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Tumor-draining lymph nodes (TDLNs) play a crucial role in modulating tumor

immune responses and influencing the efficacy of immunotherapy. However,

our current understanding of the microenvironment within these lymph nodes

remains limited. Tumors not only impair the anti-tumor activity of CD8+ T cells by

creating an immunosuppressive microenvironment, but they also facilitate

immune evasion and promote metastasis by altering the structure and function

of TDLNs. Research has shown that tumor-specific memory CD8+ T cells (TTSM)

within TDLNs are essential for the efficacy of immune checkpoint inhibitors, such

as PD-1/PD-L1 blockers. Moreover, the abnormal structure of TDLNs, along with

the presence of immunosuppressive cells—such as regulatory T cells (Tregs),

regulatory B cells (Bregs), and immunosuppressive dendritic cells (DCs)—

contributes to tumor-mediated immune evasion. Therefore, gaining a deeper

understanding of the immune microenvironment within TDLNs is essential for

improving the effectiveness of immunotherapies and developing novel

therapeutic strategies. This review explores various TDLN-based therapeutic

strategies, addressing the controversies surrounding lymph node dissection,

the use of TDLNs as a source of tumor-infiltrating lymphocytes (TILs) for

therapy, targeting immunosuppressive cells within TDLNs, and methods to

reverse the structural abnormalities of TDLNs. These strategies offer valuable

insights and potential directions for advancing tumor immunotherapy.
KEYWORDS

tumor-draining lymph nodes, immune microenvironment, immunosuppressive cells,
immunotherapy, PD-L1/PD-1, CD8+ T cells
1 Introduction

In recent years, tumors have been recognized as highly complex systemic diseases that,

in addition to their malignant proliferation, induce profound alterations across various

bodily systems. These changes collectively create “sanctuaries” that shield the tumor from

immune system surveillance. Specifically, tumors actively construct immunosuppressive

microenvironments that significantly undermine the efficacy of CD8+ T cell-mediated anti-
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tumor responses, which are central to immune defense mechanisms

(1). Currently, tumor immunotherapy strategies, particularly

immune checkpoint blockade, aim to rejuvenate the anti-tumor

potential of CD8+ T cells within the tumor microenvironment

(TME) (2). This approach has achieved significant efficacy in

clinical practice and has emerged as one of the most promising

therapeutic strategies in oncology. However, substantial challenges

remain in clinical settings: only a small percentage of patients with

solid tumors respond to immunotherapy, and the majority fail to

achieve durable or substantial therapeutic benefits (3).

As research into tumor immunology advances, the pivotal roles

of TDLNs in immunotherapy has garnered increasing attention. It

has been discovered that the effectiveness of immune checkpoint

inhibitors, including PD-L1 inhibitors, not only depends on the

reactivation of pre-existing exhausted CD8+ T cells within the TME,

but also relies heavily on the continuous influx of newly activated

and expanded effector T cells from the periphery, particularly

within the TDLNs (4). The PD-1-PD-L1 interaction in the

TDLN, rather than within the tumor itself, can serve as a

predictive marker for the clinical efficacy of PD-L1 inhibitors,

particularly in tumors like metastatic melanoma (5). Moreover,

studies have shown that tumor antigen-specific memory CD8+ T

cells, which are crucial responders to PD-L1 inhibitors, are

predominantly located within TDLNs (6). However, as tumors

progress, they can significantly suppress anti-tumor immune

responses by reprogramming the TDLN microenvironment.

This process includes reshaping the structural architecture of

TDLNs and regulating the differentiation and function of

immunosuppressive cells, which ultimately limits the efficacy

of immunotherapy. Therefore, a comprehensive understanding

of the mechanisms driving TDLN immune microenvironment

remodeling is essential for elucidating tumor immune evasion,

enhancing the efficacy of immunotherapies, and developing novel

therapeutic strategies. This review summarizes the current research

on TDLN immune microenvironment remodeling and its

implications for immunotherapy. Additionally, we explored

relevant therapeutic strategies, aiming to provide new insights

and references for future cancer immunotherapy.
2 The crucial role of tumor-draining
lymph nodes in tumor immunotherapy

2.1 TDLN serves as the initiating site of the
anti-tumor immunity cycle

During tumor progression, the TDLN is not only serves as the

primary site where tumor cells arrive via the lymphatic system but

also acts as the initiation point for anti-tumor immune responses.

