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Myeloid cells as IFNa producers 
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Type I interferons (IFNs) play crucial roles in the pathogenesis of systemic lupus 
erythematosus (SLE). Plasmacytoid dendritic cells (pDCs) stimulated by Toll-like 
receptor (TLR) pathways have been thought to be the major producers of IFNa in 
patients with SLE. However, the responsiveness of pDCs from SLE patients to 
stimuli that produce IFNa differs depending on the type of TLR pathway involved. 
In addition to pDCs, monocytes from SLE patients were found to produce IFNa 
when responding to the cGAS-STING pathway. Here, we outline the major 
pathways that induce IFNa production by myeloid cells in SLE, and the 
possible mechanisms by which IFNa overproduction occurs by these cells. 
Finally, we discuss the current and future therapeutic strategies to regulate 
IFNa production in patients with SLE. 
KEYWORDS 

SLE, pDC, monocyte, interferon, TLR, cGAS-STING, cellular senescence 
Introduction 

The involvement of type I interferons (IFNs) in the pathogenesis of systemic lupus 
erythematosus (SLE) is well established, and recent advances in the treatment of SLE with 
anifrolumab, a fully human anti-IFN a/b receptor antibody, have highlighted the 
importance of controlling the disease by inhibiting the type I IFN pathway. The 
treatment of patients with SLE with anifrolumab improved skin rash, arthritis, overall 
disease activity, and their health-related quality of life (1–4). Myeloid cells produce type I 
IFNs including IFNa when nucleic acid receptor pathways are activated. In this review, we 
describe the pathways and possible mechanisms by which IFNa production occurs in SLE. 
Nucleic acid receptor pathways 

Type I IFNs, inflammatory cytokines that play a critical role in the self-defense system, are 
produced when nucleic acid receptors recognize microbial and viral nucleic acids (5, 6). During 
infection, epithelial cells and fibroblasts at the site of infection produce type I IFNs such as IFNb, 
and then plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFNs, particularly 
IFNa (7, 8). In addition, other myeloid cells such as monocytes, conventional dendritic cells, 
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and macrophages also produce type I IFNs (7, 8). Previous reports 
suggested the activation of nucleic acid receptor pathways is associated 
with the overproduction of type I IFNs and the pathogenesis of SLE. In 
addition to exogenous nucleic acids, self-derived nucleic acids also 
induce the production of type I IFNs. In SLE, nucleic acids derived 
from apoptotic cells, those contained in neutrophil extracellular traps 
(NETs) and mitochondrial DNA released due to mitochondrial stress 
have been demonstrated to activate nucleic acid receptor pathways (9– 
11). Immune complexes composed of autoantibodies and nucleic acids 
have also been shown to induce IFNa by pDCs (12–15). Impaired 
DNA clearance also leads to the activation of nucleic acid receptor 
pathways and the production of type I IFNs in SLE. Genetic 
deficiencies of nucleic acid degradation molecules, such as 
extracellular DNase-I and TREX1, the most abundant 3’→5’ DNA 
exonuclease in cells, are associated with a lupus-like syndrome in mice 
and humans (16–18). Most patients with SLE have reduced DNase I 
activity (19, 20), which might be explained by anti-DNase antibodies 
being present in approximately 60% of sera samples from SLE patients 
(21, 22). 

Among the Toll-like receptors (TLRs), TLR4 recognizes pathogen-
associated molecular patterns on the cell membrane surface and TLR3/ 
7/8/9 located in endosomes or lysosomes recognize nucleic acids. Upon 
ligand binding, TLR7/9 induce type I IFN production via the myeloid 
differentiation factor 88 (MyD88)/TRAF6/IRF7 complex, and TLR3/4 
induce type I IFN production by activating interferon regulatory factor 
3 (IRF3) through the Toll/IL-1R domain-containing adaptor inducing 
interferon-b factor (TRIF) pathway in a MyD88-independent manner 
(8, 23). IFNa production by pDC upon stimulation with immune 
complexes composed of autoantibodies and nucleic acids was 
suppressed by blocking FcgRII, and thus these immune complexes 
appear to be internalized into endosomes where they activate TLR7 and 
TLR9 pathways (24). pDCs constitutively express high levels of IRF7 
and produce large amounts of type I IFNs via TLR7/8/9 (25). 
Overactivation of the TLR7 pathway caused autoantibody production 
and lupus-like disease in mice (26–30). TLR7 polymorphisms have 
been shown to be associated with SLE (31–33). For example, a TLR7 
gain-of-function genetic variation (34) and overactive TLR7 pathway as 
a result of  variants in  UNC93B1, which binds TLR7 and is essential for 
TLR7 trafficking to the endosome (35, 36), have provided direct 
evidence that genetic variants related to TLR7 activation trigger 
human SLE pathogenesis. Recently, UNC93B1 variants were reported 
in SLE patients (37, 38), and mice expressing a variant of UNC93B1 
developed spontaneous lupus-like disease (37). 

