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Introduction: There is increasing evidence demonstrating the relationship

between microbiota and colorectal cancer. Several studies have been

published analyzing microbiota in tissues and feces from cancer patients;

however, there are only a few publications investigating the clinical utility of

serum microbiome from colorectal cancer patients. Our aim was to advance in

the search for serum biomarkers for the diagnosis of colorectal cancer.

Methods: We conducted a cross-sectional study assessing bacterial DNA and

metabolomic profiles in 64 serum samples from subjects affected by colorectal

cancer and controls. A metagenomic analysis of the bacterial 16S rRNA gene in

serum was established, and serum metabolites were detected through an

untargeted metabolic study based on Gas Chromatography-Quadruple Time-

Of-Flight Mass Spectrometry with accurate mass.

Results and Discussion: After integrating the data resulting from the

bioinformatics and statistical analyses, we obtained different profiles in

colorectal cancer population and controls, regardless of the subjects' age,

gender and body mass index. Serum levels of Firmicutes and threonic acid
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were the most relevant characteristics that could help differentiate both groups,

achieving an excellent predictive accuracy in this discovery cohort (area under

the ROC curve = 0.95). Although these results should be validated in other

cohorts through multicenter studies, we consider that our data could be relevant

and applicable to the early diagnosis of colorectal cancer.
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1 Introduction

Colorectal cancer (CRC) is one of the neoplasms with the

highest incidence and mortality worldwide. In 2022, 1.9 million

people were diagnosed with CRC and more than 900,000 deaths

resulted from this disease (1). CRC diagnosis requires the use of an

invasive procedure such as colonoscopy (2), which is associated

with a non-negligible rate of adverse events, mainly bleeding (<5%)

and perforation (1:1000), at higher rates depending on patient

characteristics such as age and comorbidities. Other cases

(patients with a recent acute myocardial infarction or an acute

intestinal inflammatory process) are contraindicated for this

procedure (3). Non-invasive diagnostic tools such as colonic

computerized tomography imaging or virtual colonoscopy and

magnetic resonance imaging are performed in selected patients.

However, molecular testing can potentially complement the current

gold-standard techniques and improve accuracy (4). In this regard,

the identification of biomarkers assisting the diagnosis of CRC from

easily obtained samples, such as serum or stool, is highly requested.

Hence, liquid biopsies have recently gained interest for cancer

screening and diagnosis (5, 6).

Microbiota and metabolome have been identified as major

contributors in carcinogenesis. Our commensal bacteria can exert

pro-tumorigenic effects through immunological, toxicological and

metabolic mechanisms (7, 8) which can be accomplished locally or

distantly. Several “classic” locations serve as residence sites for

microbiota species, including the gut, skin and respiratory and

urinary organs. However, other non-traditional locations have

emerged as potential carriers of microbial components, such as

blood (9, 10) or serum/plasma (11, 12). Human serum is composed

of the soluble, cell-free fraction of blood that remains after

coagulation and centrifugation. Serum contains albumin,

immunoglobulins, components of the complement system,

electrolytes, and low or sequestered levels of key nutrients (13),

but has also been described as carrier of bacteria or their structures,

by means of nucleic acids detection, sequencing, imaging and

culturing approaches (14). Previous investigations have further
02
confirmed the presence of bacterial DNA in the blood from

healthy subjects, its resemblance to the oral and gut microbiome,

and its alteration regarding both microbiome load and composition

in the presence of CRC or colorectal adenoma (15–17). The major

fraction of the bacterial component of blood would come from the

buffy coat, but plasma would also contain other minor components

(18). However, the findings of a recent study, investigating blood

bacterial DNA from a cohort of 9770 healthy subjects, support the

hypothesis that its detection indicates a transient sporadic

translocation of bacteria or their DNA from different body sites

rather than the presence of a blood microbiome. Thus, the concept

of a consistent and healthy blood microbial community is still under

investigation, let alone the serum microbiome (19). The current

knowledge about human blood microbiome and its potential as a

prognostic marker for various diseases, such as cardiovascular

disease, cirrhosis, pancreatitis, diabetes and chronic kidney

disease, was explored in a recent review (20). Because the term

“microbiome” has often been used inaccurately, in this study we

specifically refer to bacterial DNA as the detection of bacterial 16S

rRNA gene sequences through metataxonomic sequencing (21).

Similarly, metabolomics can be conceived as a comprehensive

indicator of human health status (22). In cancer, a characteristic

metabolic shift arises, reflecting the adaptation of tumoral tissues to

the availability of nutrients from the environment to obtain energy

for cell division. Therefore, some routes are upregulated, such as

pentose phosphate and serine synthesis pathways, and others are

deactivated, such as oxidative phosphorylation (Warburg effect) (23,

24). In addition, metabolites may be involved in cell proliferation, as

they can trigger signaling processes and epigenetic regulation (25, 26).

Although serum microbial metagenomics, and specifically the

one from whole blood, has been studied as biomarker for some

diseases, the role of serum bacterial DNA as CRC biomarker

remains unclear. We hypothesize that the identification of

taxonomic microbiome signatures detectable in serum from

patients with CRC, as well as their metabolic links, are useful in

clinical oncology. The main aim of this study is the identification of

serum biomarkers useful in the diagnosis of CRC.
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2 Materials and methods

2.1 Patients and samples

For the study, a total of 64 serum samples from 43 CRC patients

and 21 controls were collected and analyzed for bacterial DNA and

metabolomic profiles. These samples were obtained prospectively

between 2021 and 2024. All cases were recruited from the San

Carlos Hospital in Madrid (Spain). Written approval to develop the

study was granted from the Clinical Research Ethics Committee of

the San Carlos Hospital (C.I. 19/549-E_BC, 27/12/2019). In

addition, written informed consent was provided by all

individuals prior to the investigation.

