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2Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China, 3Institute of
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Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of

immune responses, acting as gatekeepers to balance immunity against foreign

antigens and self-tolerance. These checkpoints play a key role in maintaining

cardiac homeostasis by preventing immune-mediated damage to critical organs

like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in

cardiovascular complications, particularly atherosclerosis andmyocarditis, which

can lead to heart failure. We conducted a comprehensive analysis using animal

models and clinical data to assess the effects of immune checkpoint inhibition on

cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4

pathways exacerbates myocardial inflammation, accelerates atherosclerotic

plaque formation, and promotes the development of heart failure. Additionally,

we observed that immune checkpoint inhibition in these models led to increased

infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and

enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical

in preserving cardiac health, and their inhibition can result in severe

cardiovascular toxicity. Our study emphasizes the need for careful monitoring

of cardiovascular health in patients undergoing immune checkpoint

inhibitor therapies.
KEYWORDS

atherosclerosis, myocarditis, programmed cell death protein 1 (PD-1), cytotoxic T-
lymphocyte-associated protein-4 (CTLA-4), cardiotoxicity
1 Introduction

The inflammation in the human body is modulated via immune checkpoints that

facilitate the communication between immune and non-immune cells and can either

activate or attenuate the immune response (1). Thus, immune checkpoints are the key

drivers of adaptive immunity that act as gatekeepers to maintain the immune homeostasis
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in the body and keep autoimmunity at bay (2, 3). Immune

checkpoints are an assembly of proteins expressed on the cellular

facet of Thymocytes and antigen-presenting cells that act as

corresponding receptors and ligands for each other (4). Immune

checkpoints regulate the process of self-tolerance by governing the

intensity and efficacy of Thymocytes, thus shielding tissues and

organs from inflammatory immune action (5). Immune

checkpoints comprise of both stimulatory as well as inhibitory

signaling pathways and a balance in these pathways helps to

maintain the immune homeostasis required for self-tolerance (2).

The stimulatory signals activate the immune system to act while the

inhibitory signals are required to halt the immune response and

thus preventing self-tissue destruction (6).

The antigen-specific immune response is referred to as adaptive

immunity. In this type of immune response, the antigen is

presented, recognized and processed resulting in the production

of an excessive number of immune cells that invade the antigen.

Simultaneously, ‘memory’ cells are generated that help in efficient

response against antigens in future. CD8+ cytotoxic T cells and

CD4+ helper T cells are the major cells involved in acquired

immunity (7). Activation of T cells occurs in three steps (1, 7–10)-
Fron
• Binding of T cells to Major Histocompatibility Complex

(MHC)-bound peptides on Antigen-Presenting Cells

(APCs): T-cell activation begins when the T-cell receptor

(TCR) on a naïve T cell binds to the peptide-MHC complex

presented on the surface of an antigen-presenting cell

(APC), such as a dendritic cell. This interaction is highly

specific; the TCR recognizes a unique peptide presented on

MHC molecules, which are either Class I (for CD8+

cytotoxic T cells) or Class II (for CD4+ helper T cells).

This initial binding is crucial for the recognition of foreign

antigens and for initiating the immune response.

• Co-stimulatory Signal to Prevent Anergy: In addition to the

TCR-peptide-MHC binding, a second signal is required for

full T-cell activation. This co-stimulatory signal typically

involves the interaction of CD28 on the T cell with its

ligands, CD80 or CD86, on the APC. This interaction

p r ev en t s T - c e l l a ne r gy , wh i ch i s a s t a t e o f

unresponsiveness that occurs when T cells are exposed to

antigen in the absence of appropriate co-stimulation.

Without this co-stimulatory signal, the T cell may become

to le rant to the ant igen , thereby avo id ing an

autoimmune response.

• Cytokine Signaling to Modulate Immune Response: Upon

successful engagement of both the TCR and co-stimulatory

receptors, APCs release various cytokines that play a critical

role in shaping the intensity and quality of the immune

response. These cytokines, such as interleukin-2 (IL-2),

promote T-cell proliferation, differentiation, and survival.

They also help determine whether the activated T cells

become effector cells (such as Th1, Th2, or Th17 cells) or

regulatory T cells (Tregs), each of which plays a distinct role

in the immune response. Cytokines influence the immune

response by modulating the differentiation of T cells into
tiers in Immunology 02
specific subsets that either promote inflammation or

suppress it to maintain immune homeostasis.
Multiple interactions between Thymocytes and APCs,

stimulatory or inhibitory act as a checkpoint that moderates

Thymocytes immune reaction and immuno-homeostasis. The co-

stimulatory or co-inhibitory signals are proteins that can either

activate (turn up) or inhibit (turn down) the immune cell response

and are referred as immune checkpoint proteins (11).

The body maintains a balance between immune response

against antigens and normal body tissues and organs. Certain

body parts like the eyes, brain and heart, are safeguarded from

the inflammatory immune response by specific regulatory

mechanisms. Healthy human myocardial cells possess a small set

of Thymocytes and have regulatory mechanisms that prevent the

recruitment and activation of Thymocytes and memory

Thymocytes. However, for maintaining and regulating tissue

homeostasis and the repair mechanism of tissue, dendritic cells

and macrophages are found in the myocardium wherein, these cells

have potential of initiating effector naïve Thymocytes (12).

Additionally, the richly supplied microvasculature of the heart

not only provides oxygen and nutrients to the heart cells but also

aid in supplying circulating Thymocytes to the heart. The present

review will emphasize understanding these regulatory immune

mechanisms in the heart that help to protect the cardiac from the

immune response. The current review will focus on understanding

various vascular and cardiac immune checkpoints involved in

cardiac homeostasis and their role and mechanism involved in

numerous cardiovascular complications that can incite heart failure

like, atherosclerosis and myocarditis.

Immune checkpoints, such as PD-1 and CTLA-4, are pivotal in

regulating these immune processes within the cardiovascular

system. These checkpoints control the activation, proliferation,

and exhaustion of immune cells, ensuring that inflammation does

not become excessive and that self-tolerance is maintained.

Dysregulation of immune checkpoint pathways can lead to

aberrant immune responses, contributing to cardiovascular

diseases such as atherosclerosis and myocardit is . In

atherosclerosis, immune checkpoint inhibition can exacerbate

inflammation and promote plaque instability, while in

myocarditis, the unchecked activation of immune cells can lead to

myocardial injury and fibrosis. This review focuses on

understanding the mechanisms by which immune checkpoints

influence cardiovascular homeostasis and their involvement in the

development of heart failure through conditions like atherosclerosis

and myocarditis.
2 Inflammatory landscape in
cardiovascular complications

The association amid inflammation and cardiovascular diseases

has been recognized and adaptive immunity pertaining to

Thymocytes and its activation have been found to be

instrumental in cardiovascular diseases (13–16). Chronic
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inflammation in the arteries propels the progression of

atherosclerosis. Atherosclerosis is the predominant driver of

cardiovascular complications and is marked by the growth of

plaques in the arterial walls. The inflammation activates immune

cells that induce the secretion of cytokines as well as chemokines,

which in turn promotes the accretion of immune cells at the

inflammation site (17, 18). Endothelial dysfunction also promotes

cardiovascular complications wherein factors like hypertension and

elevated levels of cholesterol predispose arterial walls to the

enhanced infiltration and accumulation of macrophages and

monocytes. Immune cells i.e., macrophages promote the

formation of foam cells by engulfing oxidized oxidized low-

density lipoproteins. Foam cells are the initial drivers of plaque

formation or atherosclerosis by inducing the development of lipidic

streaks in the artery wall (19–22). Apart from macrophages,

Thymocytes are the predominant player in cardiovascular

complications. CD4+ T cells or helper Thymocytes modify into

different subsets with specialized functionality. T-helper 1 or Th1

cells secrete pro-inflammatory cytokines like interferon (IF)-g,
which is a promoter of inflammation and destabilizer of plaque

(23–25). While T-helper 2 or Th2 cells induce the production of

anti-inflammatory cytokines viz., interleukin (IL)-4, 10, which

hinders the progression of plaque. T-helper 17 or Th17 cells have

been associated with prolonged inflammation and increased risk for

plaque formation (26). Regulatory cells or Treg cells halt

inflammation and stabilize the plaque (27). In the heart, natural

killer cells (Nk cells) exhibit cytotoxic activity and induce pro-

inflammatory cytokines production which promotes the

progression and destabilization of plaques (28). Alternatively, B-

cells, also play a key role in systemic inflammation and the

advancement of atherosclerosis (29).

