce the

excessive level of pro-inflammatory cytokines and regulate immune

responses. A meta-analysis showed that statins have the ability to

decrease levels of IL-6 and CRP (188). It exhibits a suppressive effect

on cytokine storm and macrophage activation syndrome, which is

triggered by raised levels of IL-6. Moreover, statins exhibit

remarkable anti-fibrotic potential and accelerate the apoptosis

process of fibroblasts against complications induced by SARS-

CoV-2 infection (189). In brief, because of its antiviral, anti-
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inflammatory , ant i -fibrot ic , immunomodulatory , and

cardioprotective properties, statins may be a viable treatment

choice for COVID-19 patients with cardiovascular comorbidities.

Especially for patients with myocardial damage or dyslipidemia,

statins can be used as an auxiliary treatment.
6.5 Phytochemicals

Prior reports indicated that phytochemicals, such as alkaloids,

flavonoids, and polyphenols, demonstrated antiviral properties on

the MERS-CoV and the SARS-CoV (190). Resveratrol (RES), a

phenolic molecule, exhibits inhibitory effects against multiple

respiratory viruses, such as influenza virus, MERS-CoV, SARS-

CoV, and respiratory syncytial virus (191). RES can drastically

counter MERS-CoV infection and enhance the survival of virus-

infected cells (192). Similarly, in vitro experiments show that RES

can effectively inhibit the replication of SARS-CoV-2, manifested as

reduced virus titer and cytotoxicity (193). In the Vero cell model

infected with SARS-CoV-2, the cells treated with RES after infection

showed a remarkable inhibition rate of 98% against SARS-CoV-2.

After incubating the cells with the virus and RES for 1 hour,

followed by the removal of RES interference and subsequent

culture for a further 48 hours, the inhibition rate remained

approximately 64%. The findings point out that RES exhibits a

potent inhibitory effect on the replication of SARS-CoV-2 and can

impede viral entry into cells (194). RES can activate the immune

system, downregulate the production of pro-inflammatory

cytokines, and inhibit cytokine storms. It affects T cells, DCs, and

macrophages to control immune responses and minimize tissue and

organ impairment (195, 196). A randomized, double-blind,

placebo-controlled trial showed that RES can decrease the

occurrence of hospitalizations, emergency department visits, and

pneumonia in outpatients with mild COVID-19 without generating

significant adverse events (197). Furthermore, RES is identified as a

cardioprotective drug, which means it can alleviate the

cardiotoxicity associated with chloroquine/hydroxychloroquine

treatment in SARS-CoV-2 patients (198). Therefore, whether to

inhibit viral replication during the initial phase of infection or to

reduce systemic inflammation-induced tissue damage and its

cardioprotective effects during the later phases, RES seems like a

good candidate.
6.6 Traditional Chinese medicine

Traditional Chinese medicine (TCM) has been used in previous

viral infections, such as SARS-CoV, MERS-CoV and influenza virus

(199). After the outbreak of the SARS-CoV-2, the Chinese

government quickly adopted a series of prevention and treatment

measures, actively promoted the application of TCM, and created

three Chinese patent medicines (Jinhua Qinggan Granules, Lianhua

Qingwen Capsule and Xuebijing Injection) and three Chinese

medicine prescriptions (Qingfei Paidu Decoction, Huashi Paidu

Recipe and Xuanfeibaidu Recipe (200). Data from randomized
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controlled studies of ‘three formulas and three medicines’