Regarding the CRC group, patients with no previous chemo-

and/or radiotherapy undergoing curative-intention surgery were

recruited subsequently and regardless of age, gender or tumor stage.

Eligible controls were voluntary subjects without cancer or cancer

history. The exclusion criteria in both groups were the presence of

previous gastrointestinal resection surgery, inflammatory bowel

diseases, or antibiotic treatment one month before surgery.

Table 1 shows the clinical-pathological variables of the study

population. All individuals were categorized according to their

body mass index (BMI) values, following the guidelines of the
Frontiers in Immunology 03
World Health Organization. CRC patients were staged following

the American Joint Committee on Cancer classification (27).

Blood was collected after an overnight fast, prior to the surgery

in the case of CRC patients. Serum was separated and stored in

aliquots at -80°C until processing.
2.2 DNA extraction and bacterial 16S rRNA
gene sequencing

Total DNA was extracted from the serum samples using the

QIAamp®DNAMini Kit (Qiagen, Hilden, Germany), following the

manufacturer’s protocol for blood or body fluids, from a starting

amount of 200 mL of serum and eluting DNA in a final volume of

50 mL of AE buffer. DNA was then quantified using the

Invitrogen™ Qubit™ 3 Fluorometer with the dsDNA HS (high

sensitivity) Assay (Thermo Fisher Scientific, Waltham, MA, USA).

Two extraction blanks were also included, which underwent all

extraction and sequencing steps along with the samples and were

subsequently used for the correction of sample lectures.

Metagenomic analysis of serum bacterial DNA was performed

via the amplification and sequencing of the bacterial 16S rRNA gene

using the Ion Torrent™ sequencing technology and the reagents

from Life Technologies S.A. (a part of Thermo Fisher Scientific), as

described previously (28).
2.3 Serum untargeted metabolomics by
gas chromatography-mass spectrometry

Metabolites contained in the serum samples from CRC

patients and controls were subjected to an untargeted

metabolomics approach by Gas Chromatography-Quadruple-

Time-of-Flight Mass Spectrometry (GC-QTOF-MS), following

previously published protocols (29, 30). Prior to analysis, 40 mL
of each serum sample were combined with 120 mL of acetonitrile

containing an internal standard and proteins were removed. The

resulting extracts were subjected to a two-step derivatization

procedure and the analysis of the final sample extracts was

performed by an Agilent 7980B GC system coupled to an

Agilent 7250 QTOF/MS analyzer (Agilent Technologies,

Waldbronn, Germany).
2.4 Statistical and bioinformatic analyses

Metagenomic data were submitted to bioinformatic analysis

using the Quantitative Insight Into Microbial Ecology 2 (QIIME2)

pipeline (31). Raw Fastq files underwent a treatment that included

pair-wise alignment and classification of reads with respect to the 12

possible forward and reverse primers, reorientation of the reverse

reads and removal of primer sequences, and reads were all trimmed

to 165 bp. The obtained sequences were submitted to further

analysis for dereplication, singleton removal, assignment to

operational taxonomic units (OTUs) and chimera filtering.
TABLE 1 Clinico-pathological characteristics of the study population.

Variable
CRC
group
N=43

Control
group
N=21

p value (CRC
vs. Control)

Age, Median in
years (IQR)

76.00
(67.00-
78.00)

57.00
(39.00-64.00)

< 0.001$

Gender, N (%) 43 (100.0) 21 (100.0) 0.027#

Male 27 (62.8) 7 (33.3)

Female 16 (37.2) 14 (66.7)

BMI group, N (%) 43 (100.0) 21 (100.0) 0.003#

Normal weight (BMI <
25 kg/m2)

10 (23.3) 3 (14.3)

Overweight (BMI ≥ 25
kg/m2 and < 30 kg/m2)

21 (48.8) 3 (14.3)

Obesity (BMI ≥ 30
kg/m2)

12 (27.9) 15 (71.4)

Tumor location (CRC),
N (%)

43 (100)

Right colon 21 (48.8)

Left colon 16 (37.2)

Rectum 6 (14.0)

TNM stage, N (%) 43 (100.0)

I-II 21 (48.8)

III-IV 22 (51.2)
BMI, body mass index; CRC, colorectal cancer; IQR, interquartile range; TNM, tumor, node,
metastasis; $Mann-Whitney U test; #Chi-squared test.
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Closed-reference OTU picking was performed using the SILVA 138

SSU Ref NR 99 identity database, based on a 99 % similarity

between sequences. Mean count values from both blank OTUs

were subtracted from the samples. Rarefaction was performed to a

threshold over 6.5K OTUs. Alpha diversity was assessed on the

rarefied OTU profiles through five metrics: observed OTUs, Chao1

richness estimate, Shannon diversity index, Pielou’s evenness index,

and Simpson’s diversity index. Parametric tests (t-test) or non-

parametric tests (Kruskal–Wallis test) were performed depending

on the distribution of data. Beta diversity was also analyzed through

the permutation-based multivariate analysis of variance

(PERMANOVA), the analysis of similarities (ANOSIM), and the

analysis of multivariate homogeneity of variances (PERMDISP)

tests, for which Bray-Curtis and Jaccard similarity indexes were

compared. Principal coordinate analysis (PCoA) was used to plot

the distances between groups. Regarding taxonomic analysis, the

linear discriminant analysis (LDA) effect size (LEfSe) analysis (32)

was used to identify differentially abundant taxa between groups.