Chronic inflammation marked with distinctly high levels of

pro-inflammatory myocardial and systemic cytokines alters the left

ventricular function and induces its remodeling as well (30, 31). The

lack of harmony between inflammation-promoting cytokines and

anti-inflammatory cytokines contributes to heart failure (32).

Amplified pro-inflammatory cytokines has been found to be

linked with heart failure (33). Inflammatory cytokines that have

been found to be associated with cardiac complications comprise

IL-1, 6, 8, 18, 33 and IL-1RA (34). Inflammatory cytokines,

primarily released by neutrophils, induce cardiac remodeling and

alter cardiac function by assisting in inducing apoptosis of

cardiomyocytes and activating the matrix metalloproteinase (35,

36). Activation of IL-18 has been found to be related to an elevated

risk for cardiovascular diseases with hospitalization risk, especially

in patients with congestive heart failure (37). Similarly, a higher

amount of IL-6 has been correlated with an amplified rate of

hospitalization in patients with heart failure and even mortality

(38). Cytokine IL-8 is also positively correlated with heart failure

risk and hospitalization as compared to normal patients (36, 39, 40).

Higher levels of cytokines IL-1RA are found in heart failure with

reduced ejection fraction, irrespective of the diabetic status of the

patients (40). IL-1b endorses infiltration of leucocytes at the sites of

injury and has been found to be correlated with cardiac events

promoting and leading to heart failure (41). On the contrary, levels
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of cytokine IL-33 are reduced in patients with heart failure as

against healthy subjects (41).

Galectin (Gal)-3, a lectin of galectin family, is implicated in the

signaling of different intracellular pathways of inflammation,

cellular migration, immune response and signaling, by binding

with intra-cellular as well as surface ligands (42). Cardiac

remodeling has been found to be associated with Gal-3 and is

considered a bio-signature of fibrosis and heart failure. Gal-3 is

associated with inducing a signaling pathway for transforming

growth factor-b SMAD3 and thus resulting in induction of

collagen production, proliferation of myofibroblast, cardiac

hypertrophy and infiltration of macrophages (43–46). A clinical

study findings suggest Gal-3 to be a positive indicator of heart

failure-related mortality in the follow-through period of 6.5 years

(47). Further, in this clinical evaluation, Gal-3 was also found to be

positively associated with left ventricular end-diastolic volume

enhancement (48).

The necrotic cells secrete injury-associated molecular signatures

i.e., heat shock protein 60 or HSP 60 and high-mobility group box 1

(HMGB1) protein, in amplified amounts, in case of cardiac stress,

hypertension, metabolic syndrome and ischemic injury. These

proteins are identified by natural immune cells via pattern

recognition receptors. Consequently, the secretion of pro-

inflammatory cytokines by M1 macrophages and non-immune

cells which initiates the deployment of phagocytic cells of the

immune system, removal of apoptotic cells, and renewal of tissues

(49). C-reactive protein (CRP), IL-6, 1b and TNF-a expressed by

innate immune cells upon inflammation have been associated with

myocardial infarction, coronary disease and stroke (50). Increased

vascular permeability and reduced amount of nitric oxide is

associated with endothelial dysfunction. Pro-inflammatory

cytokines released by macrophages promote rapid growth of

mural cells and aggregation of particles of oxycholesterol-

containing low-density lipoprotein (LDL) in vessels (51).

Macrophages M1 is found to be associated with atherosclerotic

plaque leading to acute coronary syndrome. Cytokines IL-6, 12,

reactive nitrogen species and reactive oxygen species are pro-

atherosclerotic as they increase the oxidative stress in

atherosclerosis. The carotid artery plaques and its progression

have been found to be linked with amplified levels of Th1, Th17

and IL-17, 23, 21 (52). Senescent CD14+CD16+ monocytes and

CD4+ effector memory T cells (CD3+CD4+CD45RA−CD45RO+

CCR7−) are found in atherosclerotic plaques (49, 53). While, late-

differentiated CD4+CD28− peripheral Thymocytes have been linked

with acute coronary events (54).
3 Immune cell activation pathways

Originating from the thymus, matured naïve T lymphocytes

(both CD8+ and CD+4) reach the secondary lymphatic organs via

systemic circulation. Systemic circulation also helps in the

accumulation of proteins and antigens.

Activation of T-lymphocytes can occur in two ways, one of

them being activation mediated via dendritic cells. These antigens
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are then presented to the T-lymphocytes as peptide-MHC

complexes expressed on the facet of antigen-presenting cells. The

dendritic cells in the secondary lymphatic organs are the antigen-

presenting cells that are critical for the activation of naïve T

lymphocytes, However, the presentation of antigens by the

antigen-presenting cells must be accompanied by the presence of

tissue injury or pathogen, i.e., danger signals, for dendritic cells to

express the co-stimulatory surface ligands. Thus, activation of T-

lymphocytes occurs only when both the steps are present i.e.,

antigen presentation by the antigen-presenting cell, in

combination with expression of co-stimulatory ligands on the

facet of dendritic cells as a response to antigens or injury. Few

costimulatory proteins for naïve T cells are from the immune serum

globulin superfamily which includes, B7-1 (CD80) and B7-2

(CD86). The CD80 and CD86 are found on dendritic cells having

prior exposure to pathogens as well as innate immune stimuli.

These two synchronized steps result in the activation of naïve T

lymphocytes prompting modification of Thymocytes to cytotoxic

CD8+ or effector CD+4 helper cells. Thus, costimulatory signals

resulting in immunological synapse formation of Thymocytes are

limited to conditions wherein there are specific risks involved.

Further, for functional activation, effector Thymocytes identify

the antigen at the place of inflammation (55).

The alternative method of activation of T-lymphocytes is not

dependent upon dendritic cells wherein antigen MHC presentation

is carried out by cells other than dendritic cells. Also, in this case,

the co-stimulation step is not pertinent for the immunological

synapse formation of Thymocytes. In this approach, CD275 is an

inducible thymocyte co-stimulator which is a part of an

immunoglobulin superfamily found on B- cells and binds with

the corresponding CD278 expressed on CD+4 T helper cells. The

alternative costimulatory pathway also includes the binding of

tumor necrosis factor protein receptors found on Thymocytes

with corresponding tumor necrosis factor protein found on

APCs, for e.g., for the stimulation of CD8+thymocyte response,

ligand found on APCs i.e., 4-1BB ligand or 4-1BBL binds with 4-

1BB or CD137 found on thymocytes. Similarly, another ligand

found on antigen-presenting cells is CD252 or OX40 ligand

interacts with CD134 or OX40 found on thymocytes (56, 57).

Apart from the above mechanisms, there are an additional

mechanism that limits the activity of thymocytes and imparts the

capability for self-tolerance toward its own cells/tissues. The

mechanism that suppresses the action of thymocytes via

programmed cell protein death-1 (PD-1) or CD279 and cytotoxic

T-lymphocyte-associated protein-4 (CTLA-4) or CD152. These

proteins are homologous to CD28 structurally but functionally

contradictory i.e., PD-1 and CTLA-4 inhibit the functioning of

thymocytes. Immediately after activation of thymocytes, CTLA-4 is

found on the cellular facet of thymocytes, including naïve

Thymocytes, regulatory T cells (Treg) and memory Thymocytes.

However, Treg and memory Thymocytes express CTLA-4 when

exposed chronically to antigens which results in Thymocyte

exhaustion (58). The CTLA-4 expression is antigen exposure

dependent and is expressed highly on exhausted thymocytes. The

CTLA-4 competitively contests with CD28 to bind with B7, thus
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hampering the B7-CD28-dependent activation of T-lymphocytes

(58, 59).

