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Background: Gastric cancer (GC) remains a leading cause of cancer-related

mortality, with over one million new cases and 769,000 deaths reported in 2020.

Despite advancements in chemotherapy, surgery, and targeted therapies,

delayed diagnosis due to overlooked early symptoms leads to poor prognosis.

Methods: We integrated bulk RNA sequencing and single-cell RNA sequencing

datasets from TCGA, GEO, and OMIX001073, employing normalization, batch

effect correction, and dimensionality reduction methods to identify key cell

populations associated with GC invasion and epithelial-mesenchymal transition

(EMT), as well as analyze the tumor immune microenvironment.

Results: Our analysis identified the MUC5AC+ malignant epithelial cell cluster as

a significant player in GC invasion and EMT. Cluster 1, representing this cell

population, exhibited higher invasion and EMT scores compared to other

clusters. Survival analysis showed that high abundance in cluster 0 correlated

with improved survival rates (P=0.012), whereas cluster 1 was associated with

poorer outcomes (P=0.045). A prognostic model highlighted ANXA5 and

GABARAPL2 as two critical genes upregulated in GC tumors. High-risk patients

demonstrated increased immune cell infiltration and worse prognosic. Analysis

of tumor mutation burden (TMB) indicated that patients with low TMB in the

high-risk group had the worst prognosis. Wet-lab validation experiments

confirmed the oncogenic role of ANXA5, showing its facilitation of cell

proliferation, invasion, and migration while suppressing apoptosis.

Conclusion: This study offers novel insights into the subpopulations of malignant

epithelial cells in GC and their roles in tumor progression. It provides a prognostic

model and potential therapeutic targets to combat GC, contributing crucial

understanding to the fundamental mechanisms of drug resistance in

gastrointestinal cancers.
KEYWORDS
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1 Introduction

Gastric cancer (GC) represents a significant category of malignant

tumors that endangers human health (1, 2). The global cancer report

indicates that in 2020, more than one million new gastric cancer cases

were diagnosed, leading to an estimated 769,000 fatalities, placing it

fourth in the rankings of cancer-relatedmortality worldwide (3–5). The

regions with the highest incidence of gastric cancer include Central and

South America, Eastern Europe, and East Asia, most of which are

developing countries (6–8). Due to the insidious onset of gastric cancer

and its unobtrusive early symptoms, patients often miss the best

treatment time when they seek medical attention (9–11). Although

methods such as chemotherapy and surgery have to some extent

extended the survival time of patients, and targeted therapy and

immunotherapy have also shown therapeutic prospects in the

treatment of gastric cancer, the effects of these treatments are still

limited, and the prognosis for patients remains unfavorable (12–19).

Faced with this clinical situation, exploring new diagnostic markers and

therapeutic targets is particularly important (20).

Conventional bulk RNA sequencing (high-throughput

transcriptome sequencing) technology is capable of targeting the

average expression levels of numerous cellular transcripts within

tissues (21, 22). However, this sequencing method overlooks the

expression heterogeneity between various cells within the sample,

concealing the existence and role of many special cell populations

(23, 24). Advancements in sequencing technology led to the first

report of single-cell RNA sequencing (scRNA-seq) in a study

conducted in 2009, which significantly clarifies the transcriptomic

variances among individual cells (25). At an unprecedented

resolution, scRNA-seq sequences the gene expression information

of individual cells, preserving the differences in transcriptomic

information between different cells (26, 27). Single-cell

transcriptomics can also identify cell-cell interactions based on

the expression of cell receptors and ligands, and the formation of

multimers, which gives it a significant advantage in studying the

tumor microenvironment (28–32). At present, this technology has

been utilized in studies focused on different kinds of tumors, such as

breast cancer (33, 34), hepatocellular carcinoma (35, 36), lung

cancer (37, 38), pancreatic cancer (39, 40), and melanoma (41,

42). In recent years, single-cell transcriptome sequencing has also

been increasingly studied in GC (43, 44). Research based on gastric

precancerous lesions has further confirmed the existence of

spasmolytic polypeptide-expressing metaplasia (SPEM) at the

single-cell level, revealing the potential transformation process

from chief cells to neck cells and then to SPEM (45). The analysis

of the immune microenvironment before and after chemotherapy

for gastric cancer has pointed out that macrophages transform into

M1 type after chemotherapy, and non-responders to chemotherapy

exhibit T cells expressing LAG3, which may be related to drug

resistance, revealing the reshaping of the tumor microenvironment

by chemotherapy (46–49). However, there are currently fewer

studies combining single-cell transcriptome sequencing with bulk

data in gastric cancer, and the prognostic differences between

gastric cancer at the single-cell level and high-throughput

sequencing level are still unclear.
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This research involved the integration of various existing bulk

RNA-seq datasets alongside scRNA-seq data to delineate the single-

cell architecture of gastric cancer tissue, emphasizing an

examination of gene characteristics linked to the development

and unfavorable outcomes of gastric cancer across diverse tissue

types. We identified that the MUC5AC+ malignant epithelial cell

cluster, represented by cluster 1, may be a key cell population in GC

invasion and EMT. We also explored the tumor immune

microenvironment and potential drug analysis. This study’s

findings illuminate the role of specific subpopulations of

malignant epithelial cells in the progression of gastric cancer,

indicating potential therapeutic strategies and treatments to

hinder the progression of this illness.
2 Materials and methods

2.1 Transcriptome data acquisition
and processing

We acquired RNA expression profiles in conjunction with

per t inent c l in ica l in format ion per ta in ing to gastr ic

adenocarcinoma from The Cancer Genome Atlas (TCGA)

database, specifically the TCGA-STAD dataset, which comprises

350 samples. This dataset served as the foundational training cohort

for our research endeavors, providing essential data for the analysis

and interpretation of the disease’s molecular characteristics and

potential clinical implications. For the validation cohort, data was

sourced from microarray datasets available in the Gene Expression

Omnibus (GEO) database (GSE15460, n=248). In addition, the

GSE55696 dataset and the GSE79973 dataset were also procured.

The GSE55696 dataset encompasses 56 gastric tumor samples and

19 normal samples, while the GSE79973 dataset includes 10 gastric

tumor samples and 10 normal gastric tissue samples. The data

discussed earlier were converted into Transcripts Per Million

(TPM) format and then log2 transformed for additional analysis.

