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Antibodies are important for protection against malaria. For optimal protective 
activity, it is thought that antibodies need to have high affinity. A longitudinal 
study conducted in Uganda followed newborn infants and their mothers for nine 
months. The study found that antibody affinity (here measured as dissociation 
rate constant, kd) against the merozoite antigens AMA1 and MSP2 decreased 
from birth to six months in the infants, then gradually increased to 9 months, but 
not reaching the level observed in the mothers. In contrast, affinity against the 
sporozoite antigen CSP, did not change throughout the study period. Among 
mothers, no significant changes in antibody affinity were observed for any 
antigen, which is consistent with expectations for adults in an endemic area. 
Comparing specific antibody affinities to total antibody levels revealed almost no 
correlations, indicating that antibody magnitude and affinity evolve differently 
during immune development. Significant correlations were observed between 
antibody affinities and some atypical memory B cells. In conclusion, our study 
shows that development of naturally acquired slowly dissociating (high affinity) 
antibodies against malaria can evolve separately across different antigens. This is 
important information for future vaccine development studies. 
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Introduction 

Malaria remains a major global health challenge, causing 
significant morbidity and mortality. In 2023, an estimated 263 
million malaria cases and 597,000 deaths were reported globally 
(1). Despite progress in reducing malaria incidence and mortality, 
challenges such as drug resistance, limited vaccine efficacy, and 
healthcare access persist, underscoring the need for continued 
innovations and investments (1). 

Naturally-acquired immunity against malaria develops slowly 
and typically requires repeated exposure (2). While the precise 
mechanisms underlying the immunological responses are not fully 
understood, antibodies play a crucial role in mitigating clinical P. 
falciparum malaria. Studies as early as the 1960s demonstrated 
reduced parasitemia and clinical symptoms following the passive 
transfer of immunoglobulins from immune donors to infected 
individuals (3, 4). Antibodies targeting merozoite proteins, such 
as Merozoite Surface Protein 2 (MSP2) and Apical Membrane 
Antigen 1 (AMA1), or surface antigens on infected red blood 
cells, are integral to acquired immunity against malaria and are 
potential antigen candidates for vaccine development (5–10). 

MSP2 is a 25–30 kDa protein (11) abundantly expressed on the 
surface of merozoites, playing a key role in red blood cell invasion (12). 
Both vaccine-induced and naturally acquired antibodies targeting 
MSP2 are strain-specific and  protective  (13, 14). These antibodies 
can mediate complement fixation to inhibit invasion (15) and promote 
opsonic phagocytosis (16). Similarly, AMA1 (82 kDa) is expressed on 
both sporozoites and on merozoites (17), with antibodies against it 
impacting the invasion of hepatocytes and erythrocytes (18, 19). The 
circumsporozoite protein (CSP) is the most abundant protein on the 
surface of the Plasmodium sporozoites and serves as the antigenic 
target of the RTS,S and R21 vaccines, which are recommended by 
WHO for implementation (1). However, the long-term efficacy of these 
vaccines still requires improvement (20–31). Antibodies to CSP can 
promote complement fixation, enhance opsonic phagocytosis and 
inhibit invasion by sporozoites (32–34). 

Developing more efficacious vaccines requires a deeper 
understanding of the factors limiting their current efficacy. One 
significant challenge is the lack of an in vitro immunologic 
correlate of protection against malaria infection and disease (35). 
Understanding the development of both humoral and cellular 
immunity is crucial for designing effective malaria vaccines. Mere 
presence of antibodies does not suffice for immunity against malaria; 
the quality of the antibodies is equally essential (36). High-affinity 
antibodies, produced through effective priming by antigens or 
vaccines, mark the maturation of specific B cell clones (37). The 
generation of these high-affinity antibodies depends on repeated 
malaria exposure and clinical manifestations of the disease (38, 39). 