Taxa with a logarithmic LDA score (log10) > 2 and P-value < 0.05

were considered as statistically significant.

Regarding metabolomics, results were subjected to

deconvolution and annotation through MS library search using

the software MassHunter Unknowns Analysis 10.0 (Agilent

Technologies) against our CEMBIO in-house personal compound

data library, along with Fiehn Library. After that, data alignment

was performed by MassHunter Mass Profiler Professional 15.1

software (Agilent Technologies). Then, a library with the

compounds annotated was built and signal integration of selected

target ions for all compounds was performed by MassHunter

Quantitative Analysis 10.0 for QTOF (Agilent Technologies).

Peaks and artifacts present in the blanks were discarded in the

samples. Data matrix was obtained after normalization by d-31

palmitic acid.

Further statistical analyses were conducted using STATA

IC16.1 (Stata-Corp LLC, College Station, TX, USA) and IBM®

SPSS® Statistics software package version 29 (IBM Inc., Armonk,

NY, USA). Differences in metabolite abundance (normalized peak

area, NPA) were determined using the corresponding parametric

(Student’s t test) or non-parametric (Mann-Whitney U test) tests

depending on the variable distribution in the study groups. Next,

logistic regression was performed to assess the predictive capability

of the differential metabolites (NPA) and bacterial taxa (relative

abundance, RA) after adjusting for age, gender and BMI. In all

cases, P-value < 0.05 was considered for statistical significance. The

diagnostic capability for CRC of the individual bacterial taxa and

metabolites in serum samples was further assessed by the Receiver

Operating Characteristic (ROC) curves, from which values of the

area under the curve (AUC), the sensitivity and the specificity were

calculated. The degree of discrimination of the ROC curves was

considered as “acceptable” for AUC values between 0.7 and 0.8,

“excellent” for values between 0.8 and 0.9, and “outstanding” for

values above 0.9, following previous criteria (33). To obtain the

curves, the abundance values of each bacterial taxon or metabolite

were processed by the Cutoff Finder application (34), which allows

to calculate the optimal threshold to distinguish CRC patients from
Frontiers in Immunology 04
controls. The threshold calculation followed the Euclidean distance

method to optimize both sensitivity and specificity. Finally, a

predictive panel for CRC was obtained by integrating both

metagenomic and metabolomic data into a logistic regression

model. The predictive capability of the panel was tested through

the CRC probability (P(CRC)) values obtained in the logistic

regression equation:

P(CRC) =  
1

1 + e(−C−b1X1−b2X2−b3X3…−bkXk)

For a model containing k independent variables (X), C is the

value of the constant and b the value of the regression coefficient for

each variable. The values of P(CRC) for each sample were again

processed by the Cutoff Finder application, and ROC curves were

obtained following the Euclidean algorithm.
3 Results

3.1 Comparison of microbial diversity
between serum samples from CRC patients
and the Control group

Figure 1 shows the box plots and the P-value for the comparison

of the five alpha diversity metrics (Observed OTUs, [a]; Chao1

index, [b]; Shannon index, [c]; Pielou’s evenness index, [d]; and

Simpson index, [e]), performed between CRC and Control serum

samples. As shown in the figure, no significant differences were

found between both groups for none of the parameters. On the

other hand, beta diversity was significantly different between both

groups according to the PERMANOVA and the ANOSIM tests (in

the two tests, P-value < 0.001 for both Bray-Curtis and Jaccard

indexes). This could suggest that while the overall diversity within

each sample (a-diversity) is similar, the composition and structure

of those communities (b-diversity) is distinct. Bidimensional PCoA

plots and P-value for both indexes are graphed in Figure 2, showing

that both populations constitute distinguishable clusters.
3.2 Taxonomic comparison between CRC
and control serum bacterial DNA

When analyzing the taxonomic composition of serum bacterial

DNA, both controls and CRC patients had marked differences

reaching bacterial phyla. As shown in Figure 3, the average RA of

the main bacterial phyla (grouped prevalence > 1%) (Figure 3A) was

visibly different between both groups. Serum samples from controls

had a clear preponderance of Proteobacteria and higher percentage

of Actinobacteriota, whereas CRC serum samples had a decreased

proportion of these phyla and increased presence of phyla

Firmicutes and Bacteroidota.

Moreover, the proportion between Firmicutes and Bacteroidota,

expressed through the Firmicutes to Bacteroidota (F/B) ratio of RA,

also changed between both groups. In controls, both phyla showed
frontiersin.org
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similar proportions (F/B ratio of 1.01), whereas in CRC patients a

preponderance of phylum Firmicutes was found (F/B ratio of 1.41).

The different composition of both populations could also be

noticeable for less abundant phyla (grouped prevalence < 1%)

(Figure 3B), with some phyla (such as Desulfobacterota, Spirochaetota

or Verrucomicrobiota) increased in CRC sera and others (like

Bdellovibrionota, Myxococcota or Acidobacteriota) increased in

control sera. Many of these observable differences were indeed

reflected by the LEfSe analysis (Figure 4), which reported a significant

increase in main phylum Proteobacteria, as well as in less abundant

phyla Bdellovibrionota, Myxococcota, Acidobacteriota,
Frontiers in Immunology 05
Planctomycetota, Chloroflexi, Abditibacteriota, Gemmatimonadota,

Dependentiae, Armatimonadota and WPS-2 in the serum from

controls. On their counterpart, CRC sera had increased levels of the

main bacterial phylum Firmicutes, and of less abundant phyla

Desulfobacterota, Spirochaetota, Verrucomicrobiota and Fibrobacterota.

