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JAK-STAT pathway, type I/II
cytokines, and new potential
therapeutic strategy for
autoimmune bullous diseases:
update on pemphigus vulgaris
and bullous pemphigoid
Xiaoying Lin †, Xiang Li †, Zhifang Zhai* and Mingwang Zhang*

Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, China
Autoimmune Bullous Diseases (AIBDs), characterized by the formation of blisters

due to autoantibodies targeting structural proteins, pose significant therapeutic

challenges. Current treatments, often involving glucocorticoids or traditional

immunosuppressants, are limited by their non-specificity and side effects.

Cytokines play a pivotal role in AIBDs pathogenesis by driving inflammation

and immune responses. The JAK-STAT pathway is central to the biological

effects of various type I and II cytokines, making it an attractive therapeutic

target. Preliminary reports suggest that JAK inhibitors may be a promising

approach in PV and BP, but further clinical validation is required. In AIBDs,

particularly bullous pemphigoid (BP) and pemphigus vulgaris (PV), JAK

inhibitors have shown promise in modulating pathogenic cytokine signaling.

However, the safety and selectivity of JAK inhibitors remain critical

considerations, with the potential for adverse effects and the need for tailored

treatment strategies. This review explores the role of cytokines and the JAK-STAT

pathway in BP and PV, evaluating the therapeutic potential and challenges

associated with JAK inhibitors in managing these complex disorders.
KEYWORDS

autoimmune bullous diseases, pemphigus vulgaris, bullous pemphigoid, JAK inhibitors,
cytokines, JAK-STAT pathway
1 Introduction

Autoimmune bullous diseases (AIBDs) encompass a spectrum of conditions

characterized by the formation of vesicles, blisters, erosions, excoriations, and erythemas

on the skin and/or mucosal membranes, which can lead to serious complications and even

death due to superinfections, loss of body fluids and severely limited food intake (1). AIBDs

can be broadly classified into two categories, pemphigus (intraepidermal blistering) and
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pemphigoid (subepidermal blistering), depending on the location of

the blisters (2, 3). Pemphigus disorders are caused by

autoantibodies directed against the desmosomal proteins

desmoglein (Dsg) 1 and 3 and mainly include pemphigus vulgaris

(PV), pemphigus foliaceus (PF), paraneoplastic pemphigus (PNP)

and immunoglobulin A (IgA) pemphigus (4–6). In contrast,

pemphigoid disorders are triggered by autoantibodies targeting

various autoantigens within or underneath the basement

membrane zone (BMZ), such as BP180, BP230, laminins and type

VII collagen. This group mainly includes bullous pemphigoid (BP),

linear IgA bullous dermatosis, dermatitis herpetiformis (DH),

mucous membrane pemphigoid (MMP), anti-p200 pemphigoid

(targeted laminin g1) (7),epidermolysis bullosa acquisita (EBA),

bullous systemic lupus erythematosus (BSLE) and herpes

gestationis (8).

The treatment of AIBDs is predominantly involve

glucocorticoids and immunosuppressive agents, which have

serious adverse effects with prolonged use and whose efficacy is

highly heterogeneous across patients (9, 10). In recent years, more

precisely immunotherapy that targets cytokines or pivotal proteins

extracellularly, such as rituximab against CD20, omalizumab

against IgE, and dupilumab against IL-4Ra, are increasingly being

utilized for the treatment of AIBDs that is unresponsive to

glucocorticoids or immunosuppressants, and have demonstrated

promising outcomes (11, 12). While these therapies offer benefits,

some patients still exhibit unresponsive, which leads to mortality

rates for patients with AIBDs remaining significantly higher as

compared with the general population (13, 14). Hence, new

strategies that target intracellular pathways activated by cytokines

warrant consideration in the future.

Cytokines are a group of structurally distinct secreted proteins

that bind to cellular receptors belonging to at least seven

superfamilies which exert their biological effects through very

different signaling pathways. Among them, Janus kinase (JAK)

and signal transducer and activator of transcription (STAT)

