
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ewoud Bernardus Compeer,
University of Oxford, United Kingdom

REVIEWED BY

Noa B. Martin-Cofreces,
Princess University Hospital, Spain
Maria N. Navarro,
Spanish National Research Council (CSIC),
Spain

*CORRESPONDENCE

Tao Xu

xutao25@mail.sysu.edu.cn

RECEIVED 17 January 2025
ACCEPTED 29 April 2025

PUBLISHED 21 May 2025

CITATION

Qin Z and Xu T (2025) Deciphering the
deterministic role of TCR signaling in
T cell fate determination.
Front. Immunol. 16:1562248.
doi: 10.3389/fimmu.2025.1562248

COPYRIGHT

© 2025 Qin and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 21 May 2025

DOI 10.3389/fimmu.2025.1562248
Deciphering the deterministic
role of TCR signaling in
T cell fate determination
Zhen Qin and Tao Xu*

Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
T cell receptor (TCR) signaling, also known as signal 1, plays a crucial role in the

activation and proliferation of T cells. The question of whether TCR signaling

exerts a deterministic role in T cell fate determination is an area of active

investigation. It has been particularly challenging to address this question due

to the complexities associated with genetic manipulation of TCR signaling

components, which often disrupts thymic T cell development or impairs T cell

activation upon TCR engagement. Recent study demonstrates that the TCR-Lck/

Fyn axis directly induces STAT3 phosphorylation and synergizes with pro-

inflammatory cytokines to optimize STAT3 phosphorylation during Th17 cell

differentiation. Additionally, the TCR-Lck/Fyn-AKT/mTOR axis negatively

regulates Treg cell differentiation. In CD8+ T cells, persistent high-affinity

antigen stimulation drives differentiation along the exhaustion pathway, while

acute infection or intermediate antigen levels promote differentiation into

effector and memory T cells, although the underlying mechanism remains to

be fully elucidated. Collectively, these studies provide compelling evidence that

TCR signaling has a deterministic impact on T cell fate. This review summarizes

recent advances in understanding how TCR signaling shapes T cell

fate determination.
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Introduction

The activation and differentiation of T cells need 3 signals: signal 1 provided by the

interaction between T cell receptor (TCR) and peptide-MHC complex presented by APCs;

signal 2 mediated by the interaction between CD28 expressed on T cells and CD80/86 on

APC cells; and signal 3 provided by cytokines in the microenvironment (1). TCR

specifically recognizes short peptide antigens (8–17 amino acids) presented by major

histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells

(APCs) (2–4). TCR engagement with pMHC triggers a cascade of intracellular signaling

leading to the activation of transcription factors such as NFATs, Jun/AP-1, and NF-kBs
which translocate into the nucleus to drive the expression of many genes, such as IL-2, IL-
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2ra, generally essential for the activation and proliferation of all the

T cells (5). The signal 2, is also called “co-stimulation signal”

provided primarily through CD28 binding to CD80 or CD86 on

APCs, are indispensable for enhancing T cell survival and

proliferation. Other co-stimulatory receptors, such as ICOS, 4-

1BB, and OX40, also contribute to fine-tuning the T cell

activation (6, 7). Conversely, co-inhibitory receptors like CTLA-4

and PD-1 counterbalance these signals, regulating the magnitude of

T cell activation and preventing immune overactivation (8). The

signal 3, mediated by cytokines, directs the differentiation of

activated T cells into different lineages (9). For CD4+ T cells,

cytokines such as IL-12 and IL-4 promote Th1 and Th2

differentiation via the transcription factors T-bet and GATA-3,

respectively, while TGF-b and inflammatory cytokines like IL-6 and

IL-23 drive Th17 polarization through RORgt (10). In CD8+ T cells,

cytokines like IL-12 and type I interferons enhance effector

differentiation, while IL-15 is essential for memory formation

(11). The coordinated interplay among these three signals ensures

that T cells differentiate into specialized effector and memory

populations tailored to the specific antigenic challenge, providing

both immediate immune defense and long-term protection.

However, recent studies suggest that TCR signaling may not

merely serve as an on/off switch for T cell activation; rather, it

appears to provide nuanced signals that influence the specific

lineage commitment of T cells (12). For instance, the strength

and duration of TCR signaling can dictate whether CD4+ T cells

differentiate into Th1, Th2, Th17, or regulatory T cell (Treg)

subsets, each of which plays a distinct role in the immune

response (13). Attenuation of TCR signaling favors the

differentiation of activated CD4+ T cells into Treg cells (14–16).

Similarly, CD8+ T cell differentiation into effector or memory

subsets is also modulated by TCR signaling strength and duration

(17). All these studies suggest that TCR signaling may play a

deterministic role in T cell fate determination. Here in this

review, we will summarize the recent evidence that TCR signaling

itself plays a key deterministic role in T cell fate determination, as

well as the underlying mechanism. Deep understanding of how

TCR signaling influence T cell fate determination is crucial,

particularly in the development of therapeutic strategies aimed at

manipulating T cell responses in diseases such as cancer and

autoimmune diseases. By deciphering the complex interplay

between TCR signals, co-stimulatory signals, and the cytokine

environment, researchers can potentially identify novel targets for

immunotherapy. Such strategies could enhance T cell responses

against tumors, improve vaccine efficacy, or even restore tolerance

in autoimmune diseases.
Overview of TCR signaling

TCR is a heterodimer composed of TCRa and TCRb chains, each
containing variable and constant regions (18). TCR is associated with

the CD3 subunits consisting of invariant g, d, e, and z subunits

responsible for transducing intracellular signals following antigen

recognition, which together are called as TCR-CD3 complex (19).
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Upon recognizing specific peptide antigens presented by major

histocompatibility complex (MHC) molecules on antigen-

presenting cells (APCs), the TCR undergoes conformational

changes that lead to exposure of the immunoreceptor tyrosine-

based activation motifs (ITAMs, YXXM motifs) located in the

cytoplasmic tails of the CD3 subunits (20), facilitating

phosphorylation of the tyrosines within these motifs by Src-family

protein tyrosine kinases, predominantly Lck and Fyn (21, 22).