We found that 37 genera were increased in CRC after adjusting for

confounders: Bifidobacterium, Enterorhabdus, Bacteroides,

Butyricimonas, Odoribacter, Muribaculaceae, Alloprevotella,

Prevotella, Alistipes, Parabacteroides, Catenibacterium, Holdemanella,

Turicibacter, RF39, Agathobacter, Anaerostipes, Blautia, Butyrivibrio,

Coprococcus, Dorea, Lachnospira, Marbinbryantia, Roseburia,
FIGURE 1

Alpha diversity comparison between serum samples from Colorectal Cancer (CRC) patients and controls. (a) Observed operational taxonomic units
(OTUs) (b) Chao1 index (c) Shannon index (d) Pielou’s evenness index (e) Simpson index. Median values with interquartile range and P-values for
Mann-Whitney U test are indicated. CRC n = 43 and controls n = 21.
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Butyricicoccus, Colidextribacter, Intestinimonas, Oscillibacter, CAG-352,

Faecalibacterium, Ruminococcus, Phascholarctobacterium,

Megamonas, Parasutterella, Esherichia-Shigella, Salmonella, Proteus,

Akkermansia. We continued to explore bacterial phyla instead of

genera as biomarkers to develop a simpler diagnostic panel,

considering the principle of parsimony, whereby if fewer variables

can explain similar data, the use of fewer variables is encouraged.

Bacterial phyla that were either increased or decreased in CRC

serum samples were tested for their predictive capability using

logistic regression (Tables 2, 3). After adjusting for confounders

related to age, gender and BMI of individuals in a multivariate

logistic regression, only Firmicutes and Verrucomicrobiota

maintained a clear predictive effect. Regarding phyla that were

decreased in CRC and increased in control serum samples (Table 3),

seven of them (Proteobacteria, Bdellovibrionota, Myxococcota,

Acidobacteriota, Planctomycetota, Armatimonadota and

Gemmatimonadota) still had a clear predictive capability after

adjusting for age, gender and BMI.

The diagnostic ability of the discriminative bacterial phyla between

CRC and control serum samples was further confirmed by the ROC

curves of their RA. Only taxa with a clear predictive effect of either CRC

presence (Figure 5) or no cancer presence (Figure 6) after adjusting for

age, gender and BMI were considered. The AUCwas acceptable (> 0.7)

for all the phyla, including Firmicutes with excellent AUC (> 0.8),

except Gemmatimonadota, which reported an AUC of 0.69.
3.3 Serum metabolome comparison
between CRC patients and controls

Untargeted metabolomics by GC-QTOF-MS reported 121

metabolites, from which 118 were identified compounds. When

the NPAs from the chromatogram of these metabolites were

compared between serum from CRC patients and serum from

control subjects, 27 of these metabolites were significantly
Frontiers in Immunology 06
different between both study groups, 16 reported as increased in

CRC serum (4-hydroxyphenylacetic acid, aspartic acid, benzoic

acid, citric acid, fructose, tagatose, galacturonic acid, glucuronic

acid, fucose, threonic acid, malic acid, m-cresol, ornithine, succinic

acid, trans-3-hydroxy-proline, xylose), and 11 as decreased (1,7-

dimethylxanthine, 2-ketoisocaproic acid, 4-hydroxybenzoic acid,

arachidonic acid, caffeine, lauric acid, linoleic acid, nicotinamide,

palmitoleic acid, pyruvic acid and tyrosine) with respect to sera

from controls. Figure 7 represents the log2 fold change (log2FC) of

abundance (NPA) of the 27 significantly increased and decreased

serum metabolites in the CRC versus control comparison, with the

P-values of the corresponding parametric or non-parametric tests.

After performing multivariate regression to adjust for age,

gender and BMI value (Table 4), only 4 of these metabolites (4-

hydroxyphenylacetic acid, threonic acid, malic acid and aspartic

acid) had a significant predictive capability. Of the metabolites

increased in the control group (Table 5) only 1,7-dimethylxanthine

was significant after adjusting for confounders.

As with bacterial phyla, the association between the abundances

of the serum metabolites and CRC was further reported by the ROC

curves, either for prediction of the CRC condition (Figure 8) or the

no cancer condition (Figure 9). Again, only the five metabolites

consistently incremented or diminished in CRC patients after

adjusting for age, gender and BMI were considered for analysis.

The optimal cut-off value for the NPA of each metabolite was

determined by the Cutoff Finder application using the Euclidean

algorithm. All the metabolites reported acceptable AUC values (>

0.7) when their performance was analyzed individually.
3.4 Integrative serum bacterial DNA-
metabolome panel for CRC detection

After evaluating the capability of serum bacterial DNA and

serum metabolites as predictive features for CRC by separate, both
FIGURE 2

Beta diversity comparison between serum samples from Colorectal Cancer (CRC) patients and controls. Principal Coordinates Analysis (PCoA) plots
based on Bray-Curtis and Jaccard indexes, and P-values for PERMANOVA and ANOSIM tests. CRC n = 43 and controls n = 21.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1562416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Vicente-Valor et al. 10.3389/fimmu.2025.1562416
types of data were combined in a proposed diagnostic panel for

CRC detection. Stepwise selection of variables was performed using

both the forward selection (Wald) and backward selection (Wald)

methods to select the variables that would fit better in a

prediction panel.