The techniques used for processing included: 1) Normalizing the

data using the `normalizeBetweenArrays` function available in the

`limma` package within R. 2) Eliminating batch effects from various

datasets using the `Combat` function provided by the `sva` package

in R. TCGA and GEO are public databases that allow us

unrestricted access to patient data without the need for

ethical approval.
2.2 Single-cell data acquisition
and processing

Single-cell RNA sequencing data OMIX001073 was

downloaded from the OMIX database. OMIX001073 comprises

23 primary gastric cancer samples. The R package “Seurat” was

employed to perform single-cell standardization analysis using R

software. The parameters for quality control that were set

comprised a threshold for mitochondrial content of under 10%,

whereas the defined upper and lower bounds for UMI counts and
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1562395
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1562395
gene counts were 200-50,000 and 200-8,000, correspondingly. Data

normalization was conducted using the “NormalizeData” function

from the “Seurat” package, followed by the application of

“FindVariableFeatures” and “ScaleData” functions to identify

2,000 highly variable genes for transformation to mitigate cell

cycle influences. To address batch effects, the “harmony” function

was utilized. Dimensionality reduction was performed using UMAP

and tSNE, while clustering was conducted through the Louvain

algorithm. The “FindAllMarkers” function was used to evaluate

differential gene expression across clusters or cell types, following

the thresholds of p < 0.25 and expression proportion greater

than 0.1.
2.3 Cell annotation analysis

This research characterized epithelial cells by employing

markers such as “EPCAM,” “KRT18,” “KRT19,” and “CDH1,”

while fibroblasts were identified using “DCN,” “THY1,”

“COL1A1,” and “COL1A2.” Endothelial cells were characterized

by the markers “PECAM1,” “CLDN5,” “FLT1,” and “RAMP2.” For

T cells, the markers used were “CD3D,” “CD3E,” “D3G,” and

“TRAC.” In the case of NK cells, identification was achieved with

“NKG7,” “GNLY,” “NCAM1,” and “KLRD1.” B cells were identified

through the use of “CD79A,” “IGHM,” and “IGHG3,” while mast

cells were recognized via “KIT,” “MS4A2,” and “GATA2.”

Following this, the specified markers facilitated the categorization

and clustering of diverse cell types to investigate tumor

heterogeneity, with visualization techniques including UMAP,

tSNE, bar graphs, and heatmaps.
2.4 Epithelial cell subgroup analysis and
copy number variation analysis

An analysis of subgroups was performed on the specified

epithelial cells, from which the CNV results were gathered for the

sake of clustering. Subsequently, endothelial cells were utilized as a

benchmark to pinpoint other cells for the analysis of malignancy

and to evaluate the CNV scores of the clusters generated by the

epithelial cells.
2.5 Pseudotime analysis and transcriptional
factor analysis of epithelial cells

The “Seurat” single-cell standardization workflow employed the

monocle2 package to conduct pseudotime analysis on subgroups of

epithelial cells, aiming to clarify the processes of cellular

differentiation. Concurrently, SCENIC software was employed to

analyze transcription factors within epithelial cell subgroups. The

RcisTarget software package was used to identify transcription

factor binding motifs that showed increased expression according

to the gene list, whereas the AUCell software was applied to assess

the activity of each group of regulators throughout all cell types.
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2.6 Cell communication analysis

The CellChat software package is employed to assess potential

cell-cell communication. Functions utilized include “identify

OverExpressed Genes,” “identify overExpressed Interaction,”

“ProjectData,” “computeCommunoProb,” “filterCommunication,”

and “computecommunoProbPathway.” These functions serve to

identify possible interactions between ligands and receptors.

Ultimately, the “aggregateNet” function is utilized to create a

network for cell-to-cell communication.
2.7 Differential gene analysis and
enrichment analysis and ssGSEA

Differential gene analysis was performed on gastric cancer tissue

samples and normal gastric tissue samples sourced from the GEO

and TCGA datasets, using the “limma” and “clusterProfiler”

packages in R, with a significance threshold set at P<0.05.

Furthermore, single-sample gene set enrichment analysis

(ssGSEA) was utilized to compute the enrichment scores of the

gene sets within the samples, which allowed for the determination

of risk scores for each patient.
2.8 Establishment of GC related
risk signatures

This research determined the overlap of differentially expressed

genes derived from epithelial cells, utilizing both the GEO and

TCGA datasets to isolate gastric cancer-related genes (GCRGs).

Following this, univariate Cox analysis was conducted to associate

GCRGs with clinical prognosis data of gastric cancer, thereby

identifying genes linked to prognosis in gastric cancer. Then, the

prognostic model was established by Lasso regression method and

verified by ROC curve through the “timeROC” package. The model

enhances the selection of prognostic genes used to calculate the risk

score for each gastric cancer patient. The TCGA cohort patients

were divided into high-risk and low-risk categories according to the

median score, and the predictive accuracy of the model

was assessed.
2.9 Prediction of immunotherapy response,
tumor immune infiltration analysis, and
tumor immunophenotype analysis

The risk model scores for each dataset, including GSE35640

(melanoma), GSE91061 (melanoma), IMvigor210 (urothelial

carcinoma, UC), and GSE126044 (cancer, NSCLC), were

compiled to evaluate the association between immunotherapy

responses and varying risk levels. This process aims to validate

the efficacy of the predictive model applied in this study. Following

this, the immune infiltration levels in the TCGA STAD cohort were

assessed using six methods: CIBERSORT, quanTIseq, MCPcounter,
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xCell, EPIC, and Estimate. A heatmap showcased the relative

presence of stromal cells, immune cells, and tumor cells.

Furthermore, the Tumor Immunophenotype (TIP) analysis was

conducted at this website: http://biocc.hrbmu.edu.cn/TIP.
2.10 Drug sensitivity analysis and
TMB analysis

This study employs a detailed collection of half-maximal

inhibitory concentration (IC50) values for commonly utilized

chemotherapeutic agents available in the “oncoCpredict” package

for R, aiming to assess the relationship between risk scores and drug

sensitivity. Additionally, the Wilcoxon rank-sum test is utilized to

investigate variations in IC50 values between the two risk groups.