pathways are required for the effective responses of innate and

adaptive immune by regulating the signaling cascade of type I and

type II cytokines (15). Dysfunction of the JAK-STAT signaling

pathway has been linked to a range of inflammatory and

autoimmune diseases, and JAK inhibitors have emerged as a

promising therapeutic approach (16). Indeed, over the past

decade, several small-molecule JAK inhibitors have been

approved for the treatment of immune-mediated diseases such as

rheumatoid arthritis (RA), psoriatic arthritis, ankylosing

spondylitis, atopic dermatitis (AD), alopecia areata (AA) and

others (17). In contrast to JAK inhibitors, until now, STAT

inhibitors have not been marketed due to the structural

peculiarities and functional complexities of STAT, which are still

in the clinical research stage and are primarily concentrated in the

field of cancer (18). This review will elucidate the present

recognition of JAK-STAT signaling and the pathway-dependent

type I/II cytokines in immune homeostasis. Furthermore, we

describe the involvement of the cytokine network and JAK-STAT
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pathway in the pathogenesis of PV and BP, and discuss

advancements in JAK-targeted therapeutics for these conditions.

Finally, we explore the safety and selectivity in the clinical

implementation of the JAK inhibitors.
2 Overview of JAK-STAT signaling
pathway

The JAK family comprises highly conserved mammalian

protein non-receptor tyrosine kinases, which include JAK1, JAK2,

JAK3 and tyrosine kinase 2 (TYK2). JAKs are ubiquitously

expressed, with the exception of JAK3, which is predominantly

found in immune cells (19). The canonical JAK/STAT signaling

pathway is as follows (Figure 1): JAKs are noncovalently associated

with the cytoplasmic domain of the cytokine receptors’ signaling

chain. The binding of type I and II cytokines to the receptor induces

dimerization or aggregation of the receptor’s signaling chains. This

process brings JAKs into close proximity, leading to

autophosphorylation or transphosphorylation. The activated JAKs

then phosphorylate the associated receptor on specific tyrosine

residues. The phosphorylated receptor, in turn, recruits a STAT

protein (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, or

STAT6), which is also phosphorylated by the activated JAK on its

conserved C-terminal tyrosine residue. This event triggers the

STAT protein’s homodimerization or heterodimerization and its

subsequent translocation to the nucleus (20), where it functions as a

transcription factor, regulating the expression of genes related to

immune cell growth, proliferation, differentiation, and apoptosis

(21–23). In addition to canonical signaling, studies have reported

that JAK-STAT is also engaged in noncanonical signal

transduction, which is relatively more complicated (24, 25). For

example, unphosphorylated STAT3 could also bind to DNA and act

as a transcriptional activator (26).

The JAK-STAT pathway is closely related to immune homeostasis

and the development of autoimmune diseases and is thus subject to

intricate regulation. This regulatory network includes three main

negative regulators: a variety of protein tyrosine phosphatases (27–

29), suppressors of cytokine signaling (SOCSs) (30–32), and protein

inhibitors of activated STATs (PIASs) (33–35), as well as multiple

positive regulators (e.g., cooperating transcription factors (36)).

Mutations in genes encoding JAK or STAT proteins are associated

with a variety of immune-related diseases. For example, inactivating

mutations in JAK3 can cause severe combined immunodeficiency

(SCID) (37, 38), while loss-of-function mutations in TYK2 result in

milder immunodeficiency (39). Similarly, gain-of-function mutations

in STAT1 are linked to a spectrum of infectious and autoimmune

diseases (40), whereas loss-of-function in STAT3 leads to hyper-IgE

syndrome, characterized by recurrent skin and pulmonary infections,

elevated IgE levels, and chronic eczematous dermatitis (41). Thus, a

substantial body of evidence indicates that abnormal activation of the

JAK-STAT pathway is pivotal in the pathogenesis of human

immune diseases.
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3 Overview of type I and type II
cytokines

Cytokines are classified into superfamilies based on the shared

structural features of their cognate receptors. More than 50

cytokines, including interleukins (ILs), interferons (IFNs),

hormones, and colony-stimulating factors (CSFs), are members of

the type I/II cytokine families and signal via the JAK-STAT

pathway. These cytokines can be further subdivided into groups

based on their shared receptor subunits (Table 1).
3.1 Type I cytokines in immunoregulation

3.1.1 The common g chain (gc) family
The common gc family cytokines include IL-2, IL-4, IL-7, IL-9,

IL-15, and IL-21. A mutation in the gene encoding the protein gc
has been associated with SCID in humans, indicating that these

cytokines play a fundamental role in the development of the

immune system. The inaugural member of this family identified

was IL-2, originally discovered as a T cell growth factor in 1976 (42).