The tumor immunity cycle is a sequential process wherein the

immune system first recognizes tumor cells, activates specific T

cells, and then directs them to the tumor site for elimination. The

most crucial steps of antigen presentation and T cell activation

occur precisely within the TDLN (7). Recent studies have shown

that naive T cells, upon activation in the TDLN in the presence of
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tumors, do not immediately differentiate into effector cells. Instead,

they enter a “stem-like” state, from which they can develop

into either exhausted T cell precursors/progenitors (Tpex cells) or

TTSM (6, 8). These cells express high levels of stem cell-related

markers such as TCF-1 but lack effector molecules like granzyme

B and perforin (9). It is only after migrating to the tumor

microenvironment and receiving additional co-stimulatory signals

and cytokine stimuli that these precursor cells differentiate into fully

functional effector CD8+ T cells, acquiring the capacity to kill tumor

cells. However, numerous studies have indicated that within the

TME, activated CD8+ T lymphocytes often lose their ability to

develop into memory cells due to persistent antigen stimulation and

the inhibitory effects of the immune suppressive milieu. Initially,

these activated T cells differentiate into Tpex cells, which represent a

less exhausted state, but eventually progress into terminally

exhausted T cells (10–14). This process is marked by a

progressive loss of effector function, proliferative capacity, and

memory potential, accompanied by sustained high expression of

immune checkpoint molecules, such as PD-1 and TIM-3 (15).

Based on this understanding, immune checkpoint blockade (ICB)

therapies, particularly targeting PD-1/PD-L1, have shown promise

in partially reversing the exhaustion of CD8+ T cells and,

consequently, controlling tumor progression.

The prevailing viewpoint within the field is that Tpex cells within

the TME are the primary responders to PD-1/PD-L1 ICB treatment

(16). However, it is important to recognize that Tpex cells represent a

relatively small proportion of the TME, constituting only about 5%

(17). Moreover, recent research has revealed that after receiving

PD-1/PD-L1 ICB therapy, patients with tumors develop novel TCR

clones of tumor-localized, antigen-specific CD8+ T cells that were

previously absent (18). These findings suggest that the tumor-

specific T cells responding to ICB treatment are largely dependent

on the continuous replenishment of CD8+ T cells from outside the

tumor, particularly from the TDLNs (4, 19); however, this

replenishment process diminishes as the tumor progression

advances. For example, in a study on head and neck cancer, Tpex

cells in uninvolved lymph nodes (LNs) were found to undergo

activation and differentiation following PD-L1 treatment, whereas

these signals were impaired in lymph nodes affected by cancer

metastasis (18). A study utilizing FTY720 to inhibit T cell

recruitment from the TDLN to the tumor site showed a

substantial effect on early tumor response (20); however, at later

stages of tumor progression, this inhibition had minimal impact on

tumor progression. This observation suggests that, as tumors

progress, T cell activation within the TDLN may become

impaired. In 2023, Professor Ye Liling’s team conducted a series

of tumor transplantation and lymph node excision experiments,

which clarified that PD-1/PD-L1 ICB therapy primarily mobilizes

TDLN-TTSM (6). These cells then expand and differentiate into Tpex

cells, which subsequently enter the TME to exert their effects, rather

than attempting to reverse the exhaustion of Tpex cells already

infiltrated within the tumor. Furthermore, the TDLN-TTSM cells

play a critical role in determining the therapeutic efficacy of PD-1/

PD-L1 ICB treatment. The studies highlight the significant role of

TDLNs in shaping the anti-tumor immune response and
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influencing the response to ICB treatment. They underscore the

importance of exploring the immune microenvironment of TDLNs

to better understand the mechanisms underlying tumor immune

evasion and resistance to immunotherapy.
2.2 The TDLN is a crucial structure within
the lymphatic system for tumor metastasis