Input variables were bacterial phyla (RA) and metabolites (NPA)

which had shown a significant association with CRC after adjusting

for confounders: Firmicutes (RA), Verrucomicrobiota (RA),

Proteobacteria (RA), Bdellovibrionota (RA), Acidobacteriota (RA),

Planctomycetota (RA), Gemmatimonadota (RA), Armatimonadota

(RA), 4-hydroxyphenylacetic acid (NPA), aspartic acid (NPA),

threonic acid (NPA) and malic acid (NPA). Two variables,

Myxococcota (RA) and 1,7- dimethylxanthine (NPA), were

removed from the analysis as their predictive effect in the

population with both metagenomic and metabolome data did not

reach significance. The obtained models from both methods shared
Frontiers in Immunology 07
Firmicutes (RA), Planctomycetota (RA) and threonic acid (NPA) as

common variables. However, in the model obtained by the forward

selection method, only the variables Firmicutes (RA) and threonic

acid (NPA) maintained a significant predictive effect when

considered together, thus demonstrating no influence on each

other’s association with CRC presence. Given these results, a final

logistic regression model was obtained including only the variables

Firmicutes (RA) and threonic acid (NPA) (Table 6). The equation

obtained from this chosen model was used to calculate the probability

of CRC, or P(CRC), for the study individuals, and the optimal

threshold for this parameter was calculated by Cutoff Finder using

the Euclidean algorithm. As shown by the ROC curve (Figure 10), the

proposed panel had an outstanding diagnostic accuracy, with an

AUC value of 0.95, a sensibility of 94.1% and a specificity of 90%.

Additionally, P(CRC) was an independent risk factor for the

prediction of CRC status (Figure 11).
FIGURE 3

Proportion (relative abundances) of the bacterial phyla in serum samples from Colorectal Cancer (CRC) patients and controls. (a) Main bacterial phyla
(b) Less abundant bacterial phyla. CRC n = 43 and controls n = 21.
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4 Discussion

In this study we report a putative integrative panel of serum

bacterial DNA and metabolomics for the diagnosis of CRC. To our

knowledge, this is the first research that merges both types of data to

propose a diagnostic signature for CRC. The panel comprises two

features (relative abundance of phylum Firmicutes and normalized

threonic acid concentration), which enhances its attractiveness

compared to other larger panels.

Metagenomic analysis did not report any relevant differences in

the a-diversity indexes between the serum bacterial microbiome

from the CRC and the control groups, in contrast to previously

published studies. The b-diversity measures, on the contrary, were
Frontiers in Immunology 08
significantly different between both populations, in line with

previous data (15–17). Taxonomic analysis allowed us to detect 9

bacterial phyla with differential abundance in serum samples from

CRC patients with respect to those from control subjects (2 phyla

increased in CRC and 7 diminished), regardless of their age, gender

or BMI value. Firmicutes and Verrucomicrobiota were the two

differentially increased phyla in the CRC group, and Firmicutes was

the phylum selected as potential biomarker for CRC diagnosis in the

variable selection process. This phylum has been reported to be

increased in diverse samples from various cancer types (35) and was

identified as increased in the serum from 23 metastatic and non-

metastatic CRC patients with respect to their tissue samples (17).

Furthermore, in our study, the ratio of Firmicutes to Bacteroidota
FIGURE 4

Taxonomic comparison between serum samples from Colorectal Cancer (CRC) patients and controls. Linear discriminant analysis Effect Size (LEfSe)
analysis at the bacterial phylum level, with P-values for factorial Kruskal-Wallis test. CRC n = 43 and controls n = 21.
TABLE 2 Results from the logistic regression for the bacterial phyla increased in serum samples from Colorectal Cancer (CRC) patients with respect
to controls.

Bacterial phylum
Unadjusted* OR

(95%CI)
Unadjusted* p value Adjusted# OR (95%CI) Adjusted# p value

Firmicutes
1.189

(1.078-1.310)
< 0.001

1.190
(1.058-1.339)

0.004

Desulfobacterota
8.260

(1.244-54.828)
0.029

9.728
(0.938-100.942)

0.057

Spirochaetota
17.057

(0.593-490.400)
0.098

46.586
(0.401-5’414.529)

0.113

Verrucomicrobiota
127.715

(3.469-4’701.402)
0.008

98’302.064
(6.652-1.452E+9)

0.019

Fibrobacterota
325’700.324

(2.772-3.826E+10)
0.033

19’945.955
(0.868-4.583E+8)

0.053
CI, confidence interval; OR, Odds ratio; *Univariate regression analysis; #Multivariate regression analysis adjusting for age, gender and body mass index.
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abundance (F/B) was higher in CRC patients than in controls. The

F/B ratio, which is associated with dysbiosis, constitutes an accepted

relevant marker in the evaluation of the progression of metabolic

diseases, including obesity, fatty liver disease and type 2 diabetes

mellitus (36). Little is known about the implication of phylum
Frontiers in Immunology 09
Verrucomicrobiota in cancer, except for Akkermansia muciniphila,

which plays an important role as prognostic marker in patients

undergoing immunotherapy treatment. Moreover, a recent study

found increased Verrucomicrobiota in the feces from gastric cancer

patients (37).
TABLE 3 Results from the logistic regression for the bacterial phyla increased in serum samples from controls with respect to colorectal cancer
(CRC) patients.