For the analysis of Tumor Mutational Burden (TMB), cancer

mutation information is obtained from the TCGA GDC database

and processed with the maftools package.
2.11 Cell culture and transfection

Validation through experiments was conducted utilizing

various human gastric cancer cell lines, including HGC-27,

MKN-45, SNU-1, NUGC-3, AGS, along with the human gastric

epithelial cell line GES-1. These cell lines were supplied by the Cell

Bank of the Chinese Academy of Sciences. The HGC-27, MKN-45,

SNU-1, and NUGC-3 cell lines were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, HyClone, USA), while the AGS

and GES-1 lines were maintained in Roswell Park Memorial

Institute 1640 (RPMI-1640, HyClone, USA). All media were

supplemented with 10% fetal bovine serum (FBS, KeyGEN,

China) and 1% penicillin-streptomycin (Procell, China) to ensure

optimal cell viability and minimize the likelihood of bacterial

contamination. The cell cultures were maintained at 37°C in a

humid environment with a CO2 level of 5%. Daily monitoring was

performed to verify that the cells were in the ideal logarithmic

growth phase, and they were passaged every 24 hours. For the

transfection protocols, we utilized siRNA (Sangon, China) targeting

ANXA5 to reduce its expression levels, using a si-negative control

for comparison. Cells were removed from the culture flasks via

trypsin (KeyGEN, China), subsequently washed with PBS twice,

and subjected to centrifugation. After being resuspended in fresh

culture medium, the cell concentration was determined.

Approximately 2×104 cells were plated per well in 6-well plates

with 2 mL of complete medium. Once the cells attached to the

plates, siRNA and Lipofectamine™ 3000 (Invitrogen, USA) were

combined at a predetermined ratio, allowed to sit at room

temperature for 15 minutes, and then subjected to low-speed

centrifugation for 1 minute. The mixture was introduced to the

cells in each well. Media change was conducted 4 hours following

transfection, with subsequent experiments carried out 48

hours later.
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2.12 Total RNA extraction and RT-qPCR

RT-qPCR was performed to assess the mRNA levels of ANXA5.

After forty-eight hours post-transfection, the culture medium was

removed, and the cells were gently washed with PBS before

undergoing trypsin digestion. Following several PBS washes and

low-speed centrifugation, we collected the cell pellet. In accordance

with the manufacturer’s guidelines, an adequate volume of Trizol

reagent (Takara, Japan) was used to lyse the cells. After maintaining

the solution on ice for 10 minutes, we gradually introduced 200 µL

of chloroform (SINOPHARM, China), along with equal volumes of

isopropanol (SINOPHARM, China) and anhydrous ethanol

(SINOPHARM, China). With each addition of the organic

solvents, the mixture was permitted to incubate at low

temperatures, followed by centrifugation to remove the organic

solvent. Ultimately, all organic solvents were disposed of, and the

RNA pellet was allowed to dry in a laminar flow hood for a duration

of 40 minutes. Subsequently, the RNA was dissolved in 20 µL of

DEPC-treated water, and its concentration was assessed using a

Nanodrop 2000 (Thermo, USA). Following the manufacturer’s

guidelines, the RNA was treated with the PrimeScript RT Reagent

Kit (Takara, Japan) to eliminate the genomic DNA, facilitating the

reverse transcription process required for cDNA synthesis. For the

quantitative PCR (qPCR), cDNA samples were prepared utilizing

the SYBR GreenER Supermix (Takara, Japan) kit, making certain

that every 18 µL reaction contained 2 µL of cDNA. The 7500 Real-

Time PCR System (Thermo Fisher Scientific, USA) was employed

to carry out real-time quantitative PCR. We analyzed the relative

expression of ANXA5 using the 2–DDCt method, with b-actin serving

as the normalization control.
2.13 CCK-8 assay

Forty-eight hours after transfection, trypsin (KeyGEN, China)

was used to dissociate the cells, which were then evenly distributed

in complete medium. According to the findings from the cell count,

a total of 5,000 cells were added to each well of a 96-well plate. To

ensure accuracy, all experimental groups were performed in

triplicate. Once the cells had adhered to the surface, the CCK-8

reagent (KeyGEN, China) was combined with complete medium,

reaching a total volume of 200 µL for each well, following the

manufacturer’s guidelines. This mixture was quickly added to the

wells, and the plate was then covered with aluminum foil to shield it

from light. After an incubation period of 1.5 hours, absorbance was

recorded at 450 nm with a microplate reader. This entire process

was repeated at 24, 48, 72, and 96-hour intervals.
2.14 Flow cytometry

Cell apoptosis was evaluated through flow cytometry. The cells

were dissociated using trypsin without EDTA (Beyotime, China),
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and the resulting cell pellet was obtained by centrifugation at 2,000

RPM for a duration of 5 minutes. Afterwards, the cells were rinsed

three times with cold PBS (4°C) and then resuspended in tubes for

flow cytometry. Following the guidelines provided by the

manufacturer, sufficient amounts of propidium iodide (PI,

Biosharp, China) and FITC-Annexin V (FITC, Biosharp, China)

were added to every sample. The cells underwent a 15-minute

incubation in the dark at a temperature of 37°C before being

analyzed using a flow cytometer. Each experimental group was

performed in triplicate.
2.15 Total protein extraction and
western blotting

Protein lysates were produced by combining RIPA buffer

(Beyotime, China) with a protease inhibitor (Beyotime, China) in

a 100:1 ratio, following the instructions provided by the

manufacturer. This mixture was then transferred to a centrifuge

tube that contained the cell pellet, ensuring that the cells were well

resuspended. Subsequently, sonication was performed at an

amplitude of 40% for 1 second per pulse, with this process being

repeated three times. The lysates were kept on ice for 30 minutes,

during which vortexing and centrifugation were conducted every 10

minutes. Following this, the lysate underwent centrifugation at

10,000 RPM for 15 minutes at 4°C, and the supernatant was

carefully collected for the measurement of protein concentration.

This supernatant was combined with sample loading buffer

according to the determined protein concentration, heated to 95°

C for 5 minutes, and then allowed to cool to room temperature.