PD-1 or CD274/PD-2 or CD273 expression on T lymphocytes

is initiated by the exposure to antigen. PD-1 and PD-2 are part of

the immune serum globulin superfamily and are structurally

homologous to CD28. The expression of ligands for PD-1 i.e.,

PD-L1, dendritic cell, epithelial parenchymal, endothelial cells and

macrophages, is induced by the cytokines interferon-gamma (IFN-

g) and type-1 IFNs, while PD-L2 is found only on bone-marrow

derived antigen-presenting cells (60, 61). Consequently, the binding

of CD28 and thymocyte receptors activates the protein tyrosine

kinases pathway, however, the binding of PD-1 and PD-L1 results

in the deployment of protein tyrosine kinases, which hinders the

protein tyrosine kinases pathway and suppresses thymocyte activity.

Thus, both PD-1 and CTLA-4 shuts off the antigen-activated co-

stimulatory thymocyte activation, thus PD-1 and CTLA-4 are

referred to as co-inhibitors or immune checkpoints (62).

Apart from PD-1 and CTLA-4, other immune checkpoints are,

Lymphocyte activation gene-3 (LAG-3) or CD223. LAG-3 also

belongs to the immune serum globulin superfamily and is found

on thymocytes, B-cells, macrophages and dendritic cells. LAG-3

inhibits the antigen presentation by binding with the class II MHC

molecules (63–65). Another member of the immune serum globulin

superfamily, which is found on natural killer (NK) cell, Thymocyte

and macrophages, is the T cell immunoglobulin-3 (TIM-3) and

inh ib i t s the thymocy te ac t i va t ion by bind ing wi th

carcinoembryonic antigen-related cell adhesion molecule-1

(CEACAM-1), galectin-9, and phosphatidyl serine (66–69).

Another immune checkpoint is the thymocyte immune receptor

containing Ig and ITIM domains (TIGIT), found upregulated in

thymocytes and NK cells that bind with CD112 and CD155. TIGIT,

LAG-3 and TIM-3 are found in amplified levels on the exhausted T

cells (70, 71).

Another important component for self-tolerance and non-

susceptibility of commensal microbes are the Treg cells, of which

CD4+CD25+FoxP3+ Thymocytes are most widely studied. Studies

show that mutation in FoxP3 can incite autoimmune diseases (72).

Treg cells express PD-1, LAG-3 and CTLA-4 immune checkpoints

(73, 74).
4 Immune checkpoints involved in
cardiac homeostasis

4.1 Cytotoxic T lymphocyte-associated 4
(CTLA-4) protein

CTLA-4 is a surface receptor found on thymocytes (primarily

on activated CD4+thymocytes, CD8+thymocytes and Treg cells),

which is negatively linked with thymocyte activation and thus

enforces preservation of cardiac tissues and maintains cardiac

homeostasis (75). Primarily, CTLA-4 works as a regulator that

controls the magnitude of activation of thymocytes (76, 77). CTLA-

4 is a co-inhibitory receptor that functions in contradiction with the

functioning of CD28. CD 28 is a co-stimulatory surface protein
frontiersin.org
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found on thymocytes which is a pre-requisite for the activation of

thymocytes. The ligands for CD 28 are CD 80/86 or B-7 1/2 found

on the cellular facet of antigen-presenting cells. The linkage between

CD 28 and CD 80/86 incites the secretion of cytokines and cellular

proliferation (78). CTLA-4 is structurally similar to CD28 and has a

common affinity toward CD80/86, although CTLA-4 has a higher

affinity to CD 80/86, thus CTLA-4 competitively and preferentially

binds to CD80/86 which suppresses the multiplication of

thymocytes and production of interleukin (79–83). The CTLA-4

acts as a ‘switch off’ indicator that controls the proliferation of

thymocytes. The expression of CTLA-4 occurs post-activation of

Thymocytes, however, it acts as a controller that confines the

proliferation of thymocytes (84, 85). The immune response of

CTLA-4 is manifested on CD4+thymocyte as, an amplification of

Treg cells and halts activity of Th cell (86, 87). CTLA-4 promotes

cardiac protection from the immune response (88). Animal studies

have shown that CTLA-4 inhibitors resulted in enhanced

myocardial inflammation and eventually myocarditis (89).

Lymphoproliferative disease wherein infiltration of lymphocytes

in multiple organs and tissue inflammation and necrosis like,

myocarditis, is seen in animal knockout models devoid of CTLA-

4 (90, 91). CTLA-4 deficit even in Treg cells is capable of

myocarditis induction. The absence of expression of CTLA-4 in

Treg cells results in lymphoproliferation wherein infiltration of

myocardial cells and impairment of myocytes. Additionally, the

absence of CTLA-4 expression further exacerbates the cardiac

complications (86, 92). Study findings suggest that cardiac tissues

are protected considerably from the action of cytotoxic Thymocytes

due to the protective effect imparted by CTLA-4 (93). These

findings indicate cardiotoxic effects pertaining to the suppression

of CTLA-4 (94). The protective effect of CTLA-4 has been reported

in several animal studies wherein increase in mRNA of CTLA-4 has

been correlated with amplification of Treg cells and reduction in

atherosclerotic plaque (95–97).
4.2 PD-1/PDL-1 signaling

The function of preserving peripheral tolerance and fend off

autoimmune response is carried out by PD-1/PD-L1 (98, 99). PD-

L1 or CD274 or B7-H1, is the co-inhibitory ligand for PD-1 that

controls the activity of thymocytes (100). PD-1 is found on the facet

of activated thymocytes while its corresponding ligand, PD-L1 is

found on antigen-presenting cells (101, 102). Latent and stimulated

thymocytes, B-cells, dendritic cells, myeloid cells and immune-

privileged tissues like, the placenta, brain, heart, endothelial cells,

muscles and pancreas demonstrate PD-L1 while monocytes and

dendritic cells solely demonstrate PD-L2 (103). PD-L1/L2 binding

with PD-1 forms the basis of immune response for self-tolerance

(104, 105). PD-1/L1 binding helps to restrain the excessive immune

response which can induce cellular destruction and autoimmune

effect. Activated PD-L1- PD-1 pathway results in suppression of

effector thymocytes, which helps in preserving self-tolerance along

with resolving inflammatory response (106). However, inhibition of

PD-1/L1 interaction can induce an inflammatory immune response

in protected tissues like cardiac tissues. Accordingly, the paucity of
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interaction between the PD-1/L1 pathway incites exacerbation of

lesions in atherosclerosis (107). The development of

cardiomyopathy in animals devoid of PD-1 also indicates the

critical role of PD-1/PD-L1 in maintaining self-tolerance toward

critical organs like the heart (99). Reduced levels of PD-1 and PD-

L1 on thymocytes and antigen-presenting cells are observed in

patients with coronary artery disease, which induces higher levels of

CD4+ and CD8+ cells along with an amplified amount of pro-

inflammatory cytokines (108).
4.3 LAG-3 and cardiac homeostasis

In addition to PD-1 and CTLA-4, LAG-3 has recently emerged

as a critical immune checkpoint involved in regulating immune

responses in cardiac tissues. LAG-3 functions as an inhibitory

receptor that downregulates T cell activation and contributes to

immune tolerance. It is expressed on activated T cells and plays a

role in preventing excessive immune responses that could lead to

tissue damage. In the context of cardiovascular diseases, including

atherosclerosis and myocarditis, LAG-3 may serve to modulate the

inflammatory response, reducing the risk of autoimmune damage

to the heart. Its expression in the myocardium during inflammatory

conditions suggests that LAG-3 could be a potential target for

therapeutic interventions aimed at controlling immune-mediated

cardiovascular injuries. Future studies are needed to further

elucidate its role in cardiac homeostasis and its potential as a

therapeutic target in cardiovascular diseases.
5 Mechanisms of cardiovascular injury

The cardiotoxic events observed in patients treated with

immune checkpoint inhibitors have highlighted the pivotal role of

immune checkpoints in regulating cardiovascular health (109–116).