Phosphorylated ITAM motifs recruit ZAP-70 kinases, which

facilitates its phosphorylation by Lck/Fyn kinases (23).

Phosphorylated ZAP-70 then phosphorylates key adaptor proteins,

including Linker for Activation of T Cells (LAT) and SH2 domain-

containing leukocyte protein of 76 kDa (SLP-76), which form

signaling complexes (24). LAT and SLP-76 provide docking sites

for multiple effector proteins, enabling the activation of downstream

pathways such as the MAPK/ERK pathway, the phosphatidylinositol

3-kinase (PI3K)/AKT/mTOR pathway, and the NF-kB pathway,

which trigger a series of intracellular signaling cascades that lead to

T cell activation, and proliferation (25, 26).

These pathways play critical roles in metabolic reprogramming

and cell survival. For instance, the mTOR pathway integrates

signals from TCR engagement, costimulatory receptors, and

nutrient availability to regulate T cell fate decisions, including

effector and memory differentiation (27). While mTOR is often

activated via the canonical PI3K-AKT pathway, it can also be

triggered independently of AKT through mechanisms such as

amino acid sensing mediated by Rag GTPases (28, 29). PI3K

activation leads to the phosphorylation of AKT, which further

amplifies mTOR activity, supporting T cell growth, proliferation,

and metabolic adaptation (30, 31). Meanwhile, LAT and SLP-76

also facilitate the recruitment of phospholipase C-g1 (PLC-g1),
which catalyzes the hydrolysis of phosphatidylinositol 4,5-

bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-

triphosphate (IP3) (32). DAG activates protein kinase Cq (PKCq)
and RasGRP1, which promote the activation of the NF-kB and

MAPK pathways, respectively (33). IP3, on the other hand, induces

the release of intracellular calcium from the endoplasmic reticulum,

leading to the activation of the phosphatase calcineurin and the

subsequent nuclear translocation of the transcription factor NFAT

(nuclear factor of activated T cells) (34).

These signaling pathways collectively activate key transcription

factors, including NFAT, AP-1 (activator protein 1), and NF-kB.
These transcription factors together orchestrate the transcriptional

programs necessary for T cell activation, proliferation,

differentiation, and effector function (35, 36). The role of LAT in

assembling these signaling complexes is critical, as mutations in

LAT disrupt T cell development and cytokine production, thereby

impairing immune responses (37–41).

While the role of TCR signaling in T cell activation is well

established, increasing evidence supports its substantial influence on

T cell fate decisions. Rather than being merely permissive, TCR

signaling contributes instructively to lineage commitment by

modulating transcriptional and metabolic programs. Although

many studies have demonstrated causal links between TCR signal

strength and specific differentiation outcomes—particularly in CD4+
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and CD8+ subsets—important questions remain regarding how these

signals are integrated across different cellular and environmental

contexts. Continued investigation is necessary to fully decipher the

precise mechanisms and to determine how TCR signaling interacts

with co-stimulatory, cytokine, and metabolic cues to guide long-term

fate decisions. Deepening our understanding of these pathways holds

significant implications for the development of targeted

immunotherapies in cancer, chronic infection, and autoimmune

diseases (33).
TCR signaling and CD4+ T cell fate
determination

CD4+ T cells are pivotal components of the adaptive immune

system, capable of differentiating into specialized functional subsets

—such as Th1, Th2, Th17, T follicular helper (Tfh), and Tregs—

depending on the signals they encounter. These lineages are defined

by transcription factors and unique cytokine profiles, and adopt

distinct roles. Th1 cells drive cellular immunity against intracellular

pathogens, Th2 cells promote humoral immunity to combat

extracellular parasites, Th17 cells defend against extracellular

bacteria and fungi, and Tregs maintain immune tolerance (42).

The differentiation of CD4+ T cell lineages is highly context-

dependent, requiring the integration of three critical signals: TCR

signaling (signal 1), co-stimulatory signals (signal 2), and cytokine

signals (signal 3). The strength, duration, and quality of TCR

signaling are crucial factors influencing lineage commitment and

functional specialization.
TCR signal strength and lineage
commitment

The strength and duration of TCR signaling are critical

determinants in T cell fate decisions, influencing the

differentiation of naive CD4+ T cells into distinct effector or

regulatory subsets (13, 43, 44). Recent studies find that the

intensity of TCR signaling plays a pivotal role in directing lineage

commitment, supporting a deterministic model where stronger

signals drive effector T cell differentiation while weaker signals

promote the development of regulatory T cells (45).

Strong TCR signaling typically favors the differentiation of Th1,

Th17 and Tfh cells through the activation of lineage-defining

transcription factors (10, 45–50). For instance, robust and

sustained TCR signals promote Th1 differentiation by enhancing

the expression of T-bet, the master transcription factor for Th1 cells

(51), which drives the production of IFN-g, a key cytokine involved
in cellular immunity against intracellular pathogens (52). Likewise,

the TCR-Lck/Fyn axis facilitates STAT3 activation, supporting

Th17 differentiation (12). Similarly, strong TCR signals, in

conjunction with costimulatory molecules and IL-21 signaling,

promote the expression of Bcl-6, the transcription factor essential

for Tfh cell differentiation, which supports the generation of high-

affinity antibodies in germinal centers (53–55).
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Expanding on the role of TCR signal quality, a recent study

dissected the distinct contributions of antigen affinity and antigen

dose in shaping CD4+ T cell differentiation during infection (56). The

results demonstrated that high-affinity peptide-MHC interactions

preferentially promote Th1 differentiation, independent of antigen

dose, whereas Tfh cells can arise across a broader range of affinities

but require sustained antigen availability to persist. Notably,

increasing the antigen dose could not compensate for the

suboptimal Th1 differentiation induced by low-affinity peptides.