Protein samples, amounting to 20 µg per lane, were applied to a 10%

SDS-PAGE gel, which was operated at 100V and then transferred to

a PVDF membrane with a pore size of 0.45 µM (IPVH00010,

Millipore). The membrane received a blocking treatment with

QuickBlock™ Blocking Buffer (Beyotime, China) for a duration

of 10 minutes. Following this, it was washed three times with TBST

containing 0.1% Tween-20 and incubated overnight at 4°C with

primary antibodies. After a 16-hour incubation period, the

membrane was washed three more times with TBST and then

incubated at room temperature for 1.5 hours with HRP-conjugated

secondary antibodies. Visualization of the protein bands was

achieved through enhanced chemiluminescence (ECL, Beyotime,

China). Primary antibodies for b-actin, ANXA5, and the secondary

antibody were sourced from Proteintech Group, Inc.
2.16 Transwell assay

Matrigel (Corning, USA) was diluted at a proportion of 1:7, and

45 µL was introduced into each chamber (Corning, USA).

Subsequently, the chambers were positioned in a sterile biosafety

cabinet for a drying period of 36 hours to confirm sterility. For the

migration assays, no Matrigel was applied to the chambers. A total

of 700 µL of complete medium was dispensed into each well of a 24-

well plate. Following a transfection period of 48 hours, the cells were

dissociated using trypsin and subsequently resuspended in a
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medium lacking FBS. The concentration of cells was assessed, and

20,000 cells were added to each chamber along with 170 µL of

medium without FBS. These chambers were placed in a 24-well

plate and incubated for 24 hours in a cell culture incubator,

ensuring that the complete medium covered the bottom of each

chamber. After the incubation period was completed, the medium

was thrown away, and the cells were carefully rinsed with PBS. Next,

the cells were fixed for 30 minutes using 4% paraformaldehyde, then

washed again, and any non-invading cells were carefully removed

with a cotton swab. Subsequently, the cells were stained using a

solution of 0.1% crystal violet for 20 minutes and rinsed three times

with PBS. Photographs of the stained cells were taken and cell

counts were conducted under a microscope. This procedure was

replicated to validate the results’ reliability.
2.17 Statistical analysis

Data management, statistical analysis, and graphical

representations were conducted utilizing R software version 4.1.3.

We employed Pearson’s correlation coefficient to evaluate the

connection between two continuous variables. The chi-square test

was employed for comparing categorical variables, whereas the

Wilcoxon rank-sum test or t-tests were used for continuous

variables. In the context of survival analysis, the survival package was

employed to carry out Cox regression analysis and construct Kaplan-

Meier survival curves. A p value < 0.05 was considered statistically

significant (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
3 Results

3.1 Single-cell expression atlas of STAD

The study included 23 distinct single-cell samples from gastric

cancer, with each displaying a fairly uniform cell distribution,

indicating minimal impact from batch effects (refer to Figure 1A).

Utilizing the tSNE algorithm, every cell was meticulously classified

into 29 separate clusters (see Figure 1B). An extensive bubble plot

illustrated the expression profiles of specific marker genes linked to the

23 cell clusters (illustrated in Figure 1C). Furthermore, a graph

depicting gene expression pertinent to cell type identification was

provided (shown in Figure 1D). A plot (see Figure 1E) subsequently

illustrated the distribution of fibroblasts, endothelial cells, T cells, NK

cells, B cells, mast cells, and epithelial cells among the 23 samples of

gastric cancer. Significantly, the presence of different cell types was

illustrated in Figure 1F, which includes epithelial cells, T cells, and

fibroblasts. Additionally, by utilizing inferred CNV, the status of copy

number variation (CNV) for every chromosome was elucidated,

indicating that epithelial cells generally exhibited a greater CNV

compared to endothelial cells in most cases (Figure 1G). Notably,

substantial decreases in copy numbers on chromosome 6 were

observed in almost all tumor cells. To evaluate the variations in

CNV scores among various clusters, particular attention was given to

those with increased copy number variations—specifically clusters 0,
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2, 7, and 14—along with clusters that exhibited lower copy numbers,

including clusters 13 and 17 (Figure 1H). Following the application of

tSNE for dimensionality reduction, the epithelial cell clusters were

divided into three distinct subclusters: subcluster 0, subcluster 1, and

subcluster 2 (see Figure 1I).
Frontiers in Immunology 06
3.2 Trajectory analysis and cell
communication analysis of epithelial cells

Pseudotime analysis indicated that subtype cluster 0 is prevalent

during the early stage, while subtype cluster 2 occupies a transitional
FIGURE 1

Single-cell classification results of STAD. (A, B) tSNE plots colored by sample and cluster assignment. (C) Correlation plots based on marker gene
expression matrices for each cluster. (D) tSNE plots of marker gene expression for each cluster. (E) Bar plots showing the composition of cell types
in each sample. (F) tSNE plots of cell annotation results. (G) CNV heatmap results of epithelial cells with endothelial cells as reference. The copy
number variation on all chromosomes of each cell subgroup was significantly higher than that of the reference group. (H) Violin plots of CNV scores
for epithelial cell sub-clusters. The 12th and 17th subgroups had the lowest average CNV score of 0.01. (I) tSNE plots of epithelial cells classified by
CNV score.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1562395
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1562395
phase, and subtype cluster 1 is positioned at the later stage

(Figure 2A). Subsequently, the expression levels of GABARAP,

MUC5AC, and TFF3 were presented, as their alterations were

particularly significant, offering insights into the temporal

fluctuations in gene expression (Figure 2B). The quantity and

intensity of cellular interactions among PGA3+ tumor cells in

cluster 0, MUC5AC+ tumor cells from cluster 1, TFF3+ tumor

cells associated with cluster 2, and other diverse cell types were

then illustrated (Figure 2C). Cell-type-specific ligand-receptor

interactions with the three marked tumor cells within the tissue

were analyzed. Notably, we found that PGA3+ tumor cells engage

with other cell types through the MDK-NCL receptor-ligand pair.

Similarly, MUC5AC+ tumor cells establish connections with other

cells via the MDK-NCL receptor-ligand pair (Figures 2D, E).