Various methods have been used to evaluate antibody affinity. 
For example, an urea-based Enzyme-Linked Immunosorbent Assay 
(ELISA) has shown that individuals with complicated malaria has 
lower-affinity antibodies compared to those with asymptomatic or 
uncomplicated malaria (39). High-affinity antibodies targeting the 
parasite antigen VAR2CSA have been associated with reduced 
placental malaria (40). On the contrary, other studies have found 
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no correlation between the affinity of antibodies against specific 
blood-stage malaria antigens and clinical protection (41–43). Of 
recent, high-affinity antibodies against the CSP N-terminal domain 
were found to fail in inhibiting P. falciparum activity (44). 

These inconsistencies may be attributed to inadequacies in the 
methods used, or structural variations in the antigens studied (38). In 
previous work, we demonstrated that ELISA-based avidity assays 
strongly correlated with standard ELISA results but provided limited 
additional information for our antigens. This prompted us to explore 
alternative methods (45). Surface Plasmon Resonance (SPR) has been 
recommended for assessing vaccine efficacy in various diseases (46) 
and has shown promise in malaria research, demonstrating 
correlations between high-affinity antibodies and both malaria 
protection (45) and with invasion-inhibitory functions (38). 

While numerous studies have explored antibody affinity against 
potential malaria antigen candidates for vaccine development, few 
have investigated how antibody affinity develops over extended 
periods in early infancy, particularly in comparison to maternal 
antibodies, This study aimed to evaluate the dissociation rate 
constant, kd (which correlates with affinity) of naturally acquired 
antibodies targeting key immune and vaccine antigens - AMA1, 
MSP2 and CSP. We conducted a longitudinal study in Uganda, 
analyzing samples collected from infants at birth and at 2.5, 6, and 9 
months of age using SPR. Additionally, we compared antibody 
dissociation rate constants between mothers and infants, correlating 
the results with total antibody levels and the presence of different B 
cell subsets. 
Materials and methods 

Samples 

Samples from 68 mother-infant pairs were randomly selected 
from a previously described cohort (47). Briefly, plasma samples 
were collected from mothers and babies in a malaria endemic area 
20 km northeast of Kampala in Uganda, at the antenatal center at 
Kasangati Health Centre. In brief, blood was collected in lithium 
heparin vacutainer tubes and plasma was  separated after

centrifugation at room temperature, then the plasma samples 
were stored at -80°C. In this study area, malaria is meso-endemic 
with peak transmission after the two rainy seasons (February– 
March and September–October) every year, with an estimated 
malaria prevalence of 13% in children (48). Eligibility criteria 
were normal deliveries with healthy newborns and agreement to 
attend follow-up visits at 2.5, 6 and 9 months of the child’s age. Each 
pregnant woman received at least one dose of intermittent 
preventive treatment and was provided with a long-lasting 
insecticide-treated bed net. Detailed clinical examinations were 
conducted at recruitment and during follow-up visits, with data 
entered into the study questionnaire. Malaria rapid diagnostic tests 
(RDTs) were performed on all samples, and blood smear 
examinations were done upon a positive RDT. None of the 
individuals exhibited signs of severe infection during recruitment 
or sampling. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1562671
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lugaajju et al. 10.3389/fimmu.2025.1562671 
Surface plasmon resonance 