Furthermore, memory CD4+ T cells retained recall potential

shaped by the strength of the initial TCR signal, emphasizing how

early TCR engagement imprints long-term functional bias. These

findings highlight antigen affinity as a critical determinant in effector

subset specification and memory imprinting, with important

implications for vaccine design and T cell-based immunotherapies.

Strong TCR signals have been shown to inhibit default Th2

differentiation programs by preventing early IL-4 expression and

autocrine signaling through GATA3, thereby promoting Th1 over

Th2 differentiation (57, 58). Studies suggest that this process is

mediated by the nuclear translocation of NFATp and alterations in

the DNA binding activity of AP-1 under strong TCR signaling (59,

60). This mechanism prevents IL-4-mediated feedback loops that

would otherwise promote Th2 polarization, effectively guiding the

cell toward a Th1 phenotype under conditions of robust

antigen engagement.

A key component in this regulatory process is the adaptor

protein LAT (Linker for Activation of T cells), which functions as a

scaffold, facilitating the assembly of the “LAT signalosome,” a

multiprotein complex that organizes and links TCR signals to

intracellular pathways such as MAPK and NF-kB, thereby

influencing lineage commitment (41). While LAT has been

primarily understood as a positive regulator of TCR signaling,

recent findings reveal its dual role. Studies of LAT mutations in

mouse models, where the COOH-terminal tyrosine residues of LAT

are altered, have shown that defective LAT signaling can lead to

lymphoproliferative disorders characterized by polyclonal T cells

with increased Th2 cytokine production (61). This unexpected

finding underscores LAT’s role as a negative regulator of

excessive TCR signaling, helping maintain T cell homeostasis and

limiting unwarranted Th2 differentiation (Figure 1).

In addition, recent studies have identified two distinct pathways

for p38 MAPK activation in T cells (1): a classical MAPK cascade

mediated by LAT-SOS, and (2) an alternative pathway involving

direct phosphorylation by ZAP70 (62–64). Basal ZAP70 activation

primes the classical p38 pathway, lowering the activation threshold

and facilitating full p38 activation upon TCR engagement. This

dual activation mechanism plays a critical role in maintaining

immune balance, as evidenced by impaired IL-2 production and

reduced Treg differentiation in the absence of Sos1 and Sos2.

Furthermore, p38 MAPK signaling influences CD4+ T cell

differentiation, with its inhibition leading to decreased Th1, Th17,

and inducible Treg (iTreg) differentiation (Figure 1). These findings

underscore the complex interplay between TCR signaling strength,

adaptor proteins, and downstream kinase pathways in shaping T

cell fate (64, 65).
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TCR signal strength has differing implications for thymus-derived

(tTreg) and peripherally induced (pTreg) subsets (14, 66, 67).

Tregs, essential for maintaining immune tolerance and preventing

autoimmune responses, are characterized by the expression of the

transcription factor FOXP3 (68–70). tTregs are typically generated in

response to moderate-to-high affinity TCR interactions with self-

antigens during T cell development in the thymus (71–73). This

engagement drives FOXP3 expression and establishes a stable

epigenetic program, reinforced by histone modifications such as

H3K4me2 and H3K4me3 at the Foxp3 loci, which prevents lineage

deviation into effector T cells (66, 74–77). In contrast, the generation

of pTregs in peripheral tissues involves relatively weak TCR signaling,

often in response to environmental antigens or commensal microbes,

rather than high-affinity self-antigens (14). Weaker TCR signals,

especially when combined with anti-inflammatory cytokines like

TGF-b and IL-2, promote FOXP3 induction in peripheral T cells

(78, 79). This allows pTregs to modulate immune responses

in peripheral tissues, providing a flexible mechanism for

maintaining tolerance to non-self antigens encountered outside the

thymus (15, 66, 80, 81).

Distinct intracellular pathways underscore these differences. In

pTregs, weak TCR stimulation is thought to favor FOXP3 induction
Frontiers in Immunology 04
partly by reducing PI3K/AKT/mTOR signaling, which would

otherwise antagonize FOXP3 expression (15, 82). For instance,

reduced activity of the PIP3 phosphatase PTEN—a regulator of

AKT signaling—is associated with suboptimal TCR stimulation,

promoting FOXP3 expression in pTregs (80, 83) (Figure 1).

Additionally, adaptor molecules like ITK, which are activated

downstream of TCR engagement, modulate PTEN activity; ITK

deficiency enhances pTreg differentiation, indicating that reduced

signaling through this pathway may support FOXP3 stability in

pTregs (80). In tTregs, continuous TCR signaling is generally

unnecessary for maintaining FOXP3 expression once cells have

fully differentiated, as evidenced by studies where TCRa deletion in

mature Tregs does not lead to loss of identity of Treg cells in a resting

state, although its deletion may cause functional impairment (84, 85).