indicated that TCM is safe and can mitigate the symptoms of

heart damage (201). Whether it is for initial prevention or as an

adjuvant treatment for acute myocardial injury induced by SARS-

CoV-2, especially for the rehabilitation treatment of post-COVID-

19 condition, TCM is a viable option. However, it is necessary to

dialectically view the specific conditions of each patient and give a

reasonable treatment plan. Strategies for preventing and treating

myocardial injury caused by SARS-CoV-2 has been shown

in Figure 3.
7 Discussion and future perspective

SARS-CoV-2, SARS-CoV, and MERS-CoV are all classified as

coronaviruses, which primarily attack the respiratory system of

humans and lead to a widespread pandemic (202). Prior studies

indicated that infection with SARS-CoV-2, SARS-CoV, and MERS-

CoV can impact the human immune system and result in multiple

systemic impairments (203). SARS-CoV has the ability to invade

alveolar epithelial cells and immune cells; however, it can only

replicate in epithelial cells. So its impact on the immune system is

indirect (204). The distinction of MERS-CoV is its ability to directly

invade and reproduce within a range of immune cells, including

macrophages, T cells and DCs. Infected macrophages and DCs

secrete pro-inflammatory cytokines and chemokines, leading to

inflammation and tissue damage (205). SARS-CoV-2 has a

comparable effect on the immune system as the previous two

viruses. Acute infection with SARS-CoV-2 results in widespread

reductions in various types of immune cells, such as T cells, NK

cells, monocytes, and DCs. Following infection with SARS-CoV-2,

there is a notable occurrence of immunological dysfunction and

cytokine storm. The condition of high inflammation and abnormal

immune processes ultimately results in the destruction of multiple

tissue and organs (206). Similar to SARS-CoV-2, patients infected

with MERS-CoV and SARS-CoV were also complicated with

cardiovascular diseases (207, 208). However, there is little

research on cardiovascular diseases related to SARS-CoV and

MERS-CoV infection. The studies primarily focus on clinical case

reports and lack the in-depth exploration and summary of relevant

mechanisms (208). Consequently, during the SARS-CoV-2

pandemic, there exists a poor awareness of the prevention and

management of myocardial injury caused by coronavirus infection.

Therefore, in spite of the last coronavirus pandemic has passed, it is

essential to explore and summarize the underlying mechanisms of

myocardial injury induced by COVID-19. This exploration aims to

deepen the comprehension of myocardial injury due to SARS-CoV-

2 as well as provide strategies for subsequent prevention

and therapy.

It is inevitable to create novel medicines because there are no

new therapeutic drugs for myocardial injury in patients with

COVID-19 currently. However, the process of researching and

developing novel medications and conducting clinical trials

requires a certain amount of time. The existing cardioprotective

agents with antiviral and immunomodulatory properties may be an
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appropriate choice. In recent years, treatments based on MSCs have

been extensively studied in many fields (148). MSCs have qualities

that reduce inflammation, fight against viruses, modulate the

immune system, and facilitate the healing of myocardial damage.

Clinical trials utilizing MSCs treatment have been carried out in

patients with COVID-19. Considering the regular clinical

application of MSCs by atomization or intravenous infusion,

there exists a requirement to improve the effectiveness of MSCs

in treating heart disease. By integrating stem cells with

nanotechnology, combination therapies and additional techniques

enhance the delivery efficiency and therapeutic efficacy of MSCs

(209, 210). Although, cell-free therapies based on exosomes

demonstrate unique advantages by avoiding the immunogenicity

and thrombotic risks inherent to stem cells. The clinical translation

has faced multifaceted challenges. Globally registered clinical trials

investigating exosome therapies remain predominantly in Phase II/

III development, with a marked predominance of hUC-MSCs as the

cellular source. Notably, the development of embryonic stem cell-

derived exosomes remains strictly constrained, primarily stemming

from persistent ethical controversies (e.g., legal ambiguities

regarding embryonic material procurement) and regulatory

deficiencies in quality control standardization.

Given the crucial role of cytokine storm in COVID-19-

associated myocardial injury, targeted suppression of SARS-CoV-

2-induced inflammatory responses may represent an effective

therapeutic strategy. The use of IL-6 inhibitors (e.g., tocilizumab),

IL-1 inhibitors (e.g., anakinra and canakinumab), NLRP3

inflammasome inhibitors (e.g., colchicine), and JAK inhibitors
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(e.g., baricitinib) in COVID-19 patients has shown promising