Ultimately, the enrichment analysis demonstrated that cluster 0 is

enriched in nearly all pathways, highlighting its significance across

various biological processes. In contrast, cluster 0 is primarily

enriched in spermatogenesis and pancreatic beta cells, while cluster

1 specifically enriches in EMT and myogenesis pathways (Figure 2F).
Frontiers in Immunology 07
3.3 Transcriptional factor analysis of
epithelial cells

The differential analysis identified the five transcription factors

exhibiting the highest expression levels along with the five that

showed the lowest expression in every cell cluster (Figure 3A). The

tSNE and violin plots depicted the expression patterns of these genes,

highlighting their regulatory functions within each cluster

(Figure 3B). Additionally, heatmaps were generated to depict how

differential gene regulatory elements are distributed across the three

cell clusters (Figures 3C, D).
3.4 Functional analysis of aggressive
and EMT

Pseudotime analysis focused on highly specific transcription

factors indicated that EGR3, HMGB1, and RFX6 show increased

expression in cluster 0, whereas IRF7, KLF2, and NR1I2
FIGURE 2

Trajectory and cell communication analysis results of epithelial cells. (A) Differentiation trajectory, pseudotime distribution, pseudotime cell clusters,
and the proportion of each cluster among all epithelial cells. The cells in 0 and 2cluster of CNV score were mainly concentrated in the early and
middle pseudotime, while the cells in 1cluster were mainly concentrated in the late pseudotime. State 1 is mainly concentrated in the early proposed
time, state 2 and 3 are mainly concentrated in the middle proposed time, and the remaining states are concentrated in the late proposed time. The
expression of GABARAP increased first and then decreased, while the expression of MUC5AC decreased first and then increased in pseudo-time. In
addition, the expression of TFF3 decreased first and then fluctuated. (B) Relative expression of GABARAP, MUC5AC, and TFF3 across pseudotime. (C)
Quantity and strength of cell communication between PGA3+ tumors, MUC5AC+ tumors, TFF3+ tumors, and other cell types. (D) Bubble plots of
ligand-receptor actions of PGA3+ tumors, MUC5AC+ tumors, TFF3+ tumors on different cell types. (E) Bubble plots of different types of cells acting
on PGA3+ tumors, MUC5AC+ tumors, TFF3+ tumors. (F) Enrichment analysis of the three clusters.
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demonstrate upregulation in cluster 1. Additionally, elevated levels of

IRF3, IRF7, and POLR2A were observed in cluster 2 (Figure 4A).

Invasion assays revealed that subgroup 1, in comparison to other

cellular subgroups, displayed significantly greater invasion scores,

suggesting that tumor cells in this cluster possess enhanced invasive

abilities (Figures 4B, C). Epithelial-mesenchymal transition (EMT)

scoring revealed significant differences between cluster 1 and clusters 0

and 2, with cluster 0 showing markedly higher EMT scores than

clusters 1 and 2 (Figures 4D, E). The variations suggest that gastric

epithelial cells categorized under subgroup 1 demonstrate enhanced

migratory capabilities, which may be linked to a heightened likelihood

of metastasis (Figure 4A, P<0.05).
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3.5 Prognostic model establishment
and evaluation

By employing the ssGSEA method, we assessed the presence of

signature genes within clusters 0 and 1 in samples from TCGA-STAD.

The analysis of survival suggested that a higher abundance of genes in

cluster 0 was associated with enhanced survival rates (Figure 5A,

P=0.012), while the results for cluster 1 showed the opposite trend

(Figure 5B, P=0.045). A Venn diagram displayed 232 marker genes

related to epithelial cell subgroups identified from the TCGA database,

GEO data, and differential genes between clusters 0 and 1 (Figure 5C).

Subsequent univariate COX analysis with the aforementioned genes and
frontiersin.or
FIGURE 3

Transcriptional factor analysis results of epithelial cells. (A) Volcano plots showing the top 5 highly and lowly expressed genes in each cluster.
(B) Violin plots and UMAP plots of expression for 5 genes in each cluster. (C, D) Heatmaps showing the distribution of gene regulatory elements in
different clusters.
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TCGA-STAD survival data identified 16 prognostic genes, and a forest

plot exhibited 5 protective factors and 11 risk factors (Figure 5D,

P<0.05). Lasso regression analysis in machine learning based on the

collection of prognostic-related genes opened a prognostic model

containing 2 genes (Figures 5E-H). Batch effects were removed for the

TCGA data and GEO datasets to facilitate subsequent model validation

(Figures 5I, J). External validation was then conducted using TCGA and
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GEO data, and survival analysis showed that the prognosis of the high-

risk group in the TCGA cohort was significantly poorer than the low-

risk group (Figure 5K, P=0.0012). This finding was strongly

corroborated within the GEO cohort (Figure 5L, P=0.0034). Finally,

the AUC of ROC curve at 2years, 3years and 4years were all greater than

0.58, indicating that this model has a good predictive ability for the

prognosis of gastric cancer patients (Figures 5M, N).
FIGURE 4

Functional analysis results of Aggressive and EMT. (A) Cell trajectory analysis of different regulatory clusters. The expression of HMGB1 decreased in
the pseudo time, EGR3, RFX6_extended increased and then decreased in the pseudo time. KLF2_extended, IRF7_extended, NR1I2_extended, IRF7,
IRF3_extended and POLR2A_extended increased in pseudotime. (B, C) TSNE plots and violin plots showing the invasive levels of the 3 clusters. (D, E)
TSNE plots and violin plots of EMT levels in the 3 clusters.
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3.6 Immune infiltration analysis

To assess the levels of immune cell infiltration in gastric cancer (GC)

patients categorized as high-risk compared to those considered low-risk,

we utilized tools such as CIBERSORT, quanTIseq, MCPcounter, xCell,

EPIC, and Estimate. The analysis revealed a notably greater abundance

of immune cells in the high-risk group. Among them, CD8+ T cells, B
Frontiers in Immunology 10
cells, and natural killer cells (NK cells) showed increased infiltration in

high-risk groups. These cells play a key role in anti-tumor immunity.

CD8+ T cells can directly kill tumor cells. Although B cells are primarily

involved in humoral immunity, they may also be involved in the

regulation of the tumor microenvironment. NK cells can recognize

and kill tumor cells without prior sensitization (Figure 6A). A bubble

plot revealed notable associations between TNFRSF18 and risk scores,
FIGURE 5

Prognostic model establishment and evaluation results. (A, B) Impact of cluster 0 and 1 abundance on survival. (C) Venn diagram showing the
intersection genes of Epicluster0_1 with GEO and TCGA cohorts. (D) Forest plot showing the results of univariate COX analysis. (E) Volcano plot
showing upregulated and downregulated differential genes in the cohort. (F, G) LASSO regression for screening important prognostic genes. (H)
Distribution of model gene signature values. (I, J) Detectable batch effects in TCGA and GEO data cohorts, with mitigation of batch effects to ensure
coordinated data integration. (K-N) Survival differences between high-risk and low-risk groups in the TCGA cohort and GEO datasets and their
respective time ROC curves.
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along with prognostic model genes (Figure 6B, P<0.05). Investigating the

relationship between immune infiltration levels indicated a meaningful

positive correlation between risk scores and immune scores, while a

negative correlation was found between risk scores and tumor purity

(Figure 6C). ssGSEA findings suggested that in the low-risk cohort,

immune cell infiltration displayed a positive relationship with risk values.