Recent findings on TCR signaling complexity provide

additional insights into how signal strength and duration affect

Treg differentiation. The TCR-CD3 complex contains a total of 10

ITAMs, with each CD3z chain contributing three ITAMs (six in

total from the CD3z homodimer), and the remaining four derived

from the CD3g, CD3d, and two CD3e subunits (20). ITAM

multiplicity amplifies TCR signaling, critical for certain

specialized T cell functions requiring strong or sustained TCR–
FIGURE 1

TCR Signaling and CD4+ T Cell Differentiation. Schematic representation of TCR signaling in CD4+ T cell activation and differentiation. Signal 1 (TCR
signaling), Signal 2 (co-stimulation), and Signal 3 (cytokine signals) integrate to regulate T cell fate. Examples include: (1) the TCR-Lck/Fyn axis
synergizing with cytokines to optimize STAT3 phosphorylation, promoting Th17 differentiation; (2) LAT mutations that alter COOH-terminal tyrosine
residues lead to defective signaling, resulting in Th2-skewed cytokine responses; and (3) PI3K/AKT/mTOR signaling, activated by TCR stimulation,
inhibits FOXP3 expression and suppresses Treg differentiation. (4) p38 MAPK signaling, activated via ZAP70 and LAT-SOS, promotes Th1 and Th17
differentiation, while also modulating Treg development.
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ligand interactions. However, studies using knock-in mice

expressing non-signaling CD3z chains (6Y within ITAM motifs

were mutated into 6F) suggest that ITAM multiplicity is not

essential for general T-cell functions like cytokine production or

the development of a diverse antigen-reactive TCR repertoire (48).

However, the knock-in mice exhibited greatly increased cell number

of Treg cells. These findings imply that while strong ITAM-

mediated signals may be vital for tTreg differentiation, weaker

ITAM signaling could suffice for pTreg induction, particularly in

the presence of supportive cytokine environments.

Furthermore, pharmacological interventions such as the use of

rapamycin analogs (e.g., everolimus) and Srci1 (highly selective

inhibitor of Lck/Fyn) enhance pTreg generation by inhibiting AKT/

mTOR pathways and stabilizing FOXP3 expression through

reduced DNA methylation at the Foxp3 promoter and CpG

island (86, 87). Nutrient-sensing pathways, such as Rag GTPase-

dependent mTORC1 activation, have also been implicated in the

functional programming of Tregs, especially activated Tregs in

peripheral tissues and tumors (88). These pathways link

metabolic cues to Treg expansion and suppressive capacity,

further emphasizing the interplay between TCR signaling,

cytokines, and metabolism in Treg biology.

Under Th17-polarizing conditions, strong and sustained TCR

signaling, characterized by high antigen dose and persistent

stimulation, has been shown to promote IL-17 expression, the

hallmark cytokine of Th17 cells (12, 89, 90), while moderate TCR

stimulation, typically involving lower-affinity antigens or reduced

antigen availability, tends to favor Treg development over Th17

polarization, even in the presence of similar cytokine environment

(14, 80). However, the precise role of TCR signal strength in

determining the balance between Th17 and Treg differentiation

remains complex and the underlying mechanism is still to be

determined. Our recent studies demonstrates that the TCR-Lck/

Fyn axis directly phosphorylates STAT3 at Y705, synergistically

with proinflammatory cytokines like IL-6 and IL-23, to achieve the

optimal STAT3 phosphorylation needed for Th17 lineage

commitment. Pharmacological inhibition of Lck/Fyn kinase

activity, or disrupting its interaction with STAT3, significantly

reduces STAT3 phosphorylation, skewing differentiation away

from the Th17 pathway and toward a Treg phenotype (91).

Mechanistically, Lck and Fyn interact with STAT3 as evidenced

by results from co-immunoprecipitation assays. AlphaFold

Multimer analysis indicates that the MAS-motif within STAT3

initiates the interaction of between STAT3 and Lck/Fyn,

enhanced their kinase activity, and is essential for its

phosphorylation by Lck/Fyn, which is further supported by in

vitro kinase assay showing that the peptide containing WT MAS

motif significantly enhanced STAT3 phosphorylation by Lck

kinases. This critical interaction demonstrates the deterministic

role of TCR signaling in directing Th17 differentiation. Notably,

disruption of the interaction between Lck/Fyn ad STAT3 by disease

causing STAT3 mutation selectively inhibits TCR stimulation

induced STAT3 phosphorylation, but not proinflammatory

cytokines induced STAT3 phosphorylation, and inhibits Th17 cell

differentiation, which further demonstrates the significance of TCR-
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Lck/Fyn-STAT3 axis in Th17 cell differentiation. Administration of

the Src inhibitor Srci1 or disruption of the Lck/Fyn-STAT3

interaction significantly ameliorated experimental autoimmune

encephalomyelitis (EAE), a Th17-mediated autoimmune disease,

by reducing Th17 differentiation and enhancing Treg polarization.

These findings not only demonstrate modulation of the TCR-Lck/

Fyn-STAT3 axis holds promise for therapeutic intervention, but

also uncover the critical synergy between TCR signaling and

cytokine networks (Signal 3) in regulating CD4+ T cell

differentiation, with the TCR-Lck/Fyn axis serving as a key

determinant of Th17 lineage fate (Figure 1).
Integration of TCR signaling with
cytokine networks

The integration of TCR signaling with cytokine networks is

critical for directing CD4+ T cell lineage commitment and plasticity.

CD4+T cells differentiation is orchestrated by a dynamic interplay

between intrinsic TCR signals and extrinsic cytokine inputs, which

collectively shape T cell fate and function. Strong TCR signals

combined with cytokines like IL-12 and IFN-g promote Th1

differentiation by activating STAT1 and inducing T-bet

expression, whereas IL-4 signaling favors Th2 lineage

commitment through STAT6 and GATA3 activation (87, 92–95).

In the context of Th17 differentiation, IL-6 and TGF-b act in

concert with TCR signaling to activate STAT3, driving the

differentiation process, which engage STAT3 and RORgt, the
master transcription factor for Th17 cells, thereby reinforcing

lineage-specific gene expression (12, 90, 96–99). Notably, TCR-

Lck/Fyn axis directly induces STAT3 phosphorylation, establishing

a critical link between TCR strength and cytokine-driven lineage

determination during Th17 cell differentiation (12).