Bacterial phylum
Unadjusted* OR

(95%CI)
Unadjusted* p value Adjusted# OR (95%CI) Adjusted# p value

Proteobacteria
0.927

(0.888-0.968)
< 0.001

0.927
(0.880-0.975)

0.003

Bdellovibrionota
0.076

(0.010-0.560)
0.011

0.036
(0.003-0.406)

0.007

Myxococcota
0.031

(0.003-0.296)
0.003

0.026
(0.001-0.613)

0.024

Acidobacteriota
0.017

(0.001-0.307)
0.006

0.004
(0-0.163)

0.024

Planctomycetota
0

(0-0.037)
0.001

0
(0-0.126)

0.014

Chloroflexi
0.072

(0.002-2.207)
0.132

0.014
(0-1.446)

0.071

Abditibacteriota
0

(0-2’589.776)
0.144

3’835.830
(0-1.219E+27)

0.765

Gemmatimonadota
0

(0-3.972)
0.083

0
(0-0.142)

0.025

Dependentiae
0

(0-0.139)
0.033

0
(0-24’927.971)

0.181

Armatimonadota
0

(0-0.005)
0.016

0
(0-0)

0.009

WPS-2
0

(0-47.357)
0.152

0
(0-2.073)

0.061
CI, confidence interval; OR, Odds ratio; *Univariate regression analysis; #Multivariate regression analysis adjusting for age, gender and body mass index.
FIGURE 5

Receiver Operating Characteristic (ROC) curves showing the independent diagnostic accuracy on our study population of the relative abundance
(RA) of the bacterial phyla increased in Colorectal Cancer (CRC) serum samples. AUC: area under the curve; Cutoff: RA threshold that better
distinguishes between both groups, calculated with the Cutoff Finder application using the Euclidean algorithm. Event condition: CRC.
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Blood has been reported to contain mostly Proteobacteria (18),

similarly to what we report here. According to our results, Firmicutes

was the second most abundant phylum followed by Bacteroidota and

Actinobacteria. In an article similar to ours, Pseudomonadota

(formerly Proteobacteria) was the most prevalent phylum in serum
Frontiers in Immunology 10
samples (17). However, in another investigation linking changes in

human serum microbiome with age and systemic inflammation,

Firmicutes emerged as the dominant phylum (11). The reasons for

this variability remain unclear, and it is yet to be determined whether

the observed increase in Firmicutes reflects tissue-level changes.
FIGURE 6

Receiver Operating Characteristic (ROC) curves showing the independent diagnostic accuracy on our study population of the relative abundance
(RA) of the bacterial phyla decreased in Colorectal Cancer (CRC) serum samples. AUC: area under the curve; Cutoff: RA threshold that better
distinguishes between both groups, calculated with the Cutoff Finder application using the Euclidean algorithm. Event condition: no cancer.
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TABLE 4 Results from the logistic regression for the abundance of metabolites increased in serum samples from colorectal cancer (CRC) patients
with respect to controls.

Metabolite
Unadjusted* OR

(95%CI)
Unadjusted* p value Adjusted# OR (95%CI) Adjusted# p value

4-Hydroxyphenylacetic acid
NS

(NS-1.992E+171)
0.029

NS
(2.469E+78-NS)

0.042

Aspartic acid
1.226E+80

(0.016-9.413E+161)
0.055

3.218E+122
(1.036E+12-9.996E+232)

0.030

Benzoic acid
2.139E+140

(905’555.447-5.053E+274)
0.041

1.698E+169
(0-NS)

0.084

Citric acid
6.586E+78

(3.093E+8-1.402E+149)
0.028

5.145E+90
(0-1.230E+192)

0.079

Fructose
2.183E+6

(34.965-1.363E+11)
0.010

92’262.080
(0.167-5.096E+10)

0.090

Tagatose
9.012E+56

(1.969E+10-4.124E+103)
0.017

1.467E+42
(0-1.373E+99)

0.147

Galacturonic acid
NS

(0-NS)
0.101

NS
(0-NS)

0.106

Glucuronic acid
NS

(0-NS)
0.090

NS
(0-NS)

0.073

Fucose
NS

(4.293E+28-NS)
0.035

2.897E+229
(0-NS)

0.360

Threonic acid
NS

(1.462E+166-NS)
0.005

NS
(1.460E+56-NS)

0.028

Malic acid
NS

(NS-NS)
0.003

NS
(NS-NS)

0.023

m-Cresol
8.588E+19

(79.541-9.271E+37)
0.030

4’097.679
(0-5.247E+23)

0.725

(Continued)
F
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FIGURE 7

Significantly differential metabolites between sera from Colorectal Cancer (CRC) patients and sera from controls. Bars represent the base 2 logarithm
of the CRC versus control fold change (FC) of the serum abundance for each metabolite. 1Mann-Whitney U test; 2Student’s t test.
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Various mechanisms could be considered to explain the

increase in Firmicutes in serum of CRC patients detected in our

study. One possibility is that the inflammatory state associated with

CRC (38) leads to a transient bacterial translocation (39). This

inflammation would trigger a compromise of the tight junction or

the uptake of microbial products by dendritic cells through the

intestinal barrier. If this was confirmed, Firmicutes could also be

used as serum biomarkers for other conditions such as

inflammatory bowel disease. Recently, it has also been suggested

that intestinal bacteria could be attracted from the intestine to the

serum in search of serum nutrients, a phenomenon called bacterial

vampirism (40).
Frontiers in Immunology 12
Several controversies arise from blood bacterial microbiome

studies. The main one is contamination, as serum constitutes a low

bacterial biomass sample. To overcome this problem, some

strategies need to be addressed, such as working in the best

aseptic conditions and including controls from sampling to

sequencing (41). In our work, samples were processed in

proximal time, decreasing divergence between batches, and

sample lectures were corrected by subtracting a mean signal

obtained from two blanks. Moreover, the detection of 16S rRNA

gene sequences in serum does not prove bacterial viability and is

more likely indicative of residual microbial DNA rather than living,

stable microbial communities. Thus, its detection may primarily
TABLE 5 Results from the logistic regression for the abundance of metabolites increased in serum samples from controls with respect to colorectal
cancer (CRC) patients.