Furthermore, this low-risk group exhibited stronger associations across

various immune-related pathways (Figure 6D).
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3.7 TMB analysis revealed that the
combination of the low TMB group and the
high-risk group had the poorest prognosis

The waterfall plot displayed typical gene mutations within both

the high-risk and low-risk groups, showing that the genes with the

highest mutation frequency were TTN, TP53, MUC16, LRP1B, and

ARID1A, with no significant variation in mutation profiles between
FIGURE 6

Immune infiltration analysis results. (A) Heatmap showing differences in immune cell infiltration between two risk groups assessed by five algorithms.
(B) Bubble plots showing the correlation between riskScore and some model genes and immune checkpoint expressions. (C) Scatter plots
illustrating the correlation between risk scores and stromal scores, immune scores, ESTIMATE scores, and tumor purity, revealing the intricate
interconnections within the tumor microenvironment. (D) ssGSEA enrichment analysis showing the comparison of immune cell infiltration and
immune-related pathways associated with risk values between high-risk and low-risk groups in a radar chart.
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the two groups. Notably, the heatmap revealed no significant

difference in tumor mutational burden (TMB) across these groups

(Figure 7A). However, when patients were divided based on TMB

levels, it became evident that individuals in the low TMB category

had a worse prognosic in comparison to those in the high TMB

group; specifically, the cohort identified by both low TMB and high

risk showed the least favorable prognosis (Figure 7B). Additionally,

in several different tumor groups receiving immunotherapy,

including GSE91061, IMvigor210, GSE126044, and GSE35640,

comparative studies indicated that a larger percentage of patients

classified as low-risk exhibited notably higher responder rates

compared to those categorized as high-risk. This supports earlier
Frontiers in Immunology 12
findings that the low-risk cohort displayed more powerful

associations with various immune-related pathways. Finally, we

evaluated risk scores in responders versus non-responders within

the GSE91061 dataset, showing that non-responders exhibited

significantly higher risk scores than responders (Figure 7C).
3.8 Enrichment and drug
sensitivity analysis

The thorough correlation analysis involving risk scores, the

cancer immune cycle, and various gene sets showed a noteworthy
FIGURE 7

TMB and immunotherapy analysis results. (A) Waterfall plot depicting differences in mutated genes in high-risk and low-risk populations. Mutation
rates are shown, with genes sorted by mutation frequency. (B) Survival curves showing differences in survival among different subgroups. (C)
Composition analysis of various immunotherapy datasets to assess the association between risk values and immunotherapy response.
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negative correlation between risk scores and a majority of the

components in the cancer immune cycle. Conversely, a positive

correlation was noted between risk scores and most oncogenic

pathways (Figure 8A). Additionally, gene enrichment analysis

revealed that hypoxia and epithelial-mesenchymal transition

(EMT) are primarily enriched in the high-risk gastric cancer (GC)
Frontiers in Immunology 13
population (Figure 8B). GSEA unveiled distinct enrichments in GO

and KEGG pathways (Figure 8C). Drug sensitivity analysis

iden t ified “Dact inomyc in_1911” , “Doce taxe l_1007” ,

“Vinblastine_1004”, “Paclitaxel_1080”, “Camptothecin_1003”,

“Topotecan_1808” as potential effective drugs for GC treatment

(Figure 8D, P<0.05).
FIGURE 8

Enrichment and drug sensitivity analysis results. (A) The relationship between risk score and tumor immune cycle steps and biomarker gene sets. (B)
GSVA enrichment analysis showed that the standard gene set was enriched between high-risk and low-risk groups. (C) GSEA enrichment analysis
showing differential enrichment of various genes in GO and KEGG pathways between different risk groups. (D) Box plots comparing sensitivity to six
chemotherapy drugs between high-risk and low-risk groups.
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3.9 Validation analysis of model genes

Ultimately, this research performed a correlation analysis on the

two significant genes within the prognostic model utilizing TCGA-

STAD data. This included comparisons of normal gastric tissues

with gastric tumor tissues, as well as paired evaluations of gastric

tumor tissues against adjacent non-cancerous tissues. The analysis

revealed that ANXA5 and GABARAPL2 were upregulated in gastric

cancer tumor tissues (Figures 9A, B, P<0.05).
3.10 ANXA5 promotes gastric
cancer progression

At the cellular level, gastric cancer cell lines exhibited notably

higher ANXA5 expression compared to normal gastric epithelial

cell lines. The HGC-27 and AGS cell lines specifically exhibited the

highest levels of ANXA5, which were chosen for additional

experimentation (P<0.01, Figure 10A). To investigate the

functional roles of ANXA5, we employed siRNA to diminish the

expression of ANXA5 in two distinct human gastric cancer cell

lines, achieving a significant knockdown efficiency as evidenced by

RT-qPCR (P<0.001, Figure 10B). Results from the CCK-8 assay

indicated that the downregulation of ANXA5 led to a notable

reduction in cell viability in both HGC-27 and AGS cells. This
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implies that ANXA5 is involved in facilitating the proliferation of

gastric cancer cells (P<0.001, Figure 10C). Additionally, flow

cytometry analysis showed a significant rise in the rates of

apoptosis in these cell lines after the knockdown of ANXA5

(P<0.001, Figure 10D). Additionally, Western blot analysis

supported these outcomes, indicating that the absence of ANXA5

resulted in an elevation of the pro-apoptotic protein c-Caspase-3

and the adhesion protein E-Cadherin; conversely, levels of the anti-

apoptotic protein Bcl-2 and the mesenchymal marker Vimentin

diminished, affirming the molecular function of ANXA5 (P<0.01,

Figure 11A). Finally, Transwell assays revealed that the suppression

of ANXA5 expression significantly impaired the migration and

invasion capabilities of HGC-27 cells, suggesting that ANXA5

enhances the migratory and invasive characteristics of gastric

cancer cells (P<0.001, Figure 11B). Collectively, these findings

indicate that ANXA5 possesses a pro-tumorigenic function in

gastric cancer, facilitating cell proliferation, invasion, and

migration while inhibiting apoptosis.
4 Discussion

Gastric cancer represents a common type of malignant tumor

located within the gastrointestinal tract, generally associated with an

unfavorable prognosis (50, 51). Our extensive research utilizing
FIGURE 9

Validation analysis results of model genes. (A) Box plot of differential expression of ANXA5 in TCGA tumor and normal tissues; gene expression of
ANXA5 in 27 paired cancer and adjacent samples. (B) Box plot of differential expression of GABARAPL2 in TCGA tumor and normal tissues; gene
expression of GABARAPL2 in 27 paired cancer and adjacent samples.
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both bulk RNA sequencing and single-cell RNA sequencing data