During tumor progression, tumors remotely regulate the

immunosuppressive microenvironment within TDLNs through

mechanisms such as the lymphatic transmission of inhibitory

cytokines, tumor-derived extracellular vesicles (TDEVs), and

other soluble factors (Figure 1). Additionally, tumors alter the

adhesion properties within lymph nodes by upregulating

metastasis-related genes and secreting lymphangiogenic factors

like VEGF and extra cellular vessels (21, 22), which stimulate the

formation of lyric vessels and facilitate tissue metastasis. Tumor

cells can also exit lymph nodes by invading lymph node blood

vessels after nodal metastasis and enter the bloodstream, thereby

colonizing distant organs (23, 24). In mouse models, PD-L1

immunotherapy was found to impair the activation of CD8+ T

cells in metastatic lymph nodes (25). Similarly, a clinical study

involving 68 non-small cell lung cancer patients demonstrated that

patients with metastasis to lymph nodes often exhibited poorer

responses to immunotherapy (26). Consequently, when cancer

spreads to the lymph nodes, selective lymph node dissection and
Frontiers in Immunology 03
clearance are often performed to prevent further metastasis.

However, the necessity of lymph node clearance remains

controversial, as it does not always lead to significant

improvements in survival rates (27–30). Research on colorectal

cancer shows that lymph node and distant metastases originate

from independent subclones in 65% of cases, while 35% share a

common origin, indicating a complex and diverse evolutionary

relationship in metastasis. This diversity may explain the limitations

of lymph node dissection effectiveness (31).

The TDLNs represent both a critical site for anti-tumor

immune responses and a key location for tumor metastasis,

making their microenvironment exceptionally complex.

Nevertheless, current research has predominantly focused on the

immunosuppressive microenvironment of tumors, leaving a

significant gap in our understanding of the immune landscape

within TDLNs.
3 Factors of TDLN immune tolerance

As tumors progress, significant alterations occur in both the

anatomical structure and cellular composition of TDLNs. These

alterations directly or indirectly impair immune cell functions,

enabling tumors to evade immune surveillance and continue their

growth and dissemination. Gaining a deeper understanding of these

structural modifications is crucial for enhancing the efficacy of

tumor immunotherapy.
FIGURE 1

The immunosuppressive microenvironment within TDLNs. TDLN is the starting point of anti-tumor immunity and activates initial T cells. The antigen
presented by DC activates CD8+ T cells (such as Tpex/TTSM), which migrate to tumors and differentiate into effector cells. At the same time, TDLN
promotes metastasis: VEGF induces lymphangiogenesis, and immune cells construct an immunosuppressive environment. Treg(IL-10/PD-1),
mregDC(IDO), and Breg(IL-10/TGF-b/IL-35) cooperate to suppress immune response, drive tumor escape, and limit treatment response. Figure was
created with Biorender.com.
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3.1 Immunosuppression mediated by TDLN
structural remodeling

In the early stages of tumor development, tumors disrupt or

remodel the lymph node structure at distant sites, fostering the

creation of an immunosuppressive microenvironment within

TDLNs and laying the groundwork for tumor metastasis. It has

been observed in animal models that tumor cells influence this

process by regulating factors such as integrin aIIb and VEGF,

which promote extensive lymphangiogenesis within the TDLNs

which results in the dilation of lymphatic sinuses and the rapid

proliferation of lymphatic endothelial cells (22, 32–34). Although

recent research of this phenomenon is limited in human cancer

models, it has undoubtably been observed in TDLNs of patients

(35–37). Consequently, the increased flow of lymphatic fluid

enhances the accumulation of tumor-derived factors in the

TDLNs, further suppressing the local immune environment and

accelerating tumor metastasis to these lymph nodes (38).