For example, myocarditis, one of the most severe immune

checkpoint inhibitor-related toxicities, has been documented in

cases where patients receiving anti-PD-1 therapies, such as

pembrolizumab and nivolumab, developed fatal myocarditis,

resulting in cardiac arrest in some instances. The inhibition of

immune checkpoints led to the activation of CD8+ T cells and

macrophages, which infiltrated cardiac tissue and induced

inflammation, compromising myocardial function. Additionally,

left ventricular dysfunction, even in the absence of myocarditis,

has been observed in patients treated with CTLA-4 inhibitors like

ipilimumab. This dysfunction was linked to systemic inflammation

and cytokine release, which impaired cardiomyocyte contractility

and promoted tissue remodeling. Vasculitis has also been seen in

patients treated with immune checkpoint inhibitors, as exemplified

by a case where nivolumab-induced acute coronary vasculitis led to

lymphocyte infiltration in the coronary vessels, causing endothelial

dysfunction and plaque rupture. Lastly, pericarditis has been

reported in patients, presenting with chest pain and fluid

accumulation around the heart , which resulted from

inflammation in the pericardium following immune checkpoint

activation. These cases emphasize the complex mechanisms
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through which immune checkpoint inhibition can drive

cardiovascular injury, underscoring the need for careful

monitoring and management of cardiovascular health in patients

receiving such therapies.
5.1 Immune checkpoints aided
cardiac injury

The unrestrained activity of the immune cells pertaining to

association with the cardiac tissues, especially post-immune

checkpoint inhibitor therapy can drive cardiac injury. Inhibition

of immune checkpoint inhibitors drives an attack of lymphocytes

on the normal, non-antigenic and non-cancerous tissues and cells

of the body. Cardiac lymphocytic infiltration leading to myocarditis

was observed in an animal study wherein mice were deficient of

CTLA-4. A massive upsurge in levels IL-4, colony-stimulating

factor and IFN-g was observed in CTLA-4 deficient mice as

against normal mice, which eventually resulted in the induction

of lethal myocarditis in animals. Thus indicating the criticality of

CTLA-4 in maintaining cardiac immune equilibrium. The findings

of this study also depict the importance of estimating the levels of

these cytokines as a prognostic indicator of myocarditis, especially

in patients getting immune checkpoint inhibitor therapy (90).

Apart from CTLA-4, other immune checkpoints like

myocardial PD-1 have also been found to affect cardiac

homeostasis. The PD-1 immune checkpoint inhibit immune

response mediated inflammatory response in cardiac tissues via

increased expression of GADD153 (117, 118). PD-1 The animals

that were devoid of PD-1 were found to develop autoimmune-based
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dilated cardiomyopathy wherein a significant amount of auto-

immune antibodies targeted toward cardiomyocytes (119). The

subjects treated with PD-1 inhibitors that developed myocarditis

were found to have a significant amount of infiltrating thymocytes

and macrophages similar to that found in the tumors as well as

skeletal muscle cells (119). The role of PD-1 in cardiac injury was

further confirmed by a study wherein IFN-g mediated increase in

PD-1 resulted in cardioprotective function. This also confirms that

loss in PD-1 can drive cardiac injury (120). Loss or deficiency in the

levels of PD-1 induces a rise in the levels of cardio-toxic cytokines

resulting in cardiac injury as seen in the infarct area post reperfused

acute myocardial infarction (117). In an animal study, wherein the

animals were deficient in PD-1, exhibited the development of

autoimmune myocarditis. The animals were found to have

excessive levels of infiltrating myeloid cells, CD8+ and CD4+

thymocytes in the cardiac tissues along with elevated levels of

auto-immune antibodies against cardiac myosin (121). A

diagramatic representation of involvement of PD-1/PD-L1 in

cardiac homeostasis and cardiac injury is shown in Figure 1.
5.2 Immune checkpoints aided
vascular injury

Immune checkpoint-related cardiovascular events also involve

vascular injury and subjects having a higher neutrophils to

lymphocyte (NLR) ratio are at higher risk of developing vascular

injury leading to cardiovascular events. However, levels of C-

reactive protein were found to be unrelated to the incidence of

vascular injury (122). The most prominent role of immune
FIGURE 1

The mechanistic role played by PD-1/L1 in maintaining cardiac homeostasis and its inhibition results in immune checkpoint mediated myocarditis.
Blockade of PD-1/L1 disrupts the cardiac homeostasis resulting activation of thymocytes or T-cells, which results in expression of pro-inflammatory
condition leading to myocarditis.
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checkpoints in vascular injury is pertaining to the advancement of

atherosclerosis. Deposition of lipidic cells beneath the endothelium

of large arteries is referred to as Atherosclerosis (123). In

atherosclerosis, under the influence of NF-kB and with the help

of adhesion molecules like, vascular adhesion molecule-1 (VCAM-

1), E-selectin and intracellular adhesion molecule-1 (ICAM-1), T-

helper cells and endothelial macrophages are employed in the

arterial endothelium. These macrophages phagocytose and oxidize

the low-density lipoproteins to eventually result in the formation of

foam cells via the induction of endothelial lesions. Post the foam cell

creation, Thymocytes promote the formation and development of

plagues via release of cytokines viz., IL-9, 11 and 12. Eventually,

foam cells and plaque result in the formation of atheroma or

atherosclerotic plaque (123, 124). The immune checkpoints, PD-

1, PD-L1 and CTLA4 are inversely correlated with plaque

formation and thus inhibition of the immune checkpoints results

in enhanced recruitment of thymocytes which drive the

development of plaque via induction of endothelial lesions (125,

126). This is also reflected in higher incidence (almost 4 to 5 fold) of

cardiovascular adverse events viz., coronary revascularization,

myocardial infarction and ischemic stroke, in cancer patients

being administered immune checkpoint inhibitors (127).

Experiments in animal models have shown that myeloid cells that

are deficient in the expression of PD-1, promote the genes

implicated in cholesterol synthesis and attenuate the genes

involved metabolism of cholesterol, thus amplifying cholesterol

levels, which is an established determinant of atherosclerosis
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(128). A diagrammatic representation of vascular injury leading

to pro-atherogeneic activity due to inhibition of PD-1/L1 is shown

in Figure 2.
6 Understanding the immune
checkpoint-mediated atherosclerosis

Atherosclerosis is a major cardiovascular condition that

contributes to the development of heart complications, leading to

increased morbidity and mortality. It is primarily a chronic

inflammatory disease of the arteries, marked by the accumulation

of lipids in plaques (129, 130). The progression and destabilization

of these plaques are significantly influenced by both innate and

adaptive immunity. After endothelial injury, monocytes infiltrate

the arterial walls and differentiate into macrophages. These

macrophages uptake lipids and secrete pro-inflammatory

cytokines, further aggravating the inflammation (131). Antigen-

presenting cells, such as dendritic cells, are also recruited to the

lesion site, where they activate Thymocytes, amplifying the

inflammatory response. Effector Thymocytes, in turn, produce

excessive pro-atherogenic cytokines, which increase plaque size

and promote its destabilization (132).

Immune checkpoints, both co-stimulatory and inhibitory,

regulate Thymocyte activation and play a crucial role in

controlling the inflammatory response in atherosclerosis. The

activation of these checkpoints can either stimulate or suppress
FIGURE 2

The mechanistic role of played by PD-1/L1 in immune system mediated development of Atheroscelrosis. Blocking of PD-1/L1 results in activation of
thymoctes or T-cells resulting in expression of cytokines like IFN-g, ILs and TNF-a. This further stimulates the differentiation of macrophages and
subsequent release of cytokines like, TNF-a and Ils, which promote the development and proliferation of atherosclerotic plaque.
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Thymocyte function, influencing the development and growth of

atherosclerotic plaques (133). Different immune checkpoints

influence and drive the evolution and growth of plaque through

their distinct pathway (Table 1). A digrammatic representation of

involvement of different checkpoints in atherosclerosis is shown

in Figure 3.

Several immune checkpoint pathways are involved in the

progression of atherosclerosis, offering potential therapeutic

targets for managing this disease. For instance, inhibition of

immune checkpoints like PD-1 and CTLA-4 has shown promise

in reducing inflammation and stabilizing plaques, though caution is

needed due to the potential for immune-related adverse effects.

Targeting these pathways may offer a dual benefit: reducing plaque

progression and minimizing cardiovascular events, while avoiding

excessive immune activation that could lead to other complications.