Metabolite
Unadjusted* OR

(95%CI)
Unadjusted* p value Adjusted# OR (95%CI) Adjusted# p value

1,7-Dimethylxanthine
0

(0-0)
0.043

0
(0-0.135)

0.049

2-Ketoisocaproic acid
0

(0-52.514)
0.057

0
(0-198’231.243)

0.070

4-Hydroxybenzoic acid
0

(0-0)
0.005

0
(0-7.331E+184)

0.149

Arachidonic acid
0

(0-0)
0.015

0
(0-4.239E+23)

0.248

Caffeine
0

(0-0)
0.050

0
(0-1.307E+16)

0.293

Lauric acid
0

(0-0)
0.021

3.891E+139
(0-NS)

0.552

Linoleic acid
0

(0-0)
0.012

0
(0-1.841E+86)

0.166

Nicotinamide
0

(0-0)
0.036

0
(0-NS)

0.623

Palmitoleic acid
0

(0-0)
0.009

0
(0-1.804E+131)

0.246

Pyruvic acid
0

(0-0.227)
0.034

0
(0-911’309.702)

0.381

Tyrosine
0

(0-0.396)
0.040

0
(0-1.994E+6)

0.368
CI, confidence interval; NS, non estimable; OR, Odds ratio; *Univariate regression analysis; #Multivariate regression analysis adjusting for age, gender and body mass index.
TABLE 4 Continued

Metabolite
Unadjusted* OR

(95%CI)
Unadjusted* p value Adjusted# OR (95%CI) Adjusted# p value

Ornithine
5.161E+18

(4.636-5.745E+36)
0.042

2.045E+20
(0-1.425E+44)

0.095

Succinic acid
1.234E+16

(0-1.531E+67)
0.537

1.351E+52
(0.008-2.399E+106)

0.060

Trans-3-hydroxy-proline
1.558E+11

(0-1.625E+38)
0.417

1.870E+19
(0-2.728E+53)

0.269

Xylose
1.725E+139

(1.822E+22-1.633E+256)
0.020

2.543E+80
(0-2.609E+224)

0.274
CI, confidence interval; NS, non estimable; OR, Odds ratio; *Univariate regression analysis; #Multivariate regression analysis adjusting for age, gender and body mass index.
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reflect the translocation of bacterial DNA from other body

locations, as previously suggested (19).

Regarding metabolomics data, we found 5 differentially

distributed metabolites in the serum of CRC patients and in the

control group, regardless of age, gender and BMI differences.

Threonic acid remained as the metabolite that could potentially

behave as diagnostic biomarker, together with the abundance of

Firmicutes. This compound is a normal component of aqueous

humor and blood (42). L-threonic isomer is a metabolite of ascorbic

acid (vitamin C), related to ascorbate and aldarate metabolism. In

addition to originating from the degradation of ascorbic acid, it also

derives from threose and glycated proteins. Its circulating levels are

influenced by diet and vitamin supplement intake (43).

The increase in threonic acid concentration in serum from CRC

patients could derive from the threonate generated in vitamin C

catabolism caused by oxidative conditions (44). Additionally, blood

threonate has been previously associated with two microbial

pathways involved in methanogenesis (45). Methan has been
Frontiers in Immunology 13
linked to colorectal carcinogenesis (46, 47), although not

consistently (48). However, other authors have found decreased

concentration of threonate in serum from CRC patients compared

to healthy controls (49). It would be interesting to assess the

contribution of diet to this variability in additional studies.

In our study we demonstrated that combining both

metagenomics and metabolomics data could improve diagnostic

accuracy. Thus, AUC went from 0.85 when considering isolated

Firmicutes, or 0.78 for isolated threonic acid, to 0.95 for the

combined panel. Many approaches can be made to combine data

from different omics.

In this work, we used relative abundance for microbial

metagenomics and normalized peak area for metabolomics

through a logistic regression equation. Our work reinforces that

the multiomics perspective can provide a more accurate status for

both diagnosis and prognosis of CRC assessment (50, 51). Several

genetic mutations are being used to assess patient management, but

this could be completed with a comprehensive approach of other
FIGURE 8

Receiver Operating Characteristic (ROC) curves showing the independent diagnostic accuracy on our study population of the abundance
(normalized peak area) of the increased metabolites in Colorectal Cancer (CRC) serum samples. AUC, area under the curve; Cutoff: RA threshold
that better distinguishes between both groups, calculated with the Cutoff Finder application using the Euclidean algorithm. Event condition: CRC.
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prognostic factors (52). The combination of multiomics and clinical

features may provide a more thorough focus for discovering new

therapeutic targets and novel alterations at the molecular level (53).