Additionally, the expansion and dedifferentiation of high

endothelial venules (HEVs) represent key features of tumor-

induced lymph node remodeling. Over the course of tumor

progression, the density of HEVs increases, followed by their

gradual expansion and dedifferentiation, which significantly affect

lymphocyte recruitment (39, 40). However, After tumor

colonization in TDLNs, tumor cells cause HEV numbers to drop,

which limits lymphocyte recruitment into the colonized node (41).

Moreover, fibroblastic reticular cells (FRCs) in the TDLN

contribute to the deposition of the extracellular matrix

components, enhancing their proliferative capacity and driving

fibrotic remodeling of the surrounding ductal structures. This

remodeling alters the structural flexibility of the lymph nodes,

which impacts immune cell trafficking and function (42).
3.2 The immunosuppressive cells in TDLNs

3.2.1 Tumor immunosuppression mediated by
Treg cells in TDLN

A subset of CD4+ T cells, known as regulatory T cells (Tregs)

(43, 44), exhibits potent immunosuppressive properties, which

contribute to tumor immune evasion. Within the TME, Tregs

suppress the immune response against tumors through both

direct intercellular interactions and the release of soluble

cytokines, thereby playing a critical role in enabling tumors to

evade immune surveillance. During tumor progression, tumor-

derived signals and lymph node colonization by tumor cells direct

the accumulation of Tregs in TDLNs (45–48). It has been observed

that Tregs infiltrate TDLNs in significant numbers during cancer

progression, and their accumulation often correlates with poorer

clinical outcomes (49). Additionally, the Tregs in TDLNs exhibit

enhanced immunosuppressive functions, such as upregulated

expression of co-inhibitory molecules (e.g., CTLA-4 and PD-1)

and increased secretion of immunosuppressive cytokines, including

TGF-b and IL-10 (50) (Figure 1). Tregs in TDLNs also hinder the
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migration of activated CD8+ T cells to the tumor site by

downregulating sphingosine-1-phosphate receptor 1 (S1PR1) on

these lymphocytes (Figure 1). This impairment in CD8+ T cell

trafficking limits their cytotoxic potential and further suppresses the

anti-tumor immune response. Moreover, Tregs have been shown to

inhibit the function of natural killer (NK) cells in TDLNs, thereby

promoting tumor metastasis (51). In TDLNs, Tregs also uptake

lactate through the high expression of monocarboxylate transporter

1 (MCT1) (52), which enhances PD-1 expression on Tregs. This

mechanism contributes to resistance to PD-1 blockade therapy.

Interestingly, while depleting Tregs could disrupt TDLN function

and expand the T cell zone, it might also indirectly influence T cell

recruitment and disrupt immune surveillance-stroma interactions,

potentially accelerating tumor progression (53).

3.2.2 Tumor immunosuppression induced by DC
subsets in TDLNs

Dendritic cells (DCs), as professional antigen-presenting cells,

are central to orchestrating the anti-tumor immune response. DCs

capture, process, and present tumor antigens, express the major

histocompatibility complex molecules, and provide co-stimulatory

signals essential for T cell activation. In TDLNs, DCs also activate

naive T cells, initiating the immune response against tumors.

However, during tumor progression, DCs undergo a functional

shift from immune activation to immune suppression (54–56). The

ability of DCs to activate immune responses or induce immune

tolerance in TDLNs mainly depends on their activation status (57).

In the tumor milieu, insufficient activation of DCs results in

ineffective antigen presentation, preventing the proper activation

of T cells against tumors. Moreover, tumor-derived signals, such as

type II interferons, induce the expression of PD-L1 on DCs, which

then migrate to TDLNs. These PD-L1-expressing DCs,

predominantly located in the germinal centers and cortical

regions of TDLNs, suppress the activation of CD8+ T cells

through the PD-1/PD-L1 interaction (20) (Figure 1). Studies have

shown that the accumulation of PD-L1+ conventional DC1 (cDC1)

cells in TDLNs is associated with an increase in terminally

exhausted CD8+ T cells, as well as an elevated risk of metastasis

or disease recurrence in patients with ovarian cancer, oral

squamous cell carcinoma, and lung metastatic melanoma (20, 58).