Nucleic acid receptors such as cGAS (cGMP-AMP synthase) 
and the RIG-I-like receptor (RLR) family and melanoma 
differentiation-associated gene (MDA5) recognize viral nucleic 
acids and self-derived DNA in the cytoplasm. Upon the 
recognition of cytoplasmic double-stranded DNA, cGAS 
synthesizes cyclic GMP-AMP (cGAMP), a second messenger 
that binds to the transmembrane protein stimulator of 
interferon gene (STING) located in the endoplasmic reticulum. 
STING is then transported to the Golgi apparatus where it induces 
type I IFN production via the TBK1-IRF3 pathway (39). Several 
lines of evidence suggest the cGAS-STING pathway is activated in 
SLE. A mutation in TMEM177, which encodes STING, has been 
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associated with SLE-like diseases (40, 41). The cGAS-STING 
pathway is typically activated in response to DNA derived from 
pathogenic microbes or viruses, but excess self-DNA, derived 
from apoptosis-derived membrane vesicles (42), neutrophil 
extracellular traps (11), and mitochondrial DNA (43) may  also
contribute to aberrant cGAS-STING activation in SLE. Indeed, 
cGAS expression is increased in peripheral blood mononuclear 
cells (PBMCs) from SLE patients (44). Because IFNa impairs 
mitochondrial metabolism and autophagic degradation leading to 
the accumulation of mitochondrial DNA in the cytosol, IFNa 
overproduction in SLE may also contribute to the activation of the 
cGAS-STING pathway (43). Autoimmune diseases in Trex-1 and 
DNase II-deficient mice were shown to be dependent on the 
cGAS-STING pathway (45, 46), and other murine studies have 
demonstrated the contribution of the cGAS-STING pathway to 
enhancing type I IFN responses in  lupus or lupus-like mouse

models (47–49). These findings suggest that activation of the 
cGAS-STING pathway is deleterious in the pathogenesis of SLE 
by the induction of type I IFNs. However, cGAS or STING 
deficiency resulted in exaggerated disease in the MRL/lpr mouse 
model and pristane-induced lupus model (50). Further studies are 
needed to understand how the cGAS-STING pathway is involved 
in the pathogenesis of lupus. 
IFNa overproducing myeloid cells in SLE 