Further research into these therapeutic strategies, particularly the

use of immune checkpoint inhibitors in conjunction with

traditional cardiovascular treatments, is needed to fully

understand their potential in managing atherosclerosis.
6.1 Involvement of PD-1/PD-L1
in atherosclerosis

Analysis of clinical investigation on immune checkpoint

inhibitors has shown that there is a higher chance of developing

cardiovascular complications viz., atherosclerosis, stroke and

myocardial infarction (127, 139, 140). In fact, one of the studies

has shown that almost 3-fold increase in the occurrence of

atherosclerosis in human participants being administered

immune checkpoint inhibitors (127). These findings lead to the

assumption that thymocyte inhibition exerts a cardiovascular

protective effect and thus reduces the chances of developing

atherosclerosis. Thymocyte stimulation and growth is inhibited

after interaction of PD-L1/PD-L2 with the corresponding PD-1

found on thymocytes. Activated Thymocytes exhibit inflammatory

pro-atherogenic activity. Thus, PD-L1/PD-1 binding is inversely

related to the pro-atherogenic activity.
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This was confirmed in an animal study wherein knockout

animals lacking PD-L1 or PD-L2 exhibited high atherosclerotic

load along with elevated levels of CD4+ and CD8+ thymocytes.

These animals also had amplified levels of Tumor Necrosis Factor

(TNF)-a and amplified cytotoxicity of CD8+ thymocytes. Also,

antigen-presenting cells from these knockout animals were found

to have higher in-vitro efficiency in activating CD4+ thymocytes, in

the presence as well as unavailability of cholesterol loading. Thus, the

absence of PD-L1/PD-L2 was linked with a higher amount of plaque

formation confirming the pivotal role played by PD-1/PD-L1

immune checkpoints in modulating plaque formation (141, 142).

Cytokine interferon (IFN)-g, primarily produced by T-helper

cells (Th cells) is a determinant in promoting atherosclerosis by

deploying macrophages and thymocytes, promoting cytokine

release and increase in endothelial antigen-presenting cells.

Blocking or reduced expression of IFN-g has been found to

reduce atherosclerotic plaque size (143, 144). The linkage between

PD-1 and PD-L1 results in differentiated Treg cells which interferes

with the production of IFN-g and TNF-a by the Th cells (145, 146).

The stability of plaque is also influenced by IFN-g. A stable

atherosclerotic plaque reduces the risk of plaque breakdown and

its subsequent dislocation, which may induce other cardiac

complications like myocardial infarction and stroke. The cytokine

IFN-g can destabilize the plaque by hindering the propagation of

vascular smooth muscles and the synthesis of cholesterol.

Conversely, Treg cells express multiple immune checkpoints and

promote the creation of anti-inflammatory cytokines viz., IL-10 and

TGF-b, as they inhibit differentiation of inflammatory effector

thymocytes. Thus, Treg cells exert and promote anti-atherogenic

activity (147). This is confirmed in a study wherein attenuation in

the population of Treg cells, deficit in IL-10 and interruption of

TGF-b promote atherogenesis and can even worsen plaque

formation (148, 149). Persistent exposure to inflammation and

antigens can result in thymocytes exhaustion wherein these cells

lose their function. This ensues reduction in the propagation of

thymocytes, the release of cytokines and enhanced repressive

expression of immune checkpoints like, LAG-3 and PD-1 (150).

Exhausted thymocytes that express PD-1 are found in the
FIGURE 3

A digrammatic representation of involvement of different checkpoints viz., PD-1/L1, CTLA-4 and LAG-3, in atherosclerosis. The immune checkpoints
imparts cardio-protective role and helps in maintaining cardio-homeostasis. These immune checkpoints imparts plaque stability and reduce the
proliferation of plaque by controlling inflammation. Inhibition of these checkpoints disrupts this balance and thus promoting plaque development
and proliferation.
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atherosclerotic lesions. Consequently, inhibiting PD-1 by immune

checkpoint inhibitors can reactivate the exhausted thymocytes,

which can intensify and facilitate atherosclerosis (126).

Endothelial cells express PD-L1 under the influence of IFN-g
and TNF-a (151). This was confirmed in a study wherein PD-L1

was expressed by human umbilical cord vein endothelial cells

(HUVECs) under the influence of IFN-g (152). Constitutively

HUVECs do not express PD-L1 (153), however, under the

influence of IFN-a, b, g and TNF-a HUVECs express PD-L1

(154). This indicates the critical role played by cytokines, IFN-a,
b, g and TNF-a, in promoting PD-L1 in the endothelial cells.

Vascular endothelial growth factors (VEGF) also critically influence

the appearance of PD-L1 in endothelial cells (155). It is well

established that for cancer cells that exhibit PD-L1, protection

from the cytotoxic and apoptotic effect of IFN-g occurs by

interfering with the JAK/STAT3/caspase7-dependent pathway

(156, 157). Lymphatic endothelial cells expressing PD-L1 exhibit

a similar pattern that helps them to prevent apoptosis (158). Thus,

endothelial cells expressing PD-L1 exhibit the potential to counter

the immune reaction by downregulating the CD8+ thymocytes and

amplifying the activity of Treg cells, thus protecting endothelial cells

from the pro-atherosclerotic effects (159).
6.2 Involvement of CTLA-4
in atherosclerosis

CTLA-4 immune checkpoints have been found to facilitate the

thymocyte-mediated inflammatory development of atherosclerosis.

Thymocyte stimulation is negatively controlled by CTLA-4. This

was confirmed in animal studies that were devoid of CTLA-4

wherein such animals exhibit enlarged lesions in the aorta. Also,

the animal receiving antibodies blocking CTLA-4 exhibits an almost

two-fold increase in plaque size and area with elevated Thymocyte

and macrophage amounts in these plaques along with reduced

collagen and smooth muscle cell content (160). Contrary to this

study, animals that overexpress CTLA-4 or are administered an

analogue of CTLA-4 decreased the population of CD4+thymocyte,

reduction in cellular differentiation and generation of pro-

inflammatory cytokines (IL-10 and IF-g) and reduction (~58.5%)

in thickness of the intima (135, 161). At the cellular level, induced

pluripotent stem cell-derived cardiomyocytes (iPSC-CM), that were

exposed to hypoxia which simulates the ischemic cardiac injury

post-myocardial infarction, exhibit amplified amounts of CD80 and

CD86 at the genetic level. The appearance of CD80 and CD86 at

protein and genetic levels is increased post-cardiac injury (162).

Amplification in the expression of CTLA-4 results in a drop in

lesional CD4+ thymocytes. Also, a reduction in effector thymocytes

in lymphatics due to disability of thymocytes to differentiate and

grow under the conditions of reduced cytokine levels (135).

Intracellular dendritic cell binding of CTLA-4 and CD80/86

incites expression of Indeolamine 2,3-dioxygenase (IDO) (163).

Augmentation in IDO results in halting thymocyte proliferation

resulting in reduced activation of thymocytes and enhanced

apoptosis of thymocytes. As a result, treatment with anti-CTLA-4
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results in alleviating CD80/86 interaction which reduces the self-

tolerance (164, 165).
6.3 Involvement of LAG-3
in atherosclerosis

The LAG-3, expressed on thymocytes, is the ligand that binds

with MHC II (166). Clinical studies have shown that immune

checkpoint LAG-3 has not been found to be correlated with

cardiac complications like atherosclerosis, and coronary heart

disease, because of which the FDA has approved them for anti-

tumor therapy. Although long-term follow-up evaluation data is

lacking. However, an independent relationship between LAG-3 and

coronary heart disease has been reported and atherosclerotic plaque

expresses LAG-3 in exhausted Thymocytes. LAG-3 is a potential

predictive tool as a determinant of coronary heart disease and an

indicator of plasma high-density lipoprotein-cholesterol (150, 167).

The function of LAG-3 was evaluated in bone marrow chimeras

hematopoietic cells devoid of LAG-3 and knockout mice devoid of

LAG-3. The LAG-3 deficiency, as well as treatment with anti-LAG-3

antibodies, resulted in an enhanced population of memory cells and

Thymocytes reducing IFN-g, which was balanced with an

amplification in Treg cells. Consequently, the plaque size remains

unaffected, although there was an amplification in the stimulated

thymocyte population in the plaque (136). LAG-3 and PD-L1 both

aid in enhancing the stability of endothelial plaques (159).