The plasticity of CD4+ T cells enables functional adaptation in

response to changing cytokine environments, disruptions in the

cytokine-TCR signaling axis can lead to immune dysregulation. For

example, Th1 cells reactivated in Th2-polarizing conditions can

express Th2 cytokines, demonstrating the dynamic nature of T cell

responses (100, 101). Similarly, Tregs and Th17 cells exhibit

reciprocal plasticity influenced by the balance of TGF-b and pro-

inflammatory cytokines such as IL-6 and IL-23 (102). This plasticity

highlights the importance of a finely tuned cytokine milieu in

shaping T cell fate even after initial differentiation. These

cytokines and TCR signaling pathways converge to influence

CD4+ T cell fate, underscoring the coordination required between

extracellular signals and intracellular transcriptional regulation.

In summary, TCR signaling plays a critical and multifaceted

role in the differentiation of CD4+ T cells into distinct functional

subsets. The context in which TCR signaling occurs—particularly

the cytokine environment and the strength of the signal—dictates

whether CD4+ T cells differentiate into Th1, Th2, Th17, or Treg

subsets. Recent advances in understanding the molecular

mechanisms underlying TCR signaling, such as the role of the

TCR-Lck/Fyn-STAT3 axis and the MALT1 cleavage pathway (12,

103), have provided deeper insights into how TCR signaling
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influences immune function and tolerance. Understanding these

mechanisms is crucial for developing targeted immunotherapies

aimed at modulating T cell responses in autoimmune diseases,

infections, and cancer.
Integration of TCR signaling with
metabolic networks

Metabolic reprogramming occurs upon T cell activation, with

metabolism and nutrient cues reciprocally influencing TCR

signaling strength and T cell differentiation. Upon TCR

engagement, T cells shift from oxidative phosphorylation

(OXPHOS) to aerobic glycolysis, a phenomenon known as the

Warburg effect (108, 109). This metabolic switch facilitates the

rapid generation of ATP and metabolic intermediates essential for

proliferation and effector functions (110). The mechanistic mTOR

pathway, a central regulator of metabolism, links TCR signaling to

metabolic reprogramming, controlling glycolysis, lipid synthesis,

and amino acid metabolism to promote effector T cell

differentiation (88, 104). Intrinsic cellular energy demands are

synchronized with extracellular environmental signals, such as

nutrient availability and pH, to ensure proper T cell activation,

proliferation, and differentiation (105, 106). Given the growing

recognition of metabolism’s pivotal role in T cell differentiation, it

is now often referred to as “signal 4.”

Distinct CD4+ T cell subsets exhibit unique metabolic

dependencies. Effector T cells, such as Th1 and Th17 cells, rely

on glycolysis, and amino acid metabolism (105), whereas Tregs

favor oxidative phosphorylation and fatty acid oxidation (FAO) to

support their suppressive function (106–108). This metabolic

divergence is crucial for lineage specification, reinforcing how

TCR signaling and metabolic programs coordinate to shape T

cell fate.

Beyond glycolysis and amino acid metabolism, sterol

metabolism has emerged as a key regulator of TCR signaling and

CD4+ T cell differentiation (109). Upon TCR engagement, activated

T cells upregulate sterol biosynthesis and uptake pathways to

support membrane expansion during clonal proliferation (110).

The liver-X receptors (LXRs), which serve as metabolic sensors,

regulate this process (111, 112). Notably, LXRb deficiency enhances
both CD4+ and CD8+ T cell proliferation, leading to increased IFN-

g production, highlighting the metabolic influence on effector

function (111).

Metabolically, sterol metabolism directly influences lineage

decisions. Activation of LXRs suppresses Th17 differentiation via

sterol regulatory element-binding protein-1 (SREBP-1), which

competes with the aryl hydrocarbon receptor (AhR) for binding

at the Il17a locus, thereby repressing Th17 lineage commitment

(113, 114). In addition, a cholesterol biosynthetic intermediate has

been demonstrated as endogenous Rorgt ligand to direct Th17

differentiation (115). These findings suggest that sterol metabolism

not only supports proliferation but also modulates differentiation by

regulating lineage-defining transcriptional programs.
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TCR signaling in CD8+ T cell fate
determination

TCR signaling plays a pivotal role in orchestrating the

differentiation and functional specialization of CD8+ T cells,

influencing their development, differentiation, and functional

responses, also determining the long-term behavior of CD8+ T

cells. CD8+ T cells are essential for immune defense against viral

infections and tumors, and their function is closely linked to the

nature and strength of TCR signals received during antigen

recognition. A growing body of evidence has illuminated how TCR

signaling intricately modulates CD8+ T cell differentiation,

particularly the balance between short-lived effector cells and long-

lived memory cells, as well as the risk of T cell exhaustion (116, 117).
TCR Signal Strength and Duration
Shape CD8⁺ T Cell Fate

High-affinity TCR interactions are essential for the

differentiation of cytotoxic effector T cells (CTLs), which directly

target infected or malignant cells (118). Strong, sustained TCR

signals—often amplified by co-stimulatory molecules like CD28—

activate transcription factors such as T-bet and Eomesodermin

(Eomes) (119, 120). These factors orchestrate the expression of

cytotoxic machinery, including perforin and granzymes, which is

crucial for immediate pathogen elimination. Studies indicate that

high-affinity TCR engagement is a primary driver of robust CTL

differentiation, where prolonged TCR engagement has been shown

to enhance terminal effector differentiation, equipping CD8+ T cells

with rapid and potent immune capabilities.

In contrast to the differentiation of effector cells, intermediate

TCR signals tend to favor the formation of memory CD8+ T cells,

which provide long-term protection by rapidly responding to

subsequent antigen exposure (116, 121, 122). Memory T cells

exhibit distinct metabolic and functional profiles, enabling their

prolonged survival and capacity for robust recall responses (123).