has illuminated the complex landscape of gastric cancer, uncovering

the detailed diversity of cellular populations and their contributions

to tumor progression and outcomes. The integration of these high-
Frontiers in Immunology 15
throughput sequencing approaches has allowed us to dissect the

tumor microenvironment with unprecedented resolution,

identifying key cellular clusters and molecular signatures

associated with GC invasion, EMT, and patient survival.
FIGURE 10

The relationship between ANXA5 and gastric cancer was investigated through a series of experiments. (A) Real-time quantitative reverse transcription
PCR (qRT-PCR) analysis shows that ANXA5 gene expression is significantly elevated in gastric cancer cell lines, with higher expression observed in
the HGC-27 and AGS cell lines. This experiment demonstrates differential ANXA5 expression across various cell lines. (B) Real-time quantitative
reverse transcription PCR (qRT-PCR) analysis reveals that siRNA-mediated knockdown of ANXA5 expression results in a significant decrease in
ANXA5 gene expression in both HGC-27 and AGS cell lines. This experiment confirms successful silencing of ANXA5 expression by siRNA. (C) CCK-8
cell viability assay shows a significant reduction in cell viability in both HGC-27 and AGS cell lines following siRNA-mediated ANXA5 knockdown. This
experiment suggests that ANXA5 promotes cancer cell proliferation. (D) Flow cytometry analysis demonstrates a significant increase in apoptotic cell
populations in both HGC-27 and AGS cell lines following siRNA-mediated knockdown of ANXA5. This experiment indicates that ANXA5 inhibits
cancer cell apoptosis.
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The identification of the MUC5AC+ malignant epithelial cell

cluster as a potential driver of GC invasion and EMT underscores

the importance of targeted therapeutic strategies (52, 53). Studies

have successfully constructed prognostic models capable of

predicting the survival time of GC patients based on multiple

genes including MUC5AC, and have indicated its potential

involvement in the pathway of apoptosis (54). Avanbakht’s

research indicated that the mRNA expression levels of MUC5AC
Frontiers in Immunology 16
in GC tissues were significantly lower when compared to non-

cancerous tissues. The reduced levels of MUC5AC were linked to

more aggressive features of the tumor, including TNM staging,

histological classification, and lymph node metastasis. The study

concluded that MUC5AC downregulation could be associated with

both the advancement of the disease and a poorer prognosis for GC

(55). However, other studies have used in vitro models of gastric

mucosa to investigate the impact of exogenously expressed
FIGURE 11

Impact of ANXA5 Knockdown on Apoptosis, Migration, and Invasion in HGC-27 Gastric Cancer Cells. (A) Western blot analysis reveals changes in the
expression of relevant proteins (c-Caspase-3, Bcl-2, E-Cadherin, Vimentin) in the HGC-27 cell line following siRNA-mediated ANXA5 knockdown.
This experiment shows that silencing of ANXA5 increases the expression of c-Caspase-3 and E-Cadherin, while decreasing the expression of Bcl-2
and Vimentin. (B) Transwell migration and invasion assays demonstrate a significant reduction in migration and invasion capabilities of HGC-27 cells
following siRNA-mediated ANXA5 knockdown. This experiment indicates that ANXA5 promotes cancer cell migration and invasion.
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Helicobacter pylori virulence factor CagA on the expression of

MUC5AC. It was found that the H. pylori-derived virulence factor

CagA can increase the expression of MUC5AC (56). Thus, the

specific mechanism of MUC5AC in GC remains unclear. This

study, taking a scRNA-seq perspective to re-examine its potential

role in GC, will provide new insights into GC research. This cell

population, represented by cluster 1, may serve as a critical

therapeutic target, warranting further investigation into its

specific vulnerabilities and potential for intervention.

This study successfully constructed a model capable of

predicting the prognosis of GC patients based on ANXA5 and

GABARAPL2. Research has found that ANXA5 is associated with

tumor-associated macrophages and has preliminarily verified

through immunohistochemistry and angiogenesis experiments

that ANXA5 has the role of predicting the survival time of GC

patients (57). Higher expression levels of ANXA5 were also

identified as promoting tumor angiogenesis in GC. Interestingly,

however, another study highlighted ANXA5’s function as a gastric

cancer tumor suppressor gene that inhibits the ERK signaling

pathway, promising a supportive anticancer drug (58). This

difference is worthy of further study. There is also a considerable

amount of research on GABARAPL2. Studies have found that

GABARAPL2 may be a gene related to mitophagy, and its

expression was further validated through RT-qPCR and IHC,

indicating that GABARAPL2 may be a prognostic biomarker and

a candidate therapeutic target for GC (59). A study by Wang and

colleagues revealed that GABARAPL2 may be a gene linked to

autophagy. They also created a nomogram based on this gene to

predict the prognosis of patients diagnosed with GC (60).

Therefore, the role of GABARAPL2 in GC may be diverse,

potentially involving multiple pathways leading to poor GC

prognosis, and more research is needed to discover its specific

mechanisms of action in order to bring real benefits to GC patients.

Our experimental results show that ANXA5 is significantly

overexpressed in gastric cancer. When the expression of ANXA5

was suppressed via siRNA, we noted a reduction in cell viability, an

increase in apoptosis, and diminished migratory and invasive

abilities of gastric cancer cells. The results not only reinforce the

role of ANXA5 as an oncogene in the development and progression

of gastric cancer but also indicate that ANXA5 may act as a

promising therapeutic target for the treatment of this cancer type.