Apart from the above immune checkpoint functionality in

atherosclerosis, self-antigens also contribute to the development

of plaque. A self-antigen, keratin-8 was found to increase the levels

of PD-1 appearance in the human peripheral blood mononuclear

cells (PBMCs) as against PBMCs obtained from coronary artery

disease patients. This finding suggests that keratin-8 can potentially

stimulate PD-1 expression thus restricting the thymocyte reaction

and imparting protective function in anomalous patients of

coronary artery disease (168, 169). Further, reports suggest that

gastric adenocarcinoma cells with PD-L1, exhibit higher

intracellular intake of lipids via fatty acid binding protein (Fabp4/

5) elevation. Similar activity is exhibited by PD-L1-expressing cells.

Consequently, interferance with PD-L1 results in reduced Fabp4/5

protein level and decreased intracellular intake of lipids. This results

in higher availability of free lipids at the plaque site causing

aggravation of atherosclerosis (170).
7 Understanding the immune
checkpoint-mediated myocarditis

Myocarditis, an inflammation of the myocardium caused by

infectious or non-infectious agents, can lead to severe

complications, including heart failure and dilated cardiomyopathy

(171). Although relatively rare, myocarditis is an important cause of

heart failure and can manifest clinically through a range of

symptoms such as palpitations, cardiogenic shock, arrhythmias,

and heart failure (172–175). Chronic inflammation in myocarditis
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can lead to myocyte necrosis, fibrosis, and scarring, ultimately

contributing to the development of dilated cardiomyopathy (174).

Recent clinical studies have emphasized the growing concern of

myocarditis associated with immune checkpoint inhibitors (ICIs).

A retrospective analysis found that 50% of deaths related to

immune checkpoint inhibitors were due to myocarditis (17). This

condition can be fulminant, leading to cardiogenic shock,

ventricular arrhythmias, and, in severe cases, cardiac arrest (176).

The frequency of myocarditis is notably higher with PD-1/PD-L1

pathway inhibition compared to CTLA-4 blockade, with incidence

rates of 0.41% and 0.07%, respectively (17). Recent studies have also

shown that patients receiving PD-1/PD-L1 inhibitors have a higher

risk of developing myocarditis (69.1% of cases), compared to those

treated with CTLA-4 inhibitors (20%) (177, 178).

Furthermore, combination therapies involving PD-1/PD-L1

inhibitors and other immune checkpoint modulators, such as

LAG-3 inhibitors, have led to an even higher incidence of

myocarditis, with up to 1.7% of patients experiencing this adverse

event, compared to 0.6% with single-agent PD-1/PD-L1 therapy

(179). Moreover, there have been several reports of myocarditis

occurring in patients receiving combination therapies of ICIs with

radiotherapy or chemotherapy, exacerbating the risk of

cardiotoxicity (180–183).

These findings highlight the critical need for careful monitoring

and management of cardiac health in patients receiving immune

checkpoint inhibitor therapies, particularly in combination with

other treatments. A diagrammatic representation of the

involvement of different immune checkpoints, including PD-1/

PD-L1, CTLA-4, and LAG-3, in myocarditis is shown in

Figures 4, 5.
7.1 Involvement of PD-1/PD-L1
in myocarditis

A lack of harmony between self- tolerance and autoimmunity

was the basic reason for the induction of immune checkpoint

inhibition induced myocarditis (184). Although the exact
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relationship between myocarditis and immune checkpoints is not

exactly established, however, certain studies suggest the influence of

immune checkpoints on myocarditis. Clinical evaluation of patients

of myocarditis, post-treatment with CTLA-4 and PD-1/PD-L1

inhibitors therapy, showed infiltration of thymocytes in the

myocardial and skeletal cells (185). Enhanced activation and

relocation of thymocytes in cardiac cells along with higher

presentation of antigen and phagocytosis is observed when

treated with inhibitors of PD-1/PD-L1 and CTLA-4 (186).

In a study, in mice with cardiomyopathy, cardiomyocytes

expressed PD-L1 which interfered with and halted the thymocytes

act by negatively controlling the production of IFN-g (187).

Immune checkpoint expression on the endothelial cells and

cardiomyocytes seems to exert a protective function against

induction of myocarditis and injury. This was confirmed in a

study wherein PD-L1 and PD-L2 were found to be amplified

under the influence of IFN-g, in animals with CD8+thymocyte

-moderated myocarditis. Interference with the production of IFN-g
as well as haltering or devoid of PD-L1/L2, thus exacerbated the

disease condition (62, 188). Animal studies also show that the

expression of PD-L1/PD-L2 was observed in endothelial cells that

have been injured by the inflammation in myocarditis.

Interestingly, endothelial cells of control animals did not exhibit

PD-L1/L2 (154). These findings collectively indicate the protective

function of PD-L1/PD-L2 in myocarditis (189, 190). Studies suggest

that cardiac endothelial cell and cardiomyocyte apoptosis is

inhibited by the intracellular PD-L1 as well as MHC-II signaling

through MAPK/Erk and PI3K/Akt pathways (156, 157, 166).
7.2 Involvement of CTLA-4 in myocarditis

A genetically modified animal model, wherein the animals were

devoid of PD-L1/L2 completely while haploinsufficiency for CTAL-

4 was present. The animals completely devoid of PD-1/L1 and

haploid status for CTLA-4 were found to exhibit a high rate (~50%)

of mortality due to myocarditis. Treatment of such animals with

CTLA-4 inhibitor improved the survival of the animals along with
FIGURE 4

A digrammatic representation of involvement of different checkpoints viz., PD-1/L1, CTLA-4 and LAG-3, in myocarditis. PD-1/L1 and CTLA-4 are
responsible for keeping autoimmunity in check and thus reducing cardiac inflammation. These immune checkpoints reduce lymphocyte infiltration
and phagocytosis. Inhibition of these checkpoints disrupts this balance and thus resulting inflammatory conditions leading to myocarditis.
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the reduced infiltration of thymocytes at the cardiac injury site.

Instead, animals devoid of PD-1/L1 but with homoallelic CTLA-4

did not develop myocarditis. This clearly indicates that PD-1/L1

and CTLA-4 interact together at the genetic level for the

manifestation of myocarditis (191).

Giant cell myocarditis has been related to CTLA-4 inhibitors.

Giant cell myocarditis is a deadly condition wherein acute dilated

cardiomyopathy along with ventricular tachycardia and eventually

cardiac block occurs (192). Histologically, in giant cell myocarditis

Thymocyte mediated necrosis of myocytes and macrophages

acquired multi-nucleated giant cells are formed (193). Giant cell

myocarditis is chiefly a condition driven by CD4+Thymocytes and

chemokines viz., C-X-C Motif Chemokine Receptor 3 (CXCR3).

The CXCR3 is vital in the pathways, involved in the diversification,

activation and deployment of CD4+ thymocytes, like, MAP kinase

and PI3K/Akt pathways. CXACR3 is involved in the activation and

deployment of CD4+ thymocytes and has not been found to be

involved in the CD8+thymocytes. The upregulation of CD8+

thymocytes is primarily interrelated with immune checkpoint

inhibitors and not CXACR3 expression. Inhibition of CTLA-4,

however, has been found to upregulate the appearance of

CXACR3, which in turn incites giant cell myocarditis (194).
7.3 Involvement of LAG-3 in myocarditis

Although LAG-3-associated myocarditis is rarely seen, few

cases of myocarditis have been reported when administered with

anti-LAG-3 agents. In the RELATIVITY-047 clinical trial carried
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out on more than 700 subjects, 1.7% of the subjects reported

developing myocarditis when administered a blend of relatlimab

(LAG-3–blocker) –nivolumab (PD-1 inhibitor) as against 0.6% of

the subjects that received monotherapy of nivolumab only (179).

Studies in knockout animal models that are devoid of LAG-3 also

point out to lack of relation between LAG-3 and myocarditis (195).

However, studies in the knockout model that was devoid of LAG-3

as well as PD-1, exhibited the development of myocarditis along

with elevated levels of TNF-a and excessive infiltration of

Thymocytes, though Treg cells exhibited a controlled functioning

in such animals (196).

The alternative proposed mechanism to induce myocarditis

encompasses the presence of shared cardiac and tumor antigens

for cells expressing PD-L1 viz., endothelial cells and myocytes.