According to our results, serum Firmicutes and threonic acid

were the most relevant features that could help differentiate CRC

patients from the control group, with an excellent performance in

this cohort (AUC = 0.95). However, our work presents several

pitfalls. First, our population is modest in size, as we accounted for

64 serum samples in total, which could limit drawing firm

conclusions about human microbiota variability. Secondly,

significant differences in age and both gender and BMI

distribution were noticeable between both study groups. These

limitations were a consequence inherent to the type of population
Frontiers in Immunology 14
being operated on CRC and this aspect was controlled using

multivariate regression techniques to mitigate the effect of

potential confounders. Moreover, microbial findings in blood

remain controversial, although some strategies to avoid bias were

implemented, such as performing the analysis in a nearby time

frame and subtracting a blank signal. Finally, considering that

metabolomics could be strongly influenced by lifestyle variations

in the landscape of blood extraction, metabolomic variation cannot
FIGURE 9

Receiver Operating Characteristic (ROC) curve showing the
independent diagnostic accuracy on our study population of the
abundance (normalized peak area) of 1,7-dimethylxanthine, a
decreased metabolite in Colorectal Cancer (CRC) serum samples.
AUC: area under the curve; Cutoff: RA threshold that better
distinguishes between both groups, calculated with the Cutoff
Finder application using the Euclidean algorithm. Event condition:
no cancer.
TABLE 6 Logistic regression model showing the candidate serum
variables in the final proposed panel for Colorectal Cancer
(CRC) prediction.

Variables
included

b SE Wald DF
p

value
OR

(95% CI)

Firmicutes
(RA)

0.249 0.081 9.569 1 0.002
1.283
(1.096-
1.502)

Threonic
acid (NPA)

2572.395 840.242 9.373 1 0.002
NS

(NS-NS)

Constant
value

-11.207 3.422 10.724 1 0.001
0

(NS-NS)
b, logistic regression coefficient; CI, confidence Interval; DF, degree of freedom; NPA,
normalized peak area; NS, non estimable; OR, Odds ratio; RA, relative abundance; SE,
standard error; Wald, Wald’s test parameter.
FIGURE 10

Receiver Operating Characteristic (ROC) curve showing the
diagnostic accuracy for Colorectal Cancer (CRC) of the proposed
panel combining relative abundance (RA) of bacterial phyla and
metabolite abundance (normalized peak area) in serum samples
from the study population. AUC: area under the curve; Cutoff:
threshold of the probability (P) obtained by the logistic regression
equation that better distinguishes both groups, calculated with the
Cutoff Finder application using the Euclidean method. Event
condition: CRC.
FIGURE 11

Forest plot representing the risk of Colorectal Cancer (CRC) for
several variables considered together in a logistic regression model.
P_CRC: CRC probability, calculated using the logistic regression
equation for the proposed predictive panel. BMI: body mass index.
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be attributed solely to differences due to cancer occurrence. Overall,

even if these results should be validated in other cohorts through

multicenter studies, we consider that the findings could be relevant

and applicable to the early diagnosis of colorectal cancer.
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34. Budczies J, Klauschen F, Sinn BV, Győrffy B, Schmitt WD, Darb-Esfahani S, et al.
Cutoff Finder: a comprehensive and straightforward web application enabling rapid
biomarker cutoff optimization. PloS One. (2012) 7:e51862. doi: 10.1371/
journal.pone.0051862

35. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review.
Antonie Van Leeuwenhoek. (2020) 113:2019–40. doi: 10.1007/s10482-020-01474-7

36. Song X, Zhang X, Ma C, Hu X, Chen F. Rediscovering the nutrition of whole
foods: the emerging role of gut microbiota. Curr Opin Food Sci. (2022) 48:100908.
doi: 10.1016/j.cofs.2022.100908

37. Nath AR, Natarajan J. Gut metagenomic analysis of gastric cancer patients reveals
Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-
invasive biomarkers. Genomics Inform. (2024) 22:1. doi: 10.1186/s44342-024-00001-8

38. Candela M, Turroni S, Biagi E, Carbonero F, Rampelli S, Fiorentini C, et al.
Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J
Gastroenterol. (2014) 20:908–22. doi: 10.3748/wjg.v20.i4.908

39. Goraya MU, Li R, Mannan A, Gu L, Deng H, Wang G. Human circulating
bacteria and dysbiosis in non-infectious diseases. Front Cell Infect Microbiol. (2022)
12:932702. doi: 10.3389/fcimb.2022.932702

40. Glenn SJ, Gentry-Lear Z, Shavlik M, Harms MJ, Asaki TJ, Baylink A. Bacterial
vampirism mediated through taxis to serum. Elife. (2024) 12:RP93178. doi: 10.7554/
eLife.93178

41. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS.
Contamination in low microbial biomass microbiome studies: issues and
recommendations. Trends Microbiol. (2019) 27:105–17. doi: 10.1016/j.tim.2018.11.003

42. Harding JJ, Hassett PC, Rixon KC, Bron AJ, Harvey DJ. Sugars including
erythronic and threonic acids in human aqueous humor. Curr Eye Res. (1999)
19:131–6. doi: 10.1076/ceyr.19.2.131.5334

43. Guertin KA, Moore SC, Sampson JN, Huang W-Y, Xiao Q, Stolzenberg-Solomon
RZ, et al. Metabolomics in nutritional epidemiology: identifying metabolites associated
with diet and quantifying their potential to uncover diet-disease relations in populations.
Am J Clin Nutr. (2014) 100:208–17. doi: 10.3945/ajcn.113.078758

44. Hernandez-Baixauli J, Puigbò P, Abasolo N, Palacios-Jordan H, Foguet-Romero
E, Suñol D, et al. Alterations in metabolome and microbiome associated with an early
stress stage in male wistar rats: a multi-omics approach. Int J Mol Sci. (2021) 22:12931.
doi: 10.3390/ijms222312931

45. Illiano P, Brambilla R, Parolini C. The mutual interplay of gut microbiota, diet
and human disease. FEBS J. (2020) 287:833–55. doi: 10.1111/febs.15217
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