This balance between persistence and responsiveness ensures

effective immunity against reinfections (124). In addition to

promoting effector functions, strong TCR signals have also been

shown to modulate the mode of cell division in activated CD8+ T

cells (125). Under strong stimulation, asymmetric cell division

(ACD) safeguards memory potential by enabling fate bifurcation

within progeny, whereas symmetric divisions favor terminal effector

differentiation. Inhibiting ACD under high TCR signaling impairs

memory generation, suggesting that ACD acts as a regulatory

mechanism that preserves long-term immunity under conditions

of intense stimulation.

Moreover, the duration of TCR signaling has also been shown

to directly influence memory T cell formation (123). Shorter TCR

signaling durations lead to the generation of memory precursors,

which maintain the ability to rapidly proliferate and acquire effector

functions upon secondary antigen encounters. This dichotomy in
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TCR signaling strength provides a finely tuned mechanism by

which CD8+ T cells balance their immediate effector functions

with long-term memory formation, ensuring both rapid pathogen

clearance and durable immunity (126).

In addition to governing the balance between effector and

memory T cell differentiation, TCR signal strength also plays a

decisive role in the development of exhausted CD8+ T cells (Tex)

and progenitor exhausted T cells (Tpex) (127, 128). Factors such as

peptide-MHC affinity, contact time with dendritic cells (DCs),

persistent antigen load, and the number of antigen-presenting

DCs determine TCR signal strength during priming (129). High

TCR signal strength has been shown to increase the expression of

inhibitory receptors such as PD-1 and LAG-3, driving terminal

exhaustion and reduced cytotoxic function in chronic infections

and tumors (130). Conversely, lower TCR signal strength favors the

generation of Tpex cells, a less differentiated subset that retains

proliferative capacity and responds better to immune checkpoint

blockade (ICB) therapy (131–134). This highlights the need to

optimize TCR signaling thresholds to balance protective immunity,

persistence, and responsiveness to immunotherapy.
Regulatory mechanisms and external
modulation of TCR signaling

One of the critical aspects of TCR signaling is its ability to

dictate the expression of transcription factors that govern CD8+ T

cell differentiation. For instance, the transcription factor interferon

regulatory factor 4 (IRF4) is essential for the expansion and

differentiation of CD8+ T cell. Recent studies demonstrated that

the expression of IRF4 in CD8+ T cells is contingent upon the

strength of TCR signaling, which is partially mediated by mTOR

signaling pathways (135). This finding corroborated another study

which further elucidated that graded levels of IRF4 regulate CD8+ T

cell differentiation and expansion in response to acute viral

infections (136), highlighting the importance of TCR signaling in

this context. Additionally, the role of IL-2 inducible T-cell kinase

(ITK) in regulating IRF4 expression underscores the complexity of

TCR signaling pathways and their downstream effects on CD8+ T

cell fate (119).

CD45, a critical phosphatase, plays a significant role in

modulating TCR sensitivity in naive and memory CD8+ T cells

(137). Continuous interaction with self-MHC ligands is crucial for

the survival of naive T cells but not for memory cells, indicating

distinct TCR sensitivity between these subsets (138). High CD45

expression in memory CD8+ T cells is associated with reduced TCR

sensitivity compared to naive cells. This reduced sensitivity, linked

to decreased activation of LCK and short-term TCR signaling,

protects CD8+ T cells from excessive auto-MHC reactivity while

preserving robust responses to foreign antigens (139). This

differential regulation highlights how TCR signaling mechanisms

adapt to the distinct functional requirements of naive and memory

T cell populations.

The role of cytokines in modulating TCR signaling cannot be

overlooked. Pathogen-specific inflammatory environments can
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enhance TCR signaling in CD8+ T cells, thereby tuning their

antigen sensitivity and functional responses (140). This interplay

between cytokine signaling and TCR engagement is crucial for

effective differentiation, as transient enhanced IL-2 receptor

signaling during priming amplifies the development of functional

effector-memory cells (141). Furthermore, both TCR and IL-2

signaling strength control memory CD8+ T cell functional fitness

via chromatin remodeling, highlighting the integration of external

cues with intrinsic signaling (142).

Beyond antigen recognition, co-stimulation, and cytokine

signaling, emerging evidence suggests that metabolic cues act as

signal 4 in T cell activation, influencing TCR signaling strength,

CD8+ T cell differentiation, and functional persistence (143–145).

TCR engagement induces metabolic reprogramming, shifting from

oxidative phosphorylation to glycolysis to meet the bioenergetic and

biosynthetic demands of rapid expansion and effector

differentiation (146). CD28 co-stimulation further enhances

glycolysis, amplifying metabolic flux to support proliferation and

cytokine production (147). Notably, high glycolytic activity favors

effector differentiation but impairs the long-term survival of

memory CD8+ T cells (148, 149). Thus, balancing glycolysis with

fatty acid oxidation (FAO) is critical for sustaining effective immune

responses (150).

Metabolic constraints in the tumor microenvironment (TME)

further modulate TCR signaling strength and CD8+ T cell

functionality (151). In nutrient-deprived conditions, such as low

glucose and amino acid availability, CD8+ T cells upregulate

alternative metabolic pathways to sustain their function (152).

However, chronic metabolic stress can impair TCR signaling,

driving metabolic exhaustion and dysfunction (153). Notably,

glycolysis is directly linked to TCR-dependent IFN-g production,

as reducing glycolytic activity dampens cytokine output and

cytotoxicity (154). Conversely, selectively enhancing glycolysis

restores effector functions and may serve as a strategy to

reinvigorate exhausted CD8+ T cells in immunotherapy

settings (155).