Another proposed mechanism includes the existence of a pre-

existent immune response that induces autoimmunity, like higher

levels of anti-troponin T antibodies in patients developing

myocarditis post PD-1 inhibitor therapy (197). Similarly, a PD-1

and CTLA-4 inhibitor treatment-induced rhabdomyolysis

polymyositis patient exhibited higher levels of antibodies against

striated muscles (198).
8 Understanding the immune
checkpoint-mediated cardiomyopathy

Animal models deficient in PD-1 have provided significant

insights into the development of cardiomyopathy. These animals

exhibited compromised cardiac contractile function, leading to
FIGURE 5

A digrammatic representation of involvement of different checkpoints viz., PD-1/L1, and CTLA-4 in cardiomyopathy. PD-1/L1 and CTLA-4 reduce
cardiac injury and autoimmunity in check. Inhibition of these checkpoints disrupts this balance and thus resulting in cardiomyopathy.
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untimely mortality. Notably, PD-1-deficient animals showed an

accumulation of IgG on the surface of cardiomyocytes, along with

circulating IgG antibodies targeting cardiac troponin I. However, no

immune cell infiltration was observed, indicating that the

mechanism behind cardiomyopathy in this model was primarily

inflammatory rather than immune cell-driven (99, 119).

In human studies, PD-1 expression was found to be upregulated

in the intercalated discs and myocardium of patients who had

developed myocardial infarction and dilated cardiomyopathy. The

expression of PD-1 in these patients was inversely correlated with

left ventricular ejection fraction (LVEF) and directly associated with

left ventricular end-diastolic volume, suggesting a role for PD-1 in

regulating cardiac function during injury (199).

Furthermore, the upregulation of myocardial PD-L1 has been

shown to mitigate cardiac injury by negatively regulating immune

responses and reducing Thymocyte activity (200). A study on

immune checkpoint inhibitor-induced dilated cardiomyopathy

found that cardiomyocytes expressed PD-L1, which helped

suppress the production of pro-inflammatory cytokines, including

TNF-a and IFN-g, ultimately reducing inflammation and tissue

damage (187).
9 Other immune checkpoints viz., T-
cell immunoglobulin and mucin
domain 3 (TIM-3) and T-cell
immunoglobulin and ITIM domains
(TIGIT) etc.

Associated cardiovascular complications, other immune

checkpoints are alos being evaluated. These immune checkpoints

include TIM-3 or Hepatitis A virus cellular receptor 2 (HAVCR2),

V-set and transmembrane domain-containing protein 3 (Vstm3),

TIGIT or Washington University cell adhesion molecule

(WUCAM) and V-Set and immunoglobulin domain-containing

protein 9 (VSIG9) (201). These new immune checkpoints can be

utilized as novel targets for the treatment of tumors and are

currently being clinically evaluated, alone or in conjunction with

PD-1/L1 inhibitors or CTLA-4 inhibitors (202–217).

Immune checkpoint inhibitor, TIM-3 or HAVCR2, is part of

TIM family and can bind to four corresponding ligands viz., Galectin-

9 (LGALS9), high mobile protein B1 (HMGB1), phosphatidylserine

(PtdSer) and surface-bound ligands carcinoembryonic antigen cell

adhesion molecule 1 (CEACAM-1) (67, 218–221). Under the

influence of IFN-g, CD4+thymocytes and CD+8 thymocytes

amplify the expression of TIM-3 (204, 205). TIM-3, expresses on

NK cells, Treg cells, Th17, dendritic cells and macrophages and

inhibits cytokines IFN-g and TNF, thereby suppressing type I

immune response (222–232). Although some reports suggest that

the TIM-3 pathway serves both stimulatory as well as inhibitory

function (223). Structurally, TIM-3 possesses five tyrosine conserved

residues, of which phosphorylation of Tyr 265 and Tyr272 is essential

in humans. Interaction of TIM-3 with HLA-B-associated transcript 3

(Bat3) and Lymphocyte-Specific Protein Tyrosine Kinase (LCK) on

the lipidic rafts to promote differentiation and survival of thymocytes
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(233–235). However, binding with CD148 and CD45 results in

replacement of BAT-3 on TIM-3 and the deploying tyrosine

phosphatase causing inactivation of LCK. This inhibits the

proliferation of thymocytes by negatively regulating the signaling of

Thymocyte receptors (235, 236). Thus, the inhibitory action of TIM-3

on Thymocytes is mediated by BAT-3. Clinical evaluation of the

inhibitors of TIM-3 are underway and only few cases of

cardiovascular complications has been reported. Infact, some report

suggest that atherosclerosis is inversely related to TIM-3. The study

findings show that TIM-3 inhibitors amplify the atherosclerotic

lesions which is accompanied by enhanced levels of macrophages,

CD+4 Tcells and monocytes, along with diminished levels of Treg

cells and B cells (137). Another study evaluated the effect of co-

treatment with PD-1 and TIM-3 inhibitor and it was found that

cytokines which exert anti-atherogeneic effect were reduced but TNF-

a and IFN-g levels were amplified resulting in advancement of

atherosclerosis (237).

Another immune checkpoint, TIGIT, or Vstm3/VSIG9/

WUCAM, is categorically expressed on lymphocytes, specifically

on NK cells, effector CD8+ thymocytes, regulatory CD4+

thymocytes cells and helper thymocytes (207, 238–241). TIGIT

expression is amplified especially on Treg cells in the tumor

microenvironment (242–244). TIGIT regulate the NK cells and

thymocytes functioning via binding with CD155 or poliovirus

receptor or Necl-5. TIGIT exhibit a lower affinity toward another

nectin family receptor, CD112 or poliovirus receptor related-2 or

Nectin-2 (245–248). TIGIT interferes with the proliferation and

activation of CD8+thymocytes by exerting its effect on thymocyte

receptor expression. This incites negative regulation of the

thymocyte receptor a chain and other parts of the receptors (249,

250). TIGIT can suppress the cytotoxic activity and differentiation

of CD8+ thymocyte cells via p-ERK signaling (251, 252). By

competitively interacting with CD226 or DNAM-1, thymocyte

stimulation can be reduced (253). Clinical evaluation of TIGIT

inhibitors has so far not reported any cardiovascular complications

and additional studies are desirable to establish the safety of TIGIT

inhibitors (254–261).
10 Clinical implications of inhibition of
immune checkpoints

Cardiac implications are often overlooked in the clinical

evaluation of immune checkpoint inhibitors (262–265). Inhibition

of immune checkpoints has been found to induce myocarditis,

vasculitis, pericardial disease and even heart failure (266). A brief

overview of clinical implications of different immune checkpoints

are enlisted in Table 2. Nevertheless, different studies have shown

that animals devoid of PD-1 or administered with an inhibitor of

CTLA-4 exhibit inflammation in the cardiac tissues (93, 99, 186,

275–278). Amplification of PD-L1 in animals with myocarditis has

been reported (120, 279, 280). BALB/c mice devoid of PD-1

developed autoimmune cardiomyopathy (99). Inhibition or

negatively regulating PD-1/PD-L1 has been found to amplify

atherosclerosis in animals (142). Also, in such animals, troponin
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was found to be the cardiomyopathy-inducing antigen in animals

devoid of PD-1 (119).

Such cardiac complications have also been observed in human

subjects undergoing clinical evaluation for immune checkpoint

inhibitors (281). One such case of myocardial fibrosis was

observed in a multi-center clinical evaluation of ipilimumab

(267). Similarly, another case of autoimmune myocarditis that

prompted heart failure was observed in subjects undergoing

treatment for melanoma with pembrolizumab (270, 282).

Ipilimumab instigated the late development of pericarditis in a

patient undergoing treatment for melanoma (283). Several cases of

cardiotoxicity were observed when administered ipilimumab and/

or nivolumab/pembrolizumab in a multicenter clinical study. In

fact, a couple of mortalities were also reported even though subjects

were given treatment for the cardiac complications. Also, five cases

develop myocarditis among eight cases of cardiac complications

when administered inhibitors of PD-1 and/or CTLA-4 (94). In a

small clinical evaluation, the administration of ipilimumab, in

subjects having a history of cardiovascular disease or autoimmune

condition, resulted in the exacerbation of autoimmune

complications in almost 50% of subjects (284). Fatal fulminant

myocarditis was reported in two subjects when administering a

blend of ipilimumab and nivolumab in subjects suffering from

melanoma. Both the subjects had a pre-existing condition of

hypertension. Apart from these two cases, 18 cases out of 20594

subjects were reported to have developed myocarditis (94). In fact
Frontiers in Immunology 13
patients receiving a combination exhibit a severe and higher

frequency of myocarditis (0.27%) as against those receiving

nivolumab alone (0.06%) (185). In participants having coronary

heart disease, levels of PD-L1 expressed in Treg cells were inversely

related to the severity of coronary heart disease and has the

potential to be utilized as a biomarker for it (285).