The SPR dissociation rate constant measurements were 
performed using a Biacore 3000 instrument, (GE Healthcare Life 
sciences, Uppsala) as described before (45). Briefly, CM5 sensor 
chips (Pharmacia biosensor AB, Uppsala Sweden) were activated by 
using an amine coupling kit (GE Healthcare Bio-Sciences AB, 
Uppsala Sweden) using an injection pulse (10 min, 5 µL/min). 
The AMA1, MSP2 and CSP recombinant proteins were 
immobilized using a manual injection of 100 µg/mL in coating 
buffer (0.01 M sodium acetate buffer, pH 4.0) until the desired 
response units were achieved. The unoccupied activated sites were 
blocked by ethanolamine. All steps were carried out in a continuous 
flow of HBS-EP (10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 
0.005% polysorbate 20) running buffer at 5 µL/min. The residual 
antibodies that could remain attached to the immobilized antigens 
after measurement of kd were removed by washing with 10 mM 
glycine-HCl (pH 1.5) for 5 seconds at 5 µL/min to regenerate the 
surface before injection of the next plasma sample. An internal 
control, which was a pool of Ugandan adult (presumably immune) 
samples, was injected after a complete set of mother-baby pair 
samples (equal to 6 plasma samples) to test the stability of the 
immobilized protein and the reproducibility of the assay. The 
background level was determined by Swedish non-immune 
plasma and all the samples considered in the subsequent analysis 
were above the background level. The response was monitored as a 
function of time (sensogram) at 25 °C. The intra-assay coefficient of 
variation (CV), based on repeat measurements of the same sample 
within a single run, varied between 4-6% for the different antigens. 
The inter-assay CV, calculated from measurements across different 
days and chips, was below 5% for all three antigens. The 
BIAevaluation 4.1 software was used to fit a single exponential 
decay to the data to estimate the kd values. AMA1 and CSP were 
expressed in HEK293 cells with a his-tag and purified using nickel 
columns (49–51). MSP2 was expressed in E. coli and purified as 
described (52). 
ELISA 

ELISA was performed as described before, using schizont 
extract from P. falciparum cultures (47). In brief, microtiter plates 
were prepared by coating with schizont extract, blocking with 5% 
skimmed milk (Sigma) for the IgG assay and super block dry blend 
(Thermo Scientific) for the IgM assay. Plates were then incubated 
with peroxidase-conjugated goat anti-human IgG or IgM antibodies 
(Sigma). Antibody binding was detected using TMB (3,3′,5,5′-
Tetramethylbenzidine) substrate (Promega), and the optical 
density (OD) was measured at 450 nm. 
Flow cytometry of CD19+ B-cells 

Studies of different populations of total and P. falciparum-positive 
B-cells was performed as described before (47). Subpopulations of cells 
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were determined: total/Pf+ IgG memory B-cells (MBC) (IgG+ MBC) 
[ C D 1 9 + C D 2 0  + C D 2 7  + I g G  + ) ,  n o n - I g G +  M B C  
( C D 1 9  + C D 2 0  + C D 2 7 + I g G  − ) ,  a t y p i c a l  M B C  
(CD19+CD20+CD27−IgG+), naïve B-cells (CD19+CD20+CD27−IgG−) 
and plasma cells/blasts (CD19+CD20−CD27+IgG−). 
Statistical analysis 

Continuous variables were presented as medians with 
interquartile ranges or estimated means with corresponding 
confidence intervals. To account for the repeated measurements, 
linear mixed models were employed to model how each protein 
changed over time with a first-order autoregressive covariance 
structure, considering individuals as a random effect. Correlations 
between protein levels at each time point were analyzed using 
Spearman’s correlation for each time point, separately for mothers 
and infants. False discovery rate adjustments were applied to correct 
for multiple comparisons. Antibody dissociation rate constants 
between groups were compared using non-parametric Mann-

Whitney U Test. For multiple group and antigen comparisons, 
Kruskal-Wallis was employed. Two-sided p-values were calculated 
for all tests, with p < 0.05 considered statistically significant. All 
analyses were performed using R (v. 4.1.2) or GraphPad Prism, 
version 10 (GraphPad Software Inc., San Diego, CA, USA). 
Results 

Estimating antibody affinity through 
dissociation rate constant measurements 

We used SPR to quantify the dissociation rate constant (kd) of  
antibody binding to immobilized antigens. We have previously 
evaluated this method for estimating affinity differences of 
polyclonal antibodies in human serum and confirmed the 
reproducibility of the method (45, 53). Three targets of acquired 
immunity and potential malaria antigen candidates for vaccine 
development, including two merozoite antigens (AMA1, MSP2) 
and one sporozoite protein (CSP), were immobilized through amine 
coupling to SPR senor chips. The dissociation rate constant (kd) for 
the complexes between antibody and these antigens in the 
individual mother-baby pair plasma samples was used to estimate 
the affinity. Plasma dilutions of 1:15 and 1:30 were used and it was 
found that the kd values were independent of the plasma 
concentration, as expected. A pool of plasma samples from a 
malaria endemic area was used regularly as an internal control to 
test the stability of the antigens on the sensor chip, and it was found 
that the kd values were not dependent on protein loss over time. 
Total anti P. falciparum IgG and IgM 