Abundant PD-1/PD-L1 interactions of PD-1+ T cells and PD-L1+

cDCs in TDLNs has also been linked to poor survival and distant

disease recurrence in cancer patients (4). Single-cell analysis has

identified a subset of mature DCs, termed regulatory DCs

(mregDCs), which accumulate in TDLNs during tumor

progression. These mregDCs express immune regulatory genes

such as Cd274, Cd200,and Pdcd1lg2, along with mature genes

such as Ccr7,Cd40, and Il12b (59). These cells enhance their

migratory capacity and migrate to TDLNs, while simultaneously

downregulating the expression of toll-like receptors (TLRs) and

lectin-like receptors, which impairs their ability to capture and

present antigens. Additionally, mregDCs secrete chemokines

and express adhesion molecules that attract Treg to form a

distinct Treg-mregDC-lymphatic niche. This network further
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inhibits the initiation and maintenance of the anti-tumor immune

response through the secretion of immunosuppressive cytokines

and the expression of immune checkpoint molecules (60).

Despite representing a small proportion of the total DC

population, mregDCs exert potent immunosuppressive effects

through both direct cell-to-cell interactions and the secretion of

immune regulatory factors. These cells suppress the antigen-

presenting function of neighboring DCs, inhibit CD8+ T cell

responses, and promote the differentiation of Tregs and Th2 cells

(61). Some studies have also identified plasmacytoid DCs

expressing indoleamine 2,3-dioxygenase (IDO) in TDLNs

(Figure 1), which directly activate Treg cells to enhance

immunosuppressive functions (62–65). Furthermore, tumor cells

can inhibit tumor immunity not only by affecting the function of

DCs but also by altering their quantity (66). Thus, the role of DCs in

TDLNs is complex and highly heterogeneous, with tumor-derived

factors driving the functional plasticity of these cells. Identifying

strategies to specifically eliminate or correct immunosuppressive

DC populations in TDLNs remains a significant challenge in the

field of cancer immunotherapy.

3.2.3 Tumor immunosuppression induced by
Bregs within the TDLNs

In recent years, regulatory B cells (Bregs), a novel subset of B cell,

have garnered increasing recognition for their role in immune

regulation. Bregs primarily mediate immune tolerance by

generating inhibitory cytokines such as TGF-b and IL-10, which

suppress excessive inflammatory responses (67–69). Bregs are crucial

in the outcome of chronic inflammatory diseases, and recent studies

have highlighted their importance in the TME. In tumors such as

gastric cancer, pancreatic cancer, and lung cancer, Breg cells are

found to increase abnormally as the tumor progresses (70, 71).

Moreover, Bregs exert their immunosuppressive effects primarily by

inhibiting the functions of CD4+ T and CD8+ T cells by secreting IL-

10, IL-35, and TGF-b (Figure 1). And promote the differentiation and

proliferation of Treg cells, further contributing to immune evasion by

the tumor (21, 72, 73). Notably, Bregs accumulate in TDLNs, where

they play a significant role in promoting tumor growth (74–76). Bregs

hinder the synthesis of IL-17 and IFN-g by Th17 and Th1 cells,

respectively, and prevent the differentiation of Th17 cells within the

tumor microenvironment in an IL-10-dependent manner (77, 78).