IL-2 transmits signals through JAK1 and JAK3, which covalently

bind to the IL-2Rb and gc, respectively (43), and predominantly

recruit and activate STAT5A and STAT5B, as well as to a lesser

extent, STAT3 and STAT1 (44). IL-2 has been shown to exhibit
Frontiers in Immunology 03
pleiotropic actions that are wide-ranging and significant (45).

Specifically, IL-2 is known to promote the growth and

differentiation of B cells (46), augment the proliferation of natural

killer (NK) cells while enhancing their cytotoxicity (47).

Additionally, IL-2 is essential for the development and expansion

of T regulatory (Treg) cells (48), and for activation-induced cell

death of T cells (49), which helps mediate tolerance and limit

inappropriate immune responses. Furthermore, it aids in the

differentiation of naïve CD4+ T cells into T helper 1 (Th1) (50),

Th2 (51) and Th9 cells (52), while inhibiting the differentiation of

Th17 (53) and T follicular helper (Tfh) cells (54).

IL-4 was originally discovered as a cytokine that stimulates B

cell activation and increases the production of immunoglobulin

class switch, resulting in elevated levels of IgG1 and IgE (55, 56).

Further studies have shown that IL-4 plays a key role in driving Th2

responses (57) and promoting Th9 differentiation, while

simultaneously suppressing the generation of transforming

growth factor-b (TGF-b)-induced Foxp3+ Treg cells (58). IL-4

signals through two types of receptors: type I and type II. Type I

IL-4R, expressed on hematopoietic cells, consists of IL-4Ra and gc
subunits (59, 60) and is linked to JAK1 and JAK3, respectively (61).

The type II IL-4R, composed of the IL-4Ra and IL-13Ra1, is
primarily expressed on non-hematopoietic cells and is linked to

JAK1 and TYK2/JAK2, which is also the functional receptor for IL-

13 (62, 63). Both type I and type II IL-4 receptors mainly activate

STAT6 and, to a lesser extent, STAT5 (64, 65).
FIGURE 1

Activation of the canonical JAK-STAT signaling pathways. (1) Type I//II cytokines act through receptors associated with JAK. The receptors comprise
at least two chains, each linked to a specific JAK; (2) Binding of ligand dimerizes the receptor, resulting in phosphorylation and activation of JAK for
each other, which then phosphorylates the receptor. The STAT family has an N-terminal structural domain that allows STAT to form inactive dimers;
(3) STAT bind to the phosphorylated receptor, which in turn phosphorylates by JAK; (4) STAT detach from the receptor to form activated dimers; (5)
STAT dimers enter the nucleus, bind to DNA binding domain (DBD) and regulate transcription, which is involved in cell proliferation, differentiation
and apoptosis. Created with Adobe Illustrator2023.
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IL-7 was first identified as a stromal-cell-derived factor that

facilitates the growth of pre-B cells (66, 67). Apart from its role in

pre-B cell development, IL-7 and its receptor are crucial for

maintaining the development of T cells and innate lymphoid cells

(ILCs) and protecting the survival of long-term memory T-cell (68,

69). Additionally, IL-7 contributes to the development of Treg cells

(70). The IL-7 receptor is comprised of two subunits, IL-7Ra and gc
(71, 72), which bind to JAK1 and JAK3, respectively, and initiate

downstream signaling, most notably STAT5A and STAT5B (73). IL-

7Ra is also a functional component of the receptor for thymic stromal

lymphopoietin (TSLP), along with another component called TSLPR

(74). TSLP mediates STAT5, STAT3 and STAT1 phosphorylation via

kinases JAK1 and JAK2 (75), and is crucially important for

stimulating hematopoietic cells and mediating type 2 immunity (76).

IL-9 was initially identified in mice as a cytokine that promotes

the proliferation of T cells (77). Upon binding to its heterodimeric

receptor composed of the IL-9Ra and gc, IL-9 triggers the cross-

phosphorylation of JAK1 and JAK3, leading to the activation of

STAT5, STAT3, and STAT1 (78, 79). Beyond its role in T cell growth,

IL-9 acts as a growth factor for bone marrowmast cells and promotes

the secretion of several cytokines, including IL-13 (80, 81). In

addition, IL-9 facilitates the expansion of Th17 cell and ILC2

populations while enhancing the regulatory function of Treg cells

(82, 83).

IL-15 was initially identified as a growth factor for T-cells (84).