Antibody levels against P. falciparum were analyzed in all 
participants, as previously reported (47, 54). In this study, we re-
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evaluated the data using linear mixed models to assess the 
development of total anti-P. falciparum IgG and IgM in infants. 
As expected, infants exhibited high levels of anti-P. falciparum IgG 
levels at birth, which declined by 2.5 months and then stabilized 
over the next 9 months after birth. In contrast, anti-P. falciparum 
IgM levels increased gradually from 6 months onwards, reflecting 
the infants’ subsequent exposure to malaria. Among mothers, no 
significant differences in anti-P. falciparum IgG or IgM levels were 
observed between the two time points. 
Development of high affinity antibodies 
during infancy 

We conducted a linear mixed model to assess the changes in 
antibody affinities against specific malaria antigens in infants at 
various time points from birth until 9 months of age. The estimated 
means of dissociation rate constants for antibodies targeting AMA1 
and MSP2 significantly increased from birth to six months, then 
decreased by nine months (Figure 1A). However, the estimated 
means of antibody dissociation rate constants for CSP did not show 
significant changes over the 9 months (Figure 1A). 
Stable affinity in the mothers 

The estimated means of antibody dissociation rate constants in 
the mothers for the antigens AMA1, MSP2 and CSP were the same 
at delivery and nine months postpartum (Figure 1B). 
Higher antibody affinity in mothers 
compared to infants 

We compared the antibody dissociation rate constants of 
mothers at delivery and nine months postpartum with those of 
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their infants at the same time points. At both time points, mothers 
exhibited significantly lower median of kd (indicating higher 
affinity) for all three antigens AMA1, MSP2, and CSP compared 
to their infants, except for AMA1 at delivery, where no significant 
difference was observed (Figures 2A–C). 
Difference in antibody affinity between 
antigens 

To investigate differences in antibody dissociation rate 
constants among the three tested antigens, we compared median 
dissociation rate constants to AMA1, MSP2, and CSP in both 
infants and  mothers throughout the  study  period (Figures 3A–F). 
At birth and up to 2.5 months, infants exhibited significantly 
slower dissociation for AMA1 compared to MSP2 and CSP. By 6 
and 9 months of age, no significant difference was observed 
between the dissociation rate constants for AMA1 and CSP, 
while MSP2 showed the highest dissociation rate constant 
(lowest affinity). For mothers, both at delivery and nine months 
postpartum, we observed similar patterns as for the infants, with 
significantly lower median kd values for AMA1 compared to 
MSP2 and CSP (Figures 3E, F). 
Relationship between antibody affinity and 
total levels of anti-P. falciparum IgG and 
IgM 

We compared the antibody dissociation rate constant for the 
tested antigens with total levels of P. falciparum IgG and IgM 
(Figure 4). No significant correlations were observed between 
antibody dissociation rate constants and total IgG or IgM at any 
time point, except for a negative correlation between CSP 
dissociation rate constant and P. falciparum IgM in infants at 9 
months of age (rho= -0.47, p < 0.0001). 
FIGURE 1 

Overview of development of high affinity antibodies during infancy and in mothers. Graphs illustrate estimated means of antibody dissociation rate 
constants (kd) for MSP2, CSP and AMA1 during (A) infancy (at birth, 2.5, 6 and 9 months) and (B) in mothers (at delivery and after 9 months). Lower kd 

values indicate higher antibody affinity. *** indicates significant at P < 0.001, analyzed by linear mixed models. 
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Correlation between antibody affinity and 
total CD19-positive B cell and various P. 
falciparum specific B cells 