Furthermore, Bregs in TDLNs are more prone to differentiate and

exert immunosuppressive effects, secreting cytokines such as TGF-b
and IL-35 (72, 73). These findings underscore the critical role of Bregs

in suppressing immune surveillance and promoting metastasis within

the TDLN by modulating immune responses and enhancing

immunosuppression in the tumor microenvironment.
3.3 Immune suppression mediated by
tumor cells in TDLNs

Tumor colonization in lymph nodes induces tumor immune

tolerance and further promotes distant metastasis (47). Numerous

studies have shown that the primary tumor plays a preparatory role
Frontiers in Immunology 05
in establishing an immunosuppressive microenvironment within

TDLNs to facilitate subsequent lymph node metastasis through the

secretion of vesicles, cytokines, and other factors (79–82). One key

mechanism involves the activation of lymphangiogenesis via VEGF,

which alters the lymphatic matrix in the TDLN (83). Additionally,

(Figure 1) TNF-a plays a crucial role in promoting inflammatory

reactions within the TDLN by binding to TNF receptors (TNFR1 and

TNFR2) on cell surfaces. This interaction activates downstream

signaling pathways, leading to the production of inflammatory

mediators such as IL-1, IL-6, and IL-8, which inhibit immune cell

recruitment to the TDLN (84). Furthermore, tumor cells can remodel

the TDLN into an immunosuppressive microenvironment that

supports metastasis by secreting immunosuppressive molecules

within exosomes. These exosomes, including melanoma-derived

exosomes carrying PD-L1, shuttle tumor-derived signals to TDLNs,

thereby promoting immune evasion. For example, melanoma-

derived exosomes enhance PD-L1 expression on immature myeloid

cells (IMCs) in mice, resulting in the inhibition of T cell activation.

Interferon-gamma (IFN-g) further augments PD-L1 expression on

these exosomes, further impairing immune responses (81, 85). Once

tumor cells metastasize to the lymph nodes, they directly influence

the TDLN microenvironment. Tumor cells establish a hypoxic and

acidic environment, accompanied by the release of large quantities of

immunosuppressive cytokines such as IL-10 and TGF-b. This milieu

not only promotes the expansion and activation of Tregs but also

induces immune cells in the TDLN to adopt an immunosuppressive

phenotype. As a result, the immunological function of the lymph

nodes is suppressed, enabling the tumor to evade immune

surveillance more effectively (86, 87).
4 Tumor treatment strategies based
on TDLNs and prospects

4.1 Controversy surrounding lymph node
dissection

Lymph node dissection is widely recognized as an essential

procedure for reducing tumor burden and lowering the risk of

distant metastasis (88–90) (Figure 2). Currently, lymph node

dissection is classified into selective, systematic, or radical

clearance. The prevailing view suggests that systematic or radical

dissection provides a better prognosis compared to selective

dissection. A 15-year follow-up study found that the gastric

cancer-related mortality rate in the D1 group (local lymph node

dissection) was significantly higher than in the D2 group (radical

lymph node dissection) (91). Similarly, in thymic neuroendocrine

tumors, radical lymph node dissection has been identified as the

best treatment option (92). In non-small cell lung cancer (NSCLC),

lymph node dissection is associated with a lower risk ratio

compared to local biopsy or excision (29). However, with the

growing understanding of the role of TDLNs, the practice of

lymph node dissection has become increasingly controversial. For

instance, a clinical study on esophageal cancer found that patients

undergoing extensive lymph node dissection did not exhibit
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significantly better five-year overall survival rates, suggesting that