pDCs are known to be the most potent IFN-I producing cells 
and thus have been widely proposed to be the dominant source of 
type I IFN production in SLE. The early ablation of pDCs in BXSB 
lupus-prone mice prior to disease onset ameliorated lupus nephritis, 
reduced the tissue expression of IFN-induced genes, and 
diminished the cascade of IFN-mediated responses, including the 
reduction of antinuclear antibodies, splenomegaly, and abnormal 
expansion of T and B cells (51). In humans, the administration of a 
monoclonal antibody against blood DC antigen 2(BDCA2) 
expressed on pDCs decreased expression of IFN response genes 
in the blood, and reduced disease activity of skin disease and 
arthritis in SLE, suggesting that pDCs may indeed be an 
important source of type I IFNs in SLE (52–54). The TLR7 and 
TLR9 pathways induce IFNa production by pDCs. However, pDCs 
from SLE patients had increased IFNa production when stimulated 
with a TLR7 agonist, but reduced IFNa production in these cells 
when stimulated with a TLR9 agonist (Figure 1) (55, 56). Given that 
most nucleated cells can produce IFN-I during viral infection (57), 
it is important to consider IFN-I production by other cell subsets. In 
our study focusing on the cGAS-STING pathway, numbers of 
IFNa-producing cells among PBMCs from SLE patients were 
increased when stimulated with 2’3’-cGAMP, a STING-activating 
ligand (58). IFNa production by pDCs and conventional DCs was 
also increased in patients with SLE, but the primary IFNa
producing cells among PBMCs were monocytes. In addition, 
monocytes from SLE patients had higher STING expression and 
IFN-I expression upon 2’3’-cGAMP stimulation compared with 
those from healthy controls (Figure 1) (58, 59). 
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Increased IFNa production by pDCs and monocytes was 
positively correlated with disease activity in SLE (55, 56, 58), 
suggesting that these cells may contribute to the pathogenesis of 
SLE. Interestingly, the capacity to produce IFNa by pDCs was also 
increased in patients with stable disease (55). In patients with 
cutaneous lupus erythematosus, the type I IFN signature was 
enhanced in keratinocytes from lesional and nonlesional skin, and 
pDCs were the major subset among myeloid cells in nonlesional 
skin (60). Thus, IFNa production by pDCs may underlie the 
pathogenesis of SLE and lupus-like disease. When the cGAS-
STING pathway is activated by the accumulation of DNA in the 
cytosol, monocytes produce IFNa, which can cause disease flares of 
SLE. Because monocytes are migratory cells, they may produce 
IFNa at the sites of inflammation. The single-cell RNA-seq analysis 
of kidney samples from patients with lupus nephritis revealed that 
non-classical monocytes migrated to the kidney and differentiated 
into monocyte-derived macrophages, with their characteristics 
shifting from inflammatory to phagocytic (61). In lupus models, 
Ly6Clo monocytes, considered non-classical monocytes, were 
reported to infiltrate into the kidneys of MRL/lpr mice and 
ABIN1 (Tnip1)-deficient mice (62), as well as the central nervous 
system of NZB/NZW and FcgRIIB-/- Yaa mice (63). In imiquimod 
(IMQ)-induced lupus mice, Ly6Chi monocytes were increased in 
the lymph nodes and Ly6Clo monocytes expressing high levels of 
TLR7, adhesion molecules, and cytokines such as IL-6, were 
increased in the peripheral blood and infiltrated into the kidneys 
(64). Ly6Chi and Ly6Clo monocytes upregulated the expression of 
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proinflammatory cytokine genes when stimulated with a TLR7 
agonist, and only Ly6Chi monocytes upregulated IFNa genes 
when stimulated via the cGAS-STING pathway. It is unknown 
whether human IFNa-producing monocytes are CD16-negative 
classical monocytes because activated monocytes downregulate 
CD16 expression. Studies in mice suggested that Ly6Chi classical 
monocytes with IFNa-producing capacity migrated to the lymph 
nodes, whereas Ly6Clo non-classical monocytes infiltrated into the 
site of inflammation (62, 64). IFN-responsive genes were 
upregulated in microglia from FcgRIIB-/- Yaa mice and Ly6Clo 

monocytes present in the central nervous system of FcgRIIB-/- Yaa 
mice may produce IFNa (63). Pseudotime analysis of the RNA 
sequencing data of myeloid cells in the blood and skin lesions from 
patients with cutaneous lupus erythematosus indicated the 
transition of circulating non-classical monocytes to skin 
infiltrating CD16+ DCs, which was associated with the expression 
of type I IFN (60). Thus, circulating monocytes may also become 
IFNa-producing cells and contribute to disease pathogenesis at the 
site of inflammation. 
Mechanisms of IFNa overproduction 
by myeloid cells in SLE 

IFNa production by pDCs was increased when activated by a 
TLR7 agonist, and decreased by the TLR9 pathway, but the 
FIGURE 1 

IFNa overproduction by myeloid cells in patients with SLE. IFNa production by pDCs from SLE patients is increased when they are activated via the 
TLR7 pathway, and the increased retention of TLR7 in lysosome-related organelles (LRO) of pDCs may contribute to this enhanced response. 
Monocytes from SLE patients produce increased levels of IFNa after activation of the cGAS-STING pathway. IFNa production by pDCs and 
monocytes correlates with disease activity in SLE, and increased TLR7 responsiveness is observed in pDCs, even in SLE patients with stable disease. 
These TLR7 and cGAS-STING pathways are enhanced by exposure to IFNa. Thus, IFNa production by pDCs may underlie the pathology of SLE and 
increased IFNa production by pDCs and monocytes due to the increased nucleic acid load contributes to disease activity. 
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expression levels of TLR7 and TLR9 were reported to be 
comparable in pDCs from SLE patients and healthy controls (65). 
IRF7 activation for type I IFN expression requires TLR localization 
to lysosomes, and UNC93B1 is important for the trafficking of 
TLR7 and TLR9. Of note, we observed the increased retention of 
TLR7 in the lysosomes of pDCs from SLE patients (55). TLR9 
competes with TLR7 for trafficking by UNC93B1 (66), and the 
accelerated localization of TLR7 to lysosomes may suppress TLR9 
trafficking by UNC93B1. Exposure to IFNa increased IFNa 
production by pDCs and this was associated with increased TLR7 
localization to lysosome-related organelles (55). Thus, the in vivo 
exposure of pDCs to IFNa in SLE may enhance their responses to 
TLR7 stimulation. UNC93B1 variants were shown to cause 
hyperresponsiveness to TLR7 stimulation, but not to TLR9 
stimulation (37, 38). Thus, UNC93B1 variants may also 
contribute to the increased IFNa production by pDCs stimulated 
by a TLR7 agonist. 