We previously quantified levels of total CD19-positive B cells and 
P. falciparum specific (Pf+) B cell subsets in this cohort (47). In this 
study we performed a statistical reanalysis to investigate correlations 
between antibody dissociation rate constant and various Pf+ B cell  
subsets, namely, Pf+ IgG MBC, Pf+ non-IgG+ MBC, Pf+ atypical 
MBC, Pf+ naïve B-cells and Pf+ plasma cells/blasts. Our analysis 
revealed correlations between antibody dissociation rate constant for 
MSP2 and atypical memory B cells (MBCs) in infants at 9 months 
(rho = -0.36, p = 0.042) (Figure 5A). Additionally, in mothers 9 
months postpartum, there were correlations between AMA1 and 
non-IgG MBCs (rho = 0.39, p = 0.024), as well as between AMA1 and 
Pf+ atypical MBCs (rho = -0.4, p = 0.02 (Figure 5B). 
Discussion 

In this study, we investigated the development of antibody affinity 
against three antigen candidates for vaccine development: MSP2, 
AMA1 and CSP through measurements of dissociation rate 
Frontiers in Immunology 05 
constants. Our results show that antibodies targeting AMA1 
exhibited the slowest dissociation,  followed by CSP  and then MSP2.

This finding aligns with previous research indicating that antibodies 
from residents in malaria-endemic areas tend to develop higher affinity 
antibodies to AMA1 compared to MSP2 (45, 55). In vaccine trials, it 
has also been shown that maintaining high affinity antibodies against 
MSP2 over time can be challenging (53). Moreover, the kd values for 
AMA1 observed in our study were comparable to those of monoclonal 
antibodies generated from B cells of a donor living in an endemic area 
(56). The slower dissociation observed for AMA1 may be due to its 
structural stability, which is attributed to multiple intramolecular 
disulphide bonds linking its globular domains (57, 58). 

In contrast, MSP2, is considered an unstructured protein, which 
likely contributes to its lower stability. MSP2 has been evaluated in a 
vaccine trial called Combination B, which included recombinant 
P. falciparum ring-infected erythrocyte surface antigen alongside 
MSP1 and MSP2. This trial demonstrated a reduction in parasite 
density and showed that the vaccine exerted selective pressure on 
infecting P. falciparum strains (59). A phase 1 trial for the MSP2-C1 
vaccine, containing recombinant forms of both msp2 alleles families 
(3D7 and FC27), found that MSP2-specific antibodies did not directly 
inhibit parasite growth in vitro. Instead, these antibodies acted via 
antibody-dependent cellular inhibition (ADCI) to inhibit parasite 
FIGURE 2 

Comparative analysis of antibody dissociation rate constant (kd) for MSP2, AMA1 and CSP in infants and mothers. Box plots comparing the median kd 

of antibodies targeting the antigens (A) MSP2, (B) AMA1 and (C) CSP between mothers at delivery and nine months postpartum, and their infants at 
birth and nine months. Box plots represent interquartile range (IQR), whiskers the range and horizontal lines the median; **, ***, **** indicate 
significant differences (p < 0.01, 0.001, < 0.0001, respectively), and ns (p ≥ 0.05) indicates not significant tested by the Mann-Whitney U test. 
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growth (60), as well as activated complement on the merozoite surface 
and promoted opsonic phagocytosis (15, 16). Similarly, human anti-
AMA1 antibodies have been shown to inhibit P. falciparum in vitro 
(56). A field trial using the FMP2.1/AS02 (A) vaccine, which contains 
AMA1 from the 3D7 strain of P. falciparum, did not provide significant 
protection against clinical malaria but exhibited evidence of strain-
specific efficacy (61). These findings suggest that AMA1 could be a 
valuable component of a multi-component vaccine. We did not 
Frontiers in Immunology 06
observe strong correlations between total levels of anti-P. falciparum 
antibodies and the specific dissociation rate constants measured. This 
lack of correlation may reflect insufficient levels of individual specific 
antibodies, or that the antibody levels evolved differently compared to 
antibody affinities. 