more aggressive lymph node clearance may not necessarily improve

prognosis (93, 94). Similarly, a study on recurrent non-small cell

lung cancer patients, who were grouped based on the number of

dissected lymph nodes (using a cutoff of 16), revealed that patients

with more than 16 lymph nodes dissected showed poorer responses

to immunotherapy (95). In endometrial cancer, the prognosis was

found to be unaffected by pelvic lymphadenectomy (96). Notably, a

clinical study on stage I-II ovarian malignant germ cell neoplasms

demonstrated that the 10-year disease-free survival rate was greater

in the group that does not undergo lymph node dissection

compared to the group that did (97). Likewise, in melanoma,

immediate completion lymph-node dissection after sentinel-node

metastasis did not increase melanoma-specific survival compared to

observation (98). In breast cancer, sentinel lymph node dissection

alone was non-inferior to axillary lymph node dissection for 10-year

overall survival in certain patients (99). These findings suggest that

the traditional ‘‘one-size-fits-all’’ approach to lymph node

dissection may not be optimal. TDLNs not only serve as a pre-

metastatic niche for tumors but also play a critical role in initiating

the anti-tumor immune response. As such, lymph node dissection

may inadvertently disrupt key immune events within the TDLNs

and eliminate crucial cell populations essential for an effective

immunotherapy response. Therefore, considering the functional

diversity, cellular heterogeneity, and dynamic plasticity of TDLNs

driven by tumor evolution, more comprehensive and systematic

studies are required to guide clinical decisions regarding lymph

node dissection.
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4.2 TDLNs as potential sources of seed
cells for adoptive cell therapy

Adoptive cell therapy(ACT), a form of adoptive cell therapy, has

emerged as a promising cancer treatment in recent years (100). This

therapy involves isolating T lymphocytes that specifically recognize

tumor antigens from the patient, expanding them ex vivo, and

reinfusing them to target and eliminate tumor cells. Currently,

peripheral blood or tumor tissue serves as the primary source of

ACTs. However, these T cells often exhibit exhaustion due to

prolonged exposure to the immunosuppressive TME, resulting in

suboptimal therapeutic outcomes and limited durability. The

discovery of TTSM within the TDLN, which demonstrate enhanced

proliferative capacity and reduced exhaustion, offers a promising

alternative source of ACTs. TTSM cells derived from TDLN exhibit

remarkable anti-tumor activity in animal models and are more

effective in combination with PD-1/PD-L1 ICB therapy (6). This

indicates that T cells from TDLNs could serve as superior seed cells for

anti-tumor adoptive T cell therapy, providing new insights and

considerations for future ACT treatment strategies (Figure 2).

Chimeric Antigen Receptor T-cell (CAR-T) therapy is also a highly

anticipated treatment approach. However, its current limitations

include the limited selection of tumor targets, off-target toxicity, and

relatively poor efficacy in solid tumors (101–104). Given that T cells in

TDLNs are T cells with strong tumor specificity, utilizing them for

CAR-T therapy may offer greater potential than conventional CAR-T

treatments. However, research in this area is still in its early stages, and

experimental evidence is yet to be established.
FIGURE 2

Therapeutic strategies targeting the immunosuppressive microenvironment of TDLNs. (A) Lymph Node dissection, (B) Seed cells for ACT therapy, (C)
Targeting the immunosuppressive cells, (D) Reversing abnormal structure. Figure was created with Biorender.com.
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4.3 Targeting the immunosuppressive cells
in TDLNs

Immunosuppressive immune cells, such as Tregs, Bregs, and

mregDCs, accumulate in TDLNs and contribute to the

establishment of an immunosuppressive microenvironment.

Targeting these immunosuppressive cells in both the tumor site

and TDLNs could lead to more favorable treatment outcomes.

Animal models have demonstrated that combining CTLA-4 and

PD-L1blockade results in a favorable shift in the balance of effector T

cells and Tregs within the local tumor microenvironment, showing

greater efficacy than monotherapy with either blocker (105).

Furthermore, studies have indicated that combined anti-CTLA-4 and

anti-PD-1 therapy induces a durable anti-tumor response and

enhances adoptive cell therapy in mice (106). Clinical trials also

support these findings. For example, a phase III trial involving 945

patients with unresectable stage III and IV melanoma demonstrated

that patients receiving the combination of ipilimumab (anti-CTLA-4)

and nivolumab (anti-PD-1) had longer median progression-free

survival compared to those receiving either therapy alone (107).