Additionally, the mTOR pathway plays a critical role in linking

TCR signaling to metabolic adaptation (104). Increased glycolytic

activity activates mTOR, promoting effector differentiation but

potentially contributing to metabolic dysregulation and partial T

cell dysfunction (28). Interestingly, mTOR-dependent metabolic

shifts may adversely affect IFN-g production in some contexts

(156), further emphasizing the necessity of fine-tuned metabolic

control. Furthermore, metabolic competition between glycolysis

and FAO influences the long-term survival and recall capacity of

memory CD8+ T cells (157, 158). While effector cells rely on

glycolysis for rapid cytotoxic responses, memory cells preferentially

utilize FAO, allowing for extended persistence and robust recall

responses upon reinfection (159).

TCR signaling is further modulated by the acidic conditions of

the TME, where extracellular acidification suppresses T cell

function (160). Acidosis directly impacts T cell metabolism by

restricting one-carbon metabolism, limiting nucleotide biosynthesis

and impairing activation potential. Additionally, low pH inhibits

TCR signal transduction via the STS1-Cbl-b complex, a pH-
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sensitive phosphatase that actively suppresses T cell function. This

regulatory mechanism constrains CD8+ T cell effector responses in

tumors, dampening anti-tumor immunity. Notably, the deficiency

of either STS1 or Cbl-b desensitizes T cells to acidic pH, leading to

enhanced anti-tumor reactivity and improved T cell survival in

hostile microenvironments. These findings underscore the

metabolic constraints imposed by acidic niches and their impact

on TCR-driven fate decisions.

Metabolic adaptations under nutrient-deprived conditions also

modulate TCR signaling strength and CD8+ T cell differentiation

(154). In the TME, where glucose and amino acid availability are

limited, CD8+ T cells upregulate nutrient transporters and alternative

metabolic pathways to sustain functionality (152, 155). However,

chronic metabolic stress can impair TCR signaling and drive T cell

dysfunction, ultimately promoting T cell exhaustion, a hallmark of

dysfunctional tumor-infiltrating lymphocytes (153). Understanding

these adaptations provides therapeutic opportunities to enhance anti-

tumor immunity by modulating metabolic pathways to optimize

TCR function in tumors.

In addition to biochemical and metabolic inputs, mechanical

forces have emerged as a novel regulatory dimension of TCR

signaling (161–163). T cells apply cytoskeletal tension at the

immunological synapse to interrogate antigen-presenting cells, and

TCR-pMHC interactions can behave as catch bonds that prolong

signal duration under force (162). These mechanosensing

mechanisms enhance antigen discrimination and influence

downstream transcriptional programs, adding an underexplored

but important layer of control to T cell activation and fate decisions.

Taken together, TCR signaling and metabolism are highly

interdependent. Targeting metabolic pathways in conjunction

with TCR signaling holds promise for enhancing T cell-based

immunotherapies, improving T cell persistence, cytotoxicity, and

survival in cancer and chronic infections (158, 159).
Developmental dynamics and long-
term outcomes

The dynamics of TCR signaling play a pivotal role in CD8+ T

cell differentiation (164, 165). These findings underscore the

importance of TCR signaling not only in immediate immune

responses but also in shaping long-term immune potential.

A seminal study challenged the traditional paradigm that only

strong TCR ligation is sufficient to initiate T cell responses (166).

Their findings demonstrated that even very low-affinity TCR–

peptide-MHC interactions can activate naïve CD8+ T cells, induce

rapid proliferation, and generate both effector and memory

populations. Notably, while low-affinity interactions were

sufficient to trigger early activation and migration—marked by

faster CCR7 downregulation and earlier tissue egress—sustained

T cell expansion required higher-affinity stimulation. This

differential expansion contributes to a maturation of the T cell

pool over time, favoring the prolonged persistence of high-affinity

clones. Interestingly, despite limited expansion, low-affinity ligands

were still capable of generating functional memory T cells,
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indicating that memory formation is not strictly dependent on

strong TCR signals (Figure 2). The clonal composition of

responding CD8+ T cells is shaped by TCR avidity thresholds,

which govern recruitment and expansion (167). High-avidity T

cells dominate protective responses, but low-avidity clones also

contribute functional flexibility, especially during heterologous re-

infections. This layered recruitment enhances the adaptability of T

cell responses, with clonal diversity tuned by the affinity landscape

of peptide-MHC interactions during priming. TCR signal strength

influences both the extent of effector responses and the qualitative

diversity of memory and clonal selection.

Recent innovative studies have further elucidated the role of

TCR signaling in determining CD8+ T cell fate. Evidence now

suggests that precursor exhausted T (Tpex) cells arise early in both

acute and chronic infections, positioning them at a critical

bifurcation point where they can either differentiate into memory

precursors following pathogen clearance or progress toward

terminal exhaustion under conditions of persistent antigen

exposure (165). This finding emphasizes that the pMHC-TCR

signal itself is a decisive factor in dictating whether CD8+ T cells

differentiate into memory T cells or exhausted T cells, irrespective of

infection type (168). Moreover, a groundbreaking Perturb-seq

study identified Klf2 as a key transcription factor governing CD8+

T cell fate determination (169) (Figure 2). The study demonstrated

that Klf2 knockout drives aberrant differentiation toward an

exhaustion-like state even in acute infections, suggesting that Klf2

plays an essential role in suppressing the exhaustion-promoting

transcription factor TOX while enabling T-bet to drive effector

differentiation. Additionally, strong TCR stimulation was found to

silence Klf2 at protein level. These findings reinforce the concept

that TCR signaling is the primary determinant of CD8+ T cell

differentiation, directly influencing exhaustion versus effector/

memory lineage commitment.
FIGURE 2

TCR signal strength shapes CD8+ T cell fate through coordinated
transcriptional and functional programs. CD8+ T cells interpret
graded TCR signals to adopt distinct functional states. Low TCR
stimulation promotes memory precursor formation (KLF2+ TCF1+