IL-15 binds to a heterotrimeric receptor composed of IL-15Ra, IL-
2Rb, and gc (85). IL-15 binds to IL-15Ra on one cell and then trans-

presents the cytokine to neighboring cells that express IL-2Rb and

gc, followed by activating the JAK1/JAK3 and STAT5 pathways

(86), and plays a crucial role in the development of NK cells 86 and

the maintenance of memory CD8+ T cells 87. Additionally, it has

been found to act as a growth factor for mast cells (87).

IL-21 was first discovered as the ligand for an orphan type 1

cytokine receptor, which was found to bear a striking resemblance

to IL-2Rb (88, 89). Upon binding to its receptor, IL-21 stabilizes the

complex between the IL-21Ra and the common gc (90). This event
consequently activates JAK1 and JAK3, thereby facilitating the

recruitment and activation of STAT proteins, with STAT3 being

the predominant species, followed by STAT1 and STAT5 (91, 92).

In the immune system, IL-21 has the ability to support the

production of IgG1 and simultaneously repress the production of

IgE (93). Additionally, IL-21 is capable of driving B cells toward

plasma cell differentiation, while also promoting apoptosis of

incompletely activated B cells (94, 95). Furthermore, IL-21

collaborates with IL-7 or IL-15 to expand CD8+ T cells (96) and

contributes to the formation of CD8+ T cell memory (97). IL-21 also

plays a role in the differentiation of Tfh (98) and Th17 cells (99), but

inhibits the differentiation of Treg (100) and Th9 cells (52).

3.1.2 The common b chain (bc) family
The bc family of cytokines, comprising IL-3, IL-5, and

granulocyte-macrophage colony-stimulating factor (GM-CSF), was

initially identified as CSFs in the hematopoietic system. However,

they are now recognized as pleiotropic in the immune system (101,

102). The functional receptors for IL-3, IL-5, and GM-CSF are IL-3a
Frontiers in Immunology 06
paired with bc, IL-5a with bc, and GM-CSFa with bc, respectively
(103). Upon binding to their specific receptor-alpha chains, the

cytokine-alpha chain binary complexes dimerize with bc to form

heterodimers. This process activates JAKs, primarily JAK2, which

bind to the cytoplasmic tail of the bc chain, ultimately leading to the

phosphorylation of STAT5A/B for downstream signaling (104).

bc cytokines possess the capability to influence various types of

cells in the hematopoietic system. For instance, IL-3 is involved in

the growth and differentiation of CD34+ progenitor cells into

basophils and mast cells, DCs, eosinophils, and monocytes-

macrophages (105, 106). Recent studies suggest that IL-3

modulates type 1 DC function to induce Th2 responses (107). IL-

5, primarily responsible for stimulating eosinophils, is essential for

eosinophilic inflammation (108, 109). GM-CSF acts on DCs,

myelomonocyte progenitors, and granulocytes (110) while

inhibiting CD34+ progenitor cell differentiation into lymphoid

progenitors or type 2 DCs, as well as the terminal differentiation

of mast cells (111, 112).

3.1.3 The IL-6 family
The IL-6 family of cytokines encompasses a diverse group,

including IL-6, IL-11, IL-27, IL-31, IL-35, IL-39, oncostatin M

(OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic

factor (CNTF), cardiotrophin 1 (CT-1) and cardiotrophin-like

cytokine factor 1 (CLCF1). The unifying feature of this family is

their shared reliance on the gp130 receptor signaling subunit, which

is pivotal for their classification (113).

The cytokines within the IL-6 family utilize several distinct

receptor arrangements. IL-6 and IL-11 engage a specific non-

signaling receptor subunit (IL-6Ra and IL-11Ra, respectively) in
addition to the signal-transducing receptor gp130, forming either

an IL-6–IL-6Ra–gp130 or IL-11–IL-11Ra–gp130 hexameric

complex for signal transduction (114). Conversely, the receptor

complexes for LIF, CT-1, OSM, IL-27, IL-35 and IL-39 comprise

gp130 and a second signal transducing receptor subunit (LIFRb,
OSMRb, WSX-1, IL-12Rb2 and IL-23R, respectively), which share

structural similarities with gp130 (115). The receptor for CNTF and

CLCF1 comprises three individual receptor subunits, including a

non-signaling receptor subunit CNTFRa and the heterodimer

gp130 (LIFRb and gp130) (116). The only cytokine exception to

this “gp130 rule” is IL-31, which binds to a receptor complex

containing OSMRb and a unique gp130-like receptor chain,

designated as IL-31RA (117). The cytokine receptor complexes

within the IL-6 family transmit signals inside cells through the

activation of JAK1, and to a lesser extent JAK2, or TYK2 (118, 119).