Furthermore, additional confirmation of these findings was

provided by Western blot analysis, which indicated that the

reduction of ANXA5 expression correlated with an increase in

the pro-apoptotic protein c-Caspase-3 and the adhesion molecule

E-Cadherin, along with a decrease in the anti-apoptotic protein Bcl-

2 and the marker for epithelial-mesenchymal transition (EMT),

Vimentin. The results indicate that ANXA5 might influence the

behavior of gastric cancer cells by modifying the concentrations of

vital proteins important for apoptosis and cell adhesion. In

addition, ANXA5 has been shown to promote cancer in

pancreatic, breast, and colorectal cancers (61–63). To sum up, our

study underscores the crucial function of ANXA5 in gastric cancer
Frontiers in Immunology 17
progression, shedding light on the biological processes that drive

this disease and presenting possible theoretical bases for upcoming

treatment strategies.

In addition, although we have made efforts to predict the role of

ANXA5 in GC through bioinformatics analysis and preliminary

validation via in vitro experiments, further verification using

patient-derived samples or tissue microarrays is warranted. Given

the practical challenges in obtaining such samples, we acknowledge

this as a limitation of our study and plan to incorporate human

tissue validation in future research to strengthen our conclusions.

In summary, our study has made significant strides in

understanding the cellular and molecular underpinnings of GC,

with implications for diagnosis, prognosis, and treatment. While

our findings are promising, further research is needed to validate

these results in larger and more diverse patient populations and to

translate these insights into clinical practice. The ongoing evolution

of sequencing technologies and analytical methods will

undoubtedly continue to enhance our ability to unravel the

complexities of GC and other malignancies, bringing us closer to

the goal of personalized and precise medicine.
5 Conclusion

In conclusion, this study’s comprehensive single-cell

sequencing analysis not only elucidates the cellular heterogeneity

in gastric adenocarcinoma but also establishes a clinically relevant

risk signature that predicts patient prognosis and response to

immunotherapy, underscoring the significance of single-cell

technologies in advancing personalized medicine.
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Annexin-A5 and annexin-A6 silencing prevents metastasis of breast cancer cells in
zebrafish. Biol Cell. (2023) 115:e202200110. doi: 10.1111/boc.202200110

62. Peng B, Guo C, Guan H, Liu S, Sun MZ. Annexin A5 as a potential marker in
tumors. Clin Chim Acta. (2014) 427:42–8. doi: 10.1016/j.cca.2013.09.048

63. Xue G, Hao LQ, Ding FX, Mei Q, Huang JJ, Fu CG, et al. Expression of annexin
a5 is associated with higher tumor stage and poor prognosis in colorectal
adenocarcinomas. J Clin Gastroenterol . (2009) 43:831–7. doi: 10.1097/
MCG.0b013e31819cc731
frontiersin.org

https://doi.org/10.1016/j.xcrm.2024.101511
https://doi.org/10.1038/s41556-024-01478-9
https://doi.org/10.1007/s00262-023-03567-4
https://doi.org/10.1097/hep.0000000000000553
https://doi.org/10.1097/hep.0000000000000553
https://doi.org/10.1038/s41421-023-00621-4
https://doi.org/10.1038/s41467-024-48700-8
https://doi.org/10.1016/j.stem.2023.11.011
https://doi.org/10.1186/s13073-024-01287-7
https://doi.org/10.1016/j.ccell.2024.04.012
https://doi.org/10.1016/j.ccell.2024.04.012
https://doi.org/10.1038/s41421-024-00683-y
https://doi.org/10.1186/s12967-024-05503-1
https://doi.org/10.1186/s12967-024-05606-9
https://doi.org/10.1136/gutjnl-2019-318930
https://doi.org/10.7150/thno.71833
https://doi.org/10.15212/bioi-2022-0010
https://doi.org/10.15212/bioi-2022-0010
https://doi.org/10.34133/research.0080
https://doi.org/10.34133/research.0033
https://doi.org/10.34133/research.0033
https://doi.org/10.1016/j.jare.2024.10.012
https://doi.org/10.1038/s41419-023-06388-6
https://doi.org/10.3892/ijo.2021.5171
https://doi.org/10.3390/ijms19071981
https://doi.org/10.1007/s12032-020-01362-0
https://doi.org/10.1111/1440-1681.12840
https://doi.org/10.3892/ol.2018.7960
https://doi.org/10.1186/s12885-024-11878-7
https://doi.org/10.3389/fonc.2021.665105
https://doi.org/10.1016/j.compbiomed.2023.107227
https://doi.org/10.7717/peerj.10814
https://doi.org/10.1111/boc.202200110
https://doi.org/10.1016/j.cca.2013.09.048
https://doi.org/10.1097/MCG.0b013e31819cc731
https://doi.org/10.1097/MCG.0b013e31819cc731
https://doi.org/10.3389/fimmu.2025.1562395
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrative analysis of single-cell and bulk RNA sequencing reveals the oncogenic role of ANXA5 in gastric cancer and its association with drug resistance
	1 Introduction
	2 Materials and methods
	2.1 Transcriptome data acquisition and processing
	2.2 Single-cell data acquisition and processing
	2.3 Cell annotation analysis
	2.4 Epithelial cell subgroup analysis and copy number variation analysis
	2.5 Pseudotime analysis and transcriptional factor analysis of epithelial cells
	2.6 Cell communication analysis
	2.7 Differential gene analysis and enrichment analysis and ssGSEA
	2.8 Establishment of GC related risk signatures
	2.9 Prediction of immunotherapy response, tumor immune infiltration analysis, and tumor immunophenotype analysis
	2.10 Drug sensitivity analysis and TMB analysis
	2.11 Cell culture and transfection
	2.12 Total RNA extraction and RT-qPCR
	2.13 CCK-8 assay
	2.14 Flow cytometry
	2.15 Total protein extraction and western blotting
	2.16 Transwell assay
	2.17 Statistical analysis

	3 Results
	3.1 Single-cell expression atlas of STAD
	3.2 Trajectory analysis and cell communication analysis of epithelial cells
	3.3 Transcriptional factor analysis of epithelial cells
	3.4 Functional analysis of aggressive and EMT
	3.5 Prognostic model establishment and evaluation
	3.6 Immune infiltration analysis
	3.7 TMB analysis revealed that the combination of the low TMB group and the high-risk group had the poorest prognosis
	3.8 Enrichment and drug sensitivity analysis
	3.9 Validation analysis of model genes
	3.10 ANXA5 promotes gastric cancer progression

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