results in suppressing inflammation and reducing clinical

progression (133, 211, 212). In particular, the anti-thrombotic

effect is observed when targeting the NLRP3/IL-1b axis through

canakinumab or colchicine administration. Currently, anakinra has

been approved for treating hypoxemic COVID-19 patients

exhibiting early signs of hyperinflammation, based on its

established safety profile and therapeutic efficacy. The non-

selective NLRP3 inhibitor colchicine has demonstrated favorable

effects in reducing hospitalization and mortality rates among

COVID-19 outpatients, despite lacking formal regulatory

approval for this indication (213). It is essential to recognize that

since excessive immune activation involves the synergistic actions

of multiple proinflammatory cytokines, targeting the single

inflammatory factor may not be sufficient to suppress excessive

inflammation and improve clinical outcomes (214). Therefore,

there is still a need to explore specific myocardial injury

biomarkers in COVID-19 patients and develop multi-targeted

therapy to address the complex cytokine network dysregulation.

At present, the assessment of myocardial injury mainly depends

on cardiac troponin I (cTnI) or high-sensitivity cardiac troponin I

(hs-cTnI), with increased inflammatory biomarkers (215). Since the

elevation of troponin involves both ischemic and non-ischemic

causes, there is a need to find more readily available specific and

sensitive markers of myocardial injury (216). Non-coding RNA

circulating in the blood may be a good choice. Garg et al. assessed

changes in circulating cardiovascular miRNA, and the upregulation

of miR-21, miR-155, miR-208a and miR-499 in COVID-19
FIGURE 3

Strategies for preventing and treating myocardial injury caused by SARS-CoV-2. (Created in BioRender.com).
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survivors may be predictors of chronic myocardial injury and

inflammation. In particular, myocardial-specific miR-208a, and

miR-499 showed higher elevations than troponin (217). This

provides possible predictive information for the assessment of

SARS-CoV-2-related myocardial injury. RNA biomarkers could

be useful in the current COVID-19 situation. Although studies

put the immune dysregulation into the potential mechanism

underlying myocardial injury, there has been a blank in

biomarkers between immune factors and myocardial injury. A

research study aimed to assess the relationship between

myocardial injury and immunologic profiling found that white

blood cell count, neutrophil count, types of lymphocyte count

(CD3+, CD4+, CD8+, CD19+, CD16+, CD56+), hs-CRP, and

procalcitonin had independent correlations with myocardial

injury in COVID-19 patients. The elevated indicators above all

may give a clue for considering myocardial injury in patients

infected with virus (218). The exploration of novel biomarkers for

myocardial injury in COVID-19 patients is a direction that warrants

future consideration. This provides the possibility for timely

identification of myocardial injury and precise targeted treatment.

The levels of some biomarkers can be influenced by a variety of

factors, including infection and hypoxia. Therefore, the diagnosis of

myocardial injury after COVID-19 infection should not only rely on

biomarkers but also consider all relevant clinical parameters. Zhong

et al. discovered that a decline in myocardial computed tomography

(CT) value indicates the presence of myocardial damage. Chest CT

is employed to evaluate pulmonary lesions as well as heart

morphology and myocardial tissue characteristics in individuals

diagnosed with COVID-19. This utilization aims to enhance the

clinical utility of chest CT in cardiovascular diseases and furnish

patients with additional valuable information (219). Moreover,

CMR can also serve as a supplementary diagnostic tool (220).

Combined with inflammatory markers, a variety of myocardial

injury markers and imaging examination to assess myocardial

injury from multiple perspectives, to provide more reliable

support for the diagnosis of myocardial injury.

Since the COVID-19 pandemic, various variants of SARS-CoV-

2 and their respective branch subtypes have emerged. These include

Alpha, Delta, and Omicron variants, as well as their subtypes, such

as the Omicron XBB, BA.2.86 and JN.1 variants (221, 222). These

subvariants showed higher immune escape ability. Compared with

the early original strain, the Omicron mutant strain is the most

heavily modified strain among the numerous SARS-CoV-2 variants

that have arisen during the COVID-19 pandemic (223). During the

surge in Omicron variants, hospitalized COVID-19 patients

exhibited a range of myocardial injury manifestations. As

previously mentioned, there exists a strong association between

severe myocardial injury and higher rates of morbidity and

mortality (224). Therefore, it is of utmost significance to

recognize the occurrence of myocardial injury in hospitalized

individuals infected with SARS-CoV-2 as early as possible, hence

facilitating the categorization of COVID-19 patients into risk strata.