CD127+), supporting long-term persistence. Intermediate TCR
strength induces optimal effector differentiation (IFN-g+ GzmB+)
with sustained KLF2 and T-bet expression. Prolonged or excessive
TCR signaling drives progressive loss of KLF2 and acquisition of
exhaustion-associated markers (PD-1, TOX), leading to a stepwise
transition from progenitor exhausted T cells (Tpex) to terminally
exhausted T cells (Tex).
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Chronic antigen stimulation during persistent infections or

cancer can lead to T cell exhaustion, characterized by diminished

effector function and upregulation of inhibitory receptors such as PD-

1, Tim-3, and LAG-3 (170–172). Recent studies suggest that TCR

signal strength is a key determinant of exhaustion dynamics in CD8+

T cells (130, 173) (Figure 2). High-affinity, persistent TCR signaling

promotes terminal exhaustion, whereas lower TCR signal intensity

favors the differentiation of Tpex cells, which retain proliferative

potential and responsiveness to immune checkpoint blockade

therapy (127, 174, 175). Recent findings further elucidate that the

formation of Tpex cells is initiated early during acute responses and is

driven by strong TCR signaling and high-affinity peptide-MHC

interactions. This developmental trajectory is counterbalanced by

PD-1 signaling, which restricts precursor expansion (165). Together,

these findings reinforce the idea that TCR signal strength not only

governs early activation but imprints long-term lineage potential

across both effector and memory trajectories.

Interestingly, both low- and high-affinity antigen-expressing

tumors exhibit resistance to immune control, albeit through

different mechanisms (176). High-affinity tumors induce deep

exhaustion by promoting prolonged antigen stimulation and

inhibitory receptor expression, leading to dysfunctional T cells.

Conversely, low-affinity tumors fail to elicit strong TCR

engagement, resulting in poor CD8+ T cell priming and weak

immune responses. These findings suggest that fine-tuning TCR

signaling—both during early priming in lymphoid tissues and

within the tumor microenvironment—could optimize antitumor

immunity (Figure 2). This principle also applies to adoptive T cell

therapies, where selecting optimal TCRs or chimeric antigen

receptors (CARs) based on antigen affinity and signal strength

may improve T cell persistence, functionality, and therapeutic

efficacy (177–180).

In addition to its role in memory formation and exhaustion,

TCR signaling strength has also been implicated in tissue-resident

memory T cell (TRM) differentiation (181). TRM cells are non-

circulating CD8+ T cells that provide long-term localized immunity

across various tissues (182). Recent evidence suggests that lower

TCR signal strength favors TRM differentiation, while high-affinity

TCR interactions preferentially drive circulating memory T cell

formation (183). In models of influenza virus infection, weaker

TCR stimulation correlated with enhanced TRM formation in the

lung, whereas stronger TCR signaling biased cells toward a

circulating effector memory phenotype (184).

Beyond antigen affinity, DC subsets play a crucial role in

shaping TRM differentiation by influencing TCR signaling

strength during priming (185). Recent studies have shown that

mice lacking DNGR1 or Batf3—key markers of cross-presenting

DCs—exhibited impaired TRM formation after viral infection,

while circulating memory T cells were unaffected (186). These

findings highlight the interplay between TCR strength, antigen-

presenting cell specialization, and tissue-specific cues in

determining whether CD8+ T cells persist in circulation or take

up long-term residence within tissues.

Moreover, TCR strength influences the chemotactic properties

of CD8+ T cells, regulating their ability to establish tissue residency
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(183). Weaker TCR signaling is associated with reduced expression

of KLF2 and S1PR1 (187, 188), which promotes TRM retention by

limiting their egress from tissues. These observations suggest that

TCR signaling not only governs differentiation into effector versus

memory states but also fine-tunes tissue-specific localization and

persistence. TCR signal strength also governs chemotactic behavior,

including the upregulation of CXCR6 and suppression of S1PR1

expression, promoting tissue residency. This chemotactic switch is

dependent on Blimp1 induction by TCR re-stimulation and is

essential for efficient TRM differentiation across non-lymphoid

tissues (183). These findings emphasize how TCR signal strength

not only instructs fate commitment but also spatial positioning of

effector progeny during immune responses.

Sustained TCR signaling is also known to drive this exhausted

phenotype by inducing the expression of transcription factors such

as TOX and NR4A, which suppress effector functions and promote

inhibitory receptor expression (189). Exhausted CD8+ T cells

exhibit reduced cytotoxic capacity, impairing their ability to clear

chronic infections or tumors effectively. Importantly, recent

therapeutic strategies have focused on reversing T cell exhaustion

by blocking inhibitory receptors with immune checkpoint

inhibitors, thus restoring the effector functions of exhausted

CD8+ T cells in the context of cancer immunotherapy. These

approaches highlight the critical importance of understanding

TCR signaling dynamics in addressing chronic diseases and cancer.

TCR signaling is a fundamental determinant of CD8+ T cell fate,

shaping their development, differentiation, and functional potential.

The strength, duration, and context of TCR signals, coupled with

co-stimulatory inputs and metabolic programming, govern the

balance between effector differentiation, memory formation, and

the risk of exhaustion. These signals influence whether CD8+ T cells

adopt an effector or memory phenotype or become exhausted under

chronic antigen exposure. A deeper understanding of these

mechanisms is essential for developing targeted therapies to

enhance CD8+ T cell responses in infections, cancer, and chronic

diseases. Future research into the nuances of TCR signal

modulation will be critical for advancing immunotherapeutic

strategies, ultimately improving outcomes across diverse

clinical applications.

In conclusion, TCR signaling plays a critical role not only in T

cell activation but also in fate determination. As we unravel the

complex signaling networks involved in T cell differentiation, we

move closer to developing therapies that can precisely modulate T

cell responses in diverse disease contexts. Continued exploration of

TCR signaling nuances will undoubtedly yield innovative

therapeutic strategies, transforming the landscape of T cell

based immunotherapy.
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