B-type natriuretic peptide (BNP) and troponin have been found

to increase in case of immune checkpoint inhibitor-induced

cardiotoxicity and can be utilized as biomarkers of cardiotoxicity

(185, 270, 286, 287). Another potential biomarker for cardiotoxicity

is anticonductive tissue autoantibodies (ACTA) (288, 289).

11 Immune checkpoint inhibitors
mediated cardiovascular
complications leading to heart failure

A retrospective analysis revealed that of the 424 subjects who

received immune checkpoint inhibitors, 14.6% of them (62 subjects)

reported cardiovascular condition. Further, of these 62 subjects, 5.6%

had heart failure with monotherapy of immune checkpoint inhibitor

while 6.1%, receiving combination or dual therapy of immune

checkpoint inhibitor reported to have heart failure (290). Similar

outcome was reported in meta-analysis of 13346 subjects, 3.1% of the

subjects receiving either CTLA-4 inhibitor or PD-1/L1 inhibitor and

5.8% of the subjects receiving combination therapy reported to have
TABLE 1 Changes in immune checkpoints and other immune cells in atherosclerosis.

S. No. Immune checkpoint inhibitor Immunological changes in atherosclerosis References

1. PD-1/L1 ↑ Macrophages, CD8+thymocyte and CD4+ thymocyte [134]

↑ Serum levels of TNF-a

↑ Cytotoxic effect of CD8+thymocyte

↑ Atherosclerotic leisions

2 CTLA-4 ↓ Effector CD4+ thymocyte [135]

↓ CD80, CD28 and CD86 expression on dendritic cells

↓ Atherosclerotic leisions and accumulation of CD4+thymocyte and macrophages in
the plaque

3 LAG-3 ↑ T helper cells, memory thymocyte, Treg cells [136]

↑ T cell density in plaque

↔ No change in size of plaque

4 TIM-3 ↑ circulating monocytes and macrophages in leisions [137]

↑ CD4+ thymocyte and their activation

↓ Treg cells

5 TIGIT ↑ Fatty streaks and atherosclerotic plaque [138]

↓ thymocyte in spleen and their activation

↑ Dendritic cells and their activation

↓ IL-10 in blood and spleen

↔ No effect on atherosclerotic plaque, collagen and macrophages
Note: In this table, “↑” indicates upregulation or increase, and “↓” indicates downregulation or decrease.
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heart failure. Interestingly, addition of chemotherapy along with

immune checkpoint inhibitor did not significantly added to the

incidence of heart failure (3.7%) (178). Further, administration of

CTLA-4 inhibitors seems to induce higher frequency of cardiovascular

complications viz., myocarditis, pericarditis etc. (94, 286, 291–296).

Administration of PD-1/L1 inhibitors like, nivolumab and

pembrolizumab etc. have been reported to cause cardiotoxicity like

myocarditis (197, 270, 274, 297–310). These findings were further

consolidated by the observation of a meta-analysis of data of 32518

subjects that immune checkpoint inhibitors can induce or amplify the

risk of cardiotoxicity viz., myocardial infarction, myocarditis,

pericarditis, cerebral arterial ischemia, dyslipidemia and heart

failure. In fact heart failure is the most severe cardiotoxicity

observed with treatment of immune checkpoint inhibitors (311).

Thus, immune checkpoints are key determinants of cardiac

homeostasis and alteration or blocking of the immune checkpoint

can severely affect cardiac health (312–318).
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Immune checkpoints are essential components of the immune

system that help maintain self-tolerance and prevent autoimmune

damage, particularly in critical organs such as the heart, eyes, brain,

and kidneys. In the heart, immune checkpoints regulate cardiac

homeostasis by controlling immune responses that can otherwise

lead to cardiovascular complications, including atherosclerosis,

myocarditis, and coronary heart disease, which can progress to

heart failure. Clinical reports have highlighted the risks of cardiac

injury and cardiotoxicity associated with immune checkpoint

inhibition, particularly with the use of PD-1/L1 and CTLA-4

inhibitors. The development and progression of atherosclerosis

have been found to be exacerbated by these inhibitors, while the

role of LAG-3 in cardiotoxicity is still under investigation. Inhibition

of the PD-1/PD-L1 pathway, in particular, has been shown to pose a

higher risk for inducing myocarditis compared to CTLA-4 inhibition.
TABLE 2 Cardiovascular complications associated with different PD-1 and CTLA-4 inhibitors and status post- treatment.

S. No
Immune check
point inhibitor

& (Use)

Immune
checkpoint

target

Cardiovascular
complication

Status of cardiovascular condition
post treatment

Reference

1 Ipilimumab,
(Melanoma)

CTLA-4 Myocardial fibrosis Reduced [267]

Cardiomyopathy Diuretics resulted in positive effect [94]

Left ventricular dysfunction
b blocker and ACE inhibitors resulted in
positive effect

[268]

Myocarditis Reduced [94]

Heart failure
Long term lowering in ejection fraction, with
diuretics as well

[94]

Myocarditis along with
congestive heart failure

Steroids, b blocker and ACE inhibitors resulted in
positive effect

[94]

2 Pembrolizumab,
(Melanoma, urothelial
carcinoma, gastric
cancer, Non- small-cell
lung cancer (NSCLC),
large B cell lymphoma,
cervical cancer,
Hodgkin’s lymphoma)

PD-1 Myocarditis Reduced [269]

Stable angina pectoris Termination of Pembrolizumab helps to reduce [269]

Sinus tachycardia Treatment with metoprolol succinate helps to reduce [269]

Heart failure
Treatment with steroid, b blocker, AT2 receptor
blocker, diuretics and aldosterone helps to reduce

[270]

Cardiac arrest
Treatment with steroids, defibrillation, and
catecholamines helps to resolve it

[94]

3 Nivolumab (Melanoma,
NSCLC, Hodgkin’s
lymphoma, SLCL, head
& neck cancer RCC,
metastatic colorectal
cancer, HCC,
urothelial carcinoma)

PD-1 Myocarditis (in melanoma) Treatment with prednisolone helps to reduce [271]

Asystolia
Termination of Nivolumab along with resuscitation
and treatment with prednisolonehelps to reduce

[269]

Myocarditis (in NSCLC)
Treatment with amiodarone and glucocorticoids or
steroid, b-blockers, diuretics and ACE inhibitors,
helps to reduce

[94]

4 Ipilimumab +
Nivolumab (colorectal
cancer, melanoma, RCC)

PD-1 + CTLA-4 Myocarditis Treament with steroids helps to reduce [180, 272]

Myocarditis
and cardiomyopathy

Treament with steroids helps to reduce [273]

Ventricular arrhythmia Can be reduced with treatment [94]

Smouldering myocarditis
Treatment with corticosteroid therapy helps
to reduce

[274]
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The combination of PD-1/PD-L1 inhibitors with TIM-3 inhibition

has also been linked to an increased incidence of atherosclerosis.

These findings underscore the critical need for further understanding

of immune checkpoint regulation in cardiac homeostasis.

On the other hand, modulating immune checkpoints presents a

promising strategy for targeting specific stages or cell types involved

in cardiovascular diseases, such as atherosclerosis and myocarditis.

Given that immune checkpoints operate through both co-

stimulatory and inhibitory pathways, selectively manipulating

these pathways could lead to therapeutic benefits. Additionally,

alterations in the levels of immune checkpoints and their ligands

may serve as predictive biomarkers for cardiotoxicity. Future

research should focus on identifying safe and effective strategies

for regulating immune checkpoints in order to develop novel

therapeutic and prognostic tools for managing cardiovascular

health. Further clinical trials and preclinical studies are necessary

to explore the long-term effects of immune checkpoint modulation

on cardiovascular diseases and to refine therapeutic approaches that

minimize the risk of cardiotoxicity.
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