Our study aimed to assess the development of antibody affinity 
during infancy and compare it with that of mothers. We measured 
the dissociation rate constant (kd) of antibody binding to 
FIGURE 3 

Comparison of antibody dissociation rate constants for AMA1, MSP2, and CSP in infants and mothers. Box plots illustrate the median antibody 
affinities (kd) against AMA1, MSP2, and CSP in infants at (A) birth, (B) 2.5 months, (C) 6 months, (D) 9 months, and in mothers at (E) delivery and (F) 9 
months postpartum. Box plots represent interquartile range (IQR), whiskers the range, and horizontal lines represent the median; *,**, ***, and **** 
indicate significant differences (p < 0.05, 0.01, 0.001, and 0.0001, respectively) tested by Kruskal-Wallis test. 
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immobilized antigens because kd is independent of concentration and 
reliable values are more easily accessible than affinity, which requires 
precise knowledge of plasma concentrations for accurate 
quantification. Moreover, the lifetime of the antigen-antibody 
complex, i.e. the inverse of the dissociation rate constant, may be 
the determinant of function. In infants, we observed a significant 
increase in antibody dissociation rate from AMA1 and MSP2 from 
birth to six months, likely due to the gradual waning of maternal IgG 
antibodies transferred transplacentally (62, 63). This aligns with 
previous findings showing that maternal antibodies against malaria 
typically wane within the first 3 to 6 months of life (64–66). After six 
Frontiers in Immunology 07 
months, antibody dissociation rate constants to AMA1 and MSP2 
decreased, probably as a result of exposure to malaria parasites in this 
endemic area. Concurrently, overall antibody levels also increased. 
Previous studies have demonstrated that malaria exposure enhances 
antibody affinities to AMA1 and MSP2 (38, 39), in line with the 
exposure-dependent nature of malaria immunity (14, 67). 

In mothers, antibody dissociation rates from AMA1 and MSP2 
were lower than those observed in infants and were the same at 
delivery and nine months postpartum. This stability reflects the well-
documented phenomenon in endemic regions where repeated 
malaria exposures lead to a plateau in antibody affinity among 
FIGURE 4 

Relationship between antibody dissociation rate constant and ELISA-determined antibody levels. In infants there was (A) a significant correlation 
between antibody level and dissociation rate constant only for IgM and CSP at 9 months, but not for any other tested correlations: (B) IgG and CSP, 
(C) IgM and AMA1, (D) IgG and AMA1, (E) IgM and MSP2 and (F) IgG and MSP2. Coefficient of correlation, rho, and P values were calculated using 
Spearman’s correlation test. **** significant at P < 0.0001. 
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adults. Interestingly, significant differences in antibody dissociation 
rate constants between mothers and infants at birth were observed for 
MSP2 and CSP, with a non-significant trend for AMA1. Mothers 
exhibited lower dissociation rate constants (higher affinities), 
suggesting that transplacental transfer does not preferentially 
transfer the highest affinity antibodies. This difference may be 
explained by the fact that infants only receive IgG through 
transplacental transfer, whereas maternal samples contain both IgG 
and IgM. Anti-malarial IgM could exhibit higher affinity than IgG 
(68), this difference may reflect the absence of IgM in infants. 