We found that STING expression and its colocalization with 
TBK1 was increased in monocytes from SLE patients (58). In 
contrast, monocytes from healthy individuals produced low levels 
of IFNa upon cGAS-STING activation, although their in vitro 
exposure to IFNa induced the expression of STING and IFNa 
(58). IFNa-induced STAT1, a transcription factor known to be 
activated by cytokines including IFNa, binds directly to the 
promoter of STING to enhance STING induction (67), and 
exposure to IFNa induced the colocalization of STING and TBK1 
(58), which might be associated with the effect of IFNa on the 
induction of mitochondrial DNA accumulation in the cytoplasm. 
Thus, prior exposure to IFNa may accelerate the TLR7 and cGAS-
STING pathways. Increased STING expression was accompanied 
by increased phosphorylated-mTOR? in SLE monocytes, suggesting 
that increased STING expression is also related to impaired 
autophagy. Indeed, the treatment of monocytes with rapamycin, 
an inhibitor of mTOR, decreased STING and IFNa production by 
SLE monocytes. Thus, impaired autophagy may also contribute to 
the increased STING and IFNa expression by SLE monocytes (58). 

To uncover the cell-intrinsic mechanisms underlying enhanced 
IFNa production by STING stimulation, we performed the 
transcriptomic analysis of monocytes from SLE patients and in 
vitro IFNa-exposed monocytes from healthy individuals, and found 
that the transcription factor GATA4 was upregulated in monocytes 
from SLE patients (Figure 2) (68). GATA4 is a key transcription 
factor that contributes to the production of cytokines including IL-1 
and IL-6, via NF-kB in cells with cellular senescence, a phenomenon 
known as the senescence-associated secretory phenotype (69). 
Cellular senescence refers to a phenomenon whereby cells stop 
proliferating due to various stresses and factors that cause DNA 
damage. GATA4 expression also enhanced IFNa production in 
monocytic U937 cells (68). GATA4 binds to the enhancer region of 
the IFIT family. Furthermore, IFIT3 was reported to be upregulated 
in SLE monocytes, and its inhibition reduced type I IFN production 
by monocytes activated by the cGAS-STING pathway (59). In 
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addition to GATA4 expression, SLE monocytes exhibited cellular 
senescence-like features, including high CDKN2A expression and 
increased senescence-associated b-galactosidase activity (68). The 
DNA damage response, as measured by g-H2AX levels, was 
reported to be increased in monocytes (70), B cells (71), and bone 
marrow-derived mesenchymal stem cells from SLE patients (72). 
The in vitro exposure of activated human B cells to IFNa and 
human carcinoma cell lines to a mixture of IL-1b, IFNg, and TNFa 
has been shown to induce DNA damage responses in these cells (71, 
73). Thus, IFNa overproduction in SLE may contribute to 
enhanced DNA damage responses (71). Thus, the accumulation 
of cytoplasmic DNA, such as micronuclei, due to DNA damage 
induces cellular senescence and may also activate the cGAS-
STING pathway. 
Therapeutic strategies for SLE by 
inhibiting IFNa production 

Some of the current therapeutic strategies for SLE have been 
shown to suppress IFNa production. Many lines of research have 
clearly demonstrated that hydroxychloroquine (HCQ) reduces 
disease flares in SLE patients (74, 75) by inhibiting the activation 
of endosomal TLRs, particularly TLR7 and TLR9 (76, 77) and 
antigen presentation (78), as well as reducing NETs formation (79). 
Indeed, HCQ suppressed IFNa production by pDCs exposed to 
CpG-A (80). pDCs isolated from cutaneous lupus erythematosus 
and SLE patients administered HCQ had significantly lower IFNa 
production upon TLR7 or TLR9 stimulation compared with 
patients not receiving HCQ (80, 81). Furthermore, HCQ levels in 
the blood of patients with cutaneous lupus erythematosus 
correlated negatively with the IFNa-producing capacity of their 
pDCs upon TLR9 stimulation, with a weaker correlation observed 
upon TLR7/8 stimulation (80). HCQ suppresses the formation of 
cGAMP from cGAS; therefore, HCQ may also inhibit IFNa 
production via the cGAS-STING pathway (82). 