This enables the selection of appropriate clinical interventions and

subsequent treatment strategies for patients (225).
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Despite the conclusion of the COVID-19 pandemic, the

coronavirus persists and continues to mutate, perhaps leading to

another pandemic in the future. We explore the immunological

mechanism of SARS-CoV-2-induced myocardial injury, in order to

put forward feasible prevention and treatment measures for patients

with COVID-19-complicatedmyocardial injury, so as to strengthen the

preparation for the future reinfection wave of SARS-CoV-2 and

its variants.
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Glossary

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
Frontiers in Immunol
COVID-19 Coronavirus disease 2019
MERS-CoV Middle East respiratory syndrome coronavirus
SARS-CoV Severe acute respiratory syndrome coronavirus
PAMPs Pathogen-associated molecular patterns
PRRs Pattern recognition receptors
IFN Interferon
DCs Dendritic cell
IL Interleukin
TNF-a Tumor necrosis factor-a
ACE2 Angiotensin-converting enzyme 2
CRP C-reactive protein
hs-CRP High-sensitivity C-reactive protein
NT-proBNP N-terminal pro-B-type natriuretic peptide
Th17 T helper 17
hiPSC-CMs H u m a n - i n d u c e d p l u r i p o t e n t s t e m c e l l -

derived cardiomyocytes
CCL2 Chemokine ligand 2
MCP-1 Monocyte chemoattractant protein-1
NK cells Natural killer cells
CXCL1 C-X-C motif chemokine ligand 1
CXCL2 C-X-C motif chemokine ligand 2
Ang I Angiotensin I
AT1 Angiotensin II Receptor Type 1
IP-10 Interferon-gamma-inducible protein
I IFN Type I interferon
CK-MB Creatine kinase isoenzymes
cTnI Cardiac troponin I
BNP Brain Natriuretic Peptide
DAMPs Damage-associated molecular patterns
dsRNA Double-stranded RNA
RIG-I Retinoic acid-inducible gene-I
MDA-5 Melanoma differentiation related gene 5
MAVS Mitochondrial antiviral signals
TBK1 TANK-binding kinase 1
IKK e Inhibitor-kappa B kinase
ogy 18
NF- kB Nuclear factor kappa-B
IRF3 Interferon regulatory Factor 3
ISG Interferon-stimulated genes
JAK Janus Kinase
STAT Signal transducer and activator of transcription
NETs Neutrophil extracellular traps
NLR Neutrophil-lymphocyte ratio
ECG Electrocardiogram
CMR LGE Cardiac magnetic resonance Late gadolinium enhancement
NK cells Natural killer cells
Th 1 cells T-helper-1 cells
LDH Lactate dehydrogenase
HLA Human leukocyte antigen
GWASs Genome-wide association studies
PASC Post-acute sequelae of COVID-19
POTS Postural orthostatic tachycardia syndrome
IST Inappropriate sinus tachycardia
OH Orthostatic hypotension
ICU Intensive care unit
S protein Spike protein
mAbs Monoclonal antibodies
CVC CCR2 Cenicriviroc C-C chemokine receptor type 2
CCR5 C-C chemokine receptor type 5
MSCs Mesenchymal stem cells
ARDS Acute respiratory distress syndrome
UC-MSCs Humumbilical cord-derived mesenchymal stem cells
TGF-b Transforming growth factor b
CDCs Cardiosphere-derived cells
CAP-1002 Intravenous allogeneic CDCs
RES Resveratrol
TCM Traditional Chinese medicine
NLRP3 NOD-like receptor thermal protein domain associated

protein 3
hs-cTnI High-sensitivity cardiac troponin I
CT Computed tomography
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