Additionally, the combination of nivolumab with relatlimab (anti-

LAG3) was approved by the FDA as first-line treatment for stage III/IV

melanoma due to its progression-free survival benefit (108). In the

TDLN, mregDCs express immune checkpoints such as IDO and PD-

L1, making IDO an attractive therapeutic target. In a clinical trial, the

combination of nivolumab with a vaccine targeting immune cells

expressing IDO and PD-L1 induced immune responses in more than

93% of patients (109). The vaccine-responsive T cells, including CD4+

and CD8+ T cells, were able to target both cancer cells and immune

cells expressing thesemarkers. Follow-up studies showed sustained and

significant therapeutic effects in some patients (110) (Figure 2).

These findings suggest that targeting the immunosuppressive

microenvironment in TDLNs in combination with local tumor

treatments, such as PD-1/PD-L1 blockade, may improve cancer

treatment outcomes. In addition to combination ICB, there are other

approaches to targeting immunosuppressive cells. Recent studies have

shown that delivering antigens to the interfollicular regions (IFRs) of

lymph nodes using specific immunization formulations can enhance

Type 1 immune responses (Th1 responses), potentially providing a

complementary strategy to reverse immunosuppression in TDLNs

(111). Moreover, targeted delivery of adjuvant nanoparticles, vaccine

antigens, and other molecules to TDLNs can also help improve the

immunosuppressive microenvironment (112, 113).
4.4 Reversing abnormal structural changes
in TDLNs

Several therapeutic strategies aim to reverse the structural

changes in TDLNs caused by tumor derived factors, which

contribute to immunosuppression. These strategies focus on

inhibiting tumor-induced lymph node remodeling and

angiogenesis. For example, the fibrinolytic inhibitor a2-antiplasmin
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has been shown to restrict lymph node remodeling and cancer

metastasis by inhibiting fibrin degradation, thereby preventing

lymphatic dilation and abnormal changes (114). In addition,

VEGFR-3 inhibitors have been verified to reduce the proliferation

of lymphatic endothelial cells (LECs), further impeding vascular

remodeling and lymphangiogenesis (115). Targeted therapies that

address lymph node structural remodeling can also restore immune

cell distribution by blocking the signaling pathways involved in

immune cell migration. Inhibiting of FRCs and HEVs can prevent

the formation of the immunosuppressive microenvironment by

regulating immune cell migration and positioning (116). Of these,

treatment of FRCs and HEVs has focused on reducing stress and

alleviating tumor-induced impaired lymphocyte recruitment. In

mice, treatment with losartan, is an angiotensin receptor blocker

that relieves solid stress, reduces collagen in LN metastatic lesions,

Restores the presence of different HEV, and beautiful intrinsic lyric

infiltration (41). Furthermore, modulating the expression levels of

chemokines, such as CCL21, can improve immune cell distribution

and function, thereby restoring normal TDLN structure.

Interventions targeting physical changes, such as reducing FRC

proliferation and abnormal extracellular matrix (ECM) deposition,

can alleviate the immunosuppressive state in TDLNs, promoting the

recovery of anti-tumor immune responses (Figure 2).
5 Conclusion and discussion

TDLNs serve as critical crossroads in cancer, orchestrating anti-

tumor immune responses while simultaneously being exploited by

tumors to foster immunosuppression andmetastasis. These nodes are

essential for initiating immunity, particularly through T cells that

underpin the efficacy of therapies like PD-1/PD-L1 blockade. Yet,

tumors disrupt this role by inducing structural remodeling—such as

lymphangiogenesis, and recruiting immunosuppressive cells,

including Tregs, Bregs, and immunosuppressive DC subtypes,

creating a suppressive microenvironment that hampers immune

function. Emerging therapeutic strategies offer promise, such as

leveraging TDLN-derived T cells for adoptive cell therapy and

targeting immunosuppressive pathways to enhance immunotherapy

outcomes. However, the TDLN’s complexity and dynamic nature

present challenges, including difficulties in drug delivery and the need

for reliable biomarkers to predict responses. Advancing these

approaches will require a deeper understanding of TDLN plasticity

and the exploration of combination therapies to synergistically

improve cancer treatment efficacy.
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