Prior exposure to IFNa increased IFNa production by pDC and 
monocytes (55, 56, 58). Thus, anifrolumab treatment may reduce 
IFNa production by these cells. The MUSE study, a trial of 
anifrolumab, showed that SLE patients with high IFN gene 
signature (IFNGS) or high disease activity had decreased numbers 
of lymphocytes, neutrophils, pDCs and monocytes, and the 
decrease in these cells was reversed after anifrolumab treatment 
(83). This anifrolumab treatment effect was shown to be associated 
with the suppression of interferon-inducible chemokines such as 
interferon gamma-induced protein 10 (IP-10) and IFN-inducible T 
cell alpha chemoattractant (ITAC). Therefore, anifrolumab 
treatment may reduce the migration of immune cells, including 
those capable of producing IFNa, to sites of inflammation. 

Plasma dsDNA from SLE patients was shown to activate the 
cGAS-STING pathway in monocytic cells when using a cell-based 
reporter system that detected the bioavailability and inducing 
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activity of IFN-I (42, 84). Type I IFN bioavailability was decreased 
in the plasma of SLE patients treated with double filtration 
plasmapheresis (DFPP) and this was associated with decreased 
plasma cDNA levels (84). This suggests that the beneficial effects 
of DFPP may be related to the removal of nucleic acids in addition 
to autoantibodies. 

Rapamycin, a drug that inhibits T-cell proliferation, has shown 
efficacy in a phase 1/2 clinical trial for the treatment of SLE (85). 
Autophagy was suppressed in SLE monocytes, and rapamycin 
reduced STING expression and IFNa production by these cells, 
suggesting that the cGAS-STING pathway may be a therapeutic 
target for the suppression of IFNa production. Indeed, several 
inhibitors of cGAS or STING are already in development (86). In 
SLE patients, the source of IFNa may vary between individuals, and 
TLR7 and pDCs might also be a good therapeutic target. Inhibitors 
of TLR7/8 such as E6742, afimeoran (NCT04493541), and 
enpatoran (NCT05540327) are being or have been investigated in 
clinical trials for SLE. E6742, a selective dual antagonist for TLR7/8, 
has been investigated in a double-blind phase 1/2 study in SLE, and 
57.1% of patients achieved a positive response on the British Isles 
Lupus Assessment Group-based Composite Lupus Assessment 
(BICLA), compared with 33.3% in the placebo group (87). SLE 
patients with active cutaneous lupus erythematosus (CLE) treated 
with anti-BDCA2 antibody litifilimab (also known as BIIB059) 
showed an approximately 50% reduction in IFNGS expression in 
whole blood 24 hours after treatment, and litifilimab treatment was 
highly effective in normalizing IFN response proteins (myxovirus 
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resistance protein 1 and IFN-induced transmembrane protein 3) in 
lesional skin and reducing CD45+ immune cell infiltration (52). 
Phase 2 studies of litifinimab demonstrated the reduction of 
Cutaneous Lupus Erythematosus Disease Area and Severity Index 
Activity scores and in the number of swollen and tender joints in 
SLE (53, 54). The efficacy of litifilimab is being further investigated 
in phase 3 trials (NCT04895241 and NCT04961567). Therapeutic 
strategies targeting specific immune cells or nucleic acid receptor 
pathways may be an option depending on which cell type is the 
prominent IFNa producing cell in SLE. 
Conclusions 

Although increased IFNa production by pDCs was observed 
in SLE patients including those with stable disease, IFNa 
production by monocytes in SLE patients positively correlated 
with disease activity. Thus, IFNa overproduction by pDCs may 
enhance the responsiveness of pDCs and monocytes to nucleic 
acid receptor pathways, and IFNa overproduction by monocytes 
may be responsible for the disease activity in SLE. Thus, the 
suppression of the TLR pathway may be more important for the 
maintenance of stable disease and the activation of the cGAS-
STING pathway may need to be suppressed to inhibit the disease 
flares in SLE. The future therapeutic targets of nucleic acid 
receptor pathways and myeloid cells should be decided 
depending on the disease status in SLE. 
█ 

FIGURE 2 

IFNa overproduction by senescent monocytes in patients with SLE. SLE monocytes from SLE patients exhibit cellular senescence-like features, 
including p16 expression and increased senescence-associated b-galactosidase activity. GATA4 expression increases the responsiveness of the 
cGAS-STING pathway and IFNa production by monocytes, which may increase the disease activity in SLE.█ 
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