These kinases are covalently bound to the cytoplasmic domains of

their respective signal-transducing receptors. Upon activation, JAK

proteins phosphorylate and thereby activate latent transcription

factors, including STAT1, STAT3, and STAT5 (120, 121). The

specific STAT proteins activated vary with the cytokine,

correlating with the diverse biological functions of the IL-6 family

cytokines. For example, IL-27 preferentially induces STAT1 activity,

while IL-6 predominantly enhances STAT3 transcriptional activity

(122). A summary of the specific immune functions of individual

cytokines is presented in Table 1.
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3.1.4 The IL-12 family
The IL-12 cytokine family, comprising IL-12 and IL-23, shares

structural similarities with the IL-6 family. These cytokines leverage

orthologs of the gp130 receptor subunit to activate the JAK-STAT

signaling pathway (123). IL-12 was first identified as a protein

released by a specific human lymphoblastoid cell line that activates

NK cells and T cells to produce IFNg (124). IL-12 forms a complex

with two different subunits, namely IL-12Rb1 and IL-12Rb2 (125).

Upon binding, this complex activates JAK2 and TYK2, which

subsequently recruit and phosphorylate STATs, mainly STAT4

(126). The phosphorylated STATs form dimers, translocate to the

nucleus, and regulate gene transcription, playing a pivotal role in

immune homeostasis. IL-12, a pro-inflammatory cytokine, drives

the differentiation of CD4+ T cells into Th1-like cells and stimulates

IFNg production (127). Additionally, IL-12 can enhance the release

of IFNg and TNF in CD8+ T cells, NK cells, and ILC1s (128).

IL-23 was discovered a decade after the identification of IL-12

and was first characterized for its effects on memory T-cells but not

naïve T-cells (129). The IL-23 receptor is composed of the IL-12Rb1
and IL-23R chains. Similar to IL-12, the binding of IL-23 leads to

the activation of JAK2 and TYK2, culminating in the

phosphorylation of STATs, primarily STAT3 (130, 131). Research

indicates that IL-23 is instrumental in promoting the expansion and

maintenance of Th17 cells , without influencing their

differentiation (132).
3.2 Type II cytokines in immunoregulation

3.2.1 The IFN family
Since the discovery of the first IFN in 1957, based on its antiviral

activity, more than 20 signaling molecules belonging to the IFN

family have been identified (133). IFNs can be classified into three

distinct classes of cytokines: type I IFNs, type II IFNs, and type III

IFNs. The type I IFN family encompasses IFN-a (which can be

further divided into 13 subtypes), IFN-b, IFN-d, IFN-e, IFN-k, IFN-
t, and IFN-w. All type I IFNs bind to a common receptor,

composed of two subunits, IFNAR1 and IFNAR2, that interact

with JAK1 and TYK2, respectively. Activation of JAKs rapidly

phosphorylates STAT1, STAT2, STAT3, or STAT5, which then

form homodimers or heterodimers, translocate to the nucleus, and

initiate transcription (134). Beyond their direct antiviral effects, type

I IFNs exhibit a range of immunomodulatory mechanisms. These

include the promotion or inhibition of T-cell proliferation,

differentiation, and apoptosis, contingent upon the timing of T

cell receptor stimulation (135) and the duration of IFN exposure

(135, 136). Type I IFNs promote B-cell activation and Ig class

switching (137) but also inhibit B-cell growth and proliferation

(138, 139), depending on different environments and antigens.

These diverse biological effects may be mediated by the

recruitment of different STATs (140).

In contrast to type I IFNs, type II IFNs consist of a single

cytokine, IFN-g (141). An IFN-g homodimer binds to two IFNGR1

receptor chains and subsequently recruits two IFNGR2 chains to

form a complex. The aggregation of its receptor components by
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IFN-g leads to the phosphorylation of JAK1 and JAK2, which

constitutively bind to IFNGR1 and IFNGR2, respectively. The

activated JAKs further phosphorylate the STAT1 docking site in

IFNGR1, followed by the recruitment and phosphorylation of

STAT1. The phosphorylated STAT1 then dimerizes and

translocates to the nucleus, where it regulates gene transcription

(142). In addition to its antiviral activity, IFN-g possesses

pleiotropic immunologic functions, including the promotion of

macrophage activation, enhancement of antigen presentation,

induction of Th1 cell differentiation while concomitant inhibition