Previous studies have shown that high-avidity antibodies for 
antigens such as tetanus toxoid and type 3 pneumococcal antigen are 
preferentially transferred through the placenta. This selectivity may 
depend on the antigen rather than the degree of antigenic exposure 
(69). Similarly, a study on pertussis toxin antibodies confirmed 
preferential placental transfer of high-avidity antibodies but noted 
decreased transfer in HIV-positive mothers (70). In our cohort, none 
of the mothers were HIV-positive. Additionally, the transplacental 
transfer of IgG3 has been associated with a reduced risk of clinical 
malaria (71, 72). However, preferential transfer generally follows the 
order: IgG1 >IgG4 >IgG3 >IgG2 (73). This raises the possibility that 
high-affinity antibodies for MSP2 and CSP may belong to subclasses 
that are less efficiently transferred. Selective transfer mechanisms or 
other unknown factors may influence the quality and subclass 
distribution of antibodies passed from mother to infant. To help 
elucidate the affinity and functional relevance of antibodies, IgG 
subclass-specific affinity assays could be performed, which would 
include functional assays such as opsonic phagocytosis and parasite 
growth inhibition to link affinity maturation to protective efficacy. 
Previous studies have shown that high-affinity antibodies against 
AMA1 and MSP2 correlate with greater opsonic and inhibitory 
activity (15, 74). Even though we did not include such assays in 
this study, our findings provide a basis for future research to 
investigate whether the observed affinity profiles, particularly for 
AMA1 and MSP2, translate into functional protection. 
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In comparison to the observed changes in antibody dissociation 
rate constants for AMA1 and MSP2 in infants during the 9 months 
study, no significant changes in antibody dissociation rate constant 
for CSP were observed, either in infants or in adults. Previous 
research has shown that most natural antibody responses to CSP 
target the central NANP repeat region (28, 75–77), which is 
intrinsically disordered (78) and tends to elicit low affinity 
antibodies (79), as well as the C-terminal region (80). Moreover, 
earlier studies have highlighted challenges in maintaining a robust 
response for CSP over time and in achieving high efficacy (81–83). 
We speculate that the difficulty in inducing high-affinity antibodies 
may contribute to CSP’s modest success as a vaccine candidate. 
Even in mothers, antibodies against CSP showed higher 
dissociation rate constant (lower affinity) compared to AMA1, 
although they were similar to those against MSP2. This suggests 
that the structural characteristics of CSP may be of importance 
when selecting and combining antigens for optimal vaccine design. 

Despite variations in antibody affinities for different antigens, 
the responses in mothers remained the same at the time of delivery 
and nine months later for all tested antigens. This implies that in 
adults, each of the three antigens elicits an immunological response 
from germinal center B cells that have undergone both somatic 
hypermutation and clonal selection (84, 85). These activated B cells 
appear to reach a threshold level of antigen-specific affinity 
maturation, beyond which no further increase in affinity is 
observed (38). This phenomenon has also been observed in other 
diseases, such as vesicular stomatitis virus (86), and in vaccination 
against meningococcus using a recombinant vaccine, particularly 
after the third and fourth doses (87). 

It has been shown that both classical and atypical memory B 
cells generated following natural P. falciparum infection produce 
neutralizing antibodies against blood stage P. falciparum parasites. 
However, only atypical memory B cells appear to show evidence for 
active antibody secretion (88). These atypical memory B cells are 
largely maintained by chronic malaria exposure (89–91), with 
FIGURE 5 

Correlations between antibody affinity and B cell subsets. Figures representing (A) antibody dissociation rate constant for MSP2 and atypical memory 
B cells (MBCs) in infants at 9 months and (B) antibody dissociation rate constant for AMA1 and Pf+ atypical MBCs in mothers postpartum. Pearson’s 
coefficient was used to detect correlations between plasma antibody affinity and B cell subsets. 
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subsets such as IgD+IgMlo and IgD-IgG+ displaying a high threshold 
for antigen avidity during activation. This mechanism likely helps 
prevent autoimmune responses during chronic malaria (92)., 
highlighting the important role of these cells in the development 
of malaria immunity (47, 93). Furthermore, we identified positive 
correlations between atypical memory B cells and antibody affinities 
against the tested parasite antigens, emphasizing their significance 
in malaria immunity. This finding is worth considering in future 
vaccine designs aimed at improving efficacy, especially given the 
modest efficacy observed with current vaccines like RTS, S and R21. 

In conclusion, our study demonstrates a distinct and gradual 
development of antibody affinity for the merozoite antigens AMA1 
and MSP2 during the first nine months of life, but not for the 
sporozoite antigen CSP. In adults, antibody affinity was relatively 
the same at delivery and nine months post-partum. Additionally, 
we identified correlations between antibody dissociation rate 
constant and atypical memory B cells. These findings contribute 
to our understanding of naturally acquired immunity to malaria 
and provide valuable insights for selecting optimal antigen 
candidates for vaccine development in future clinical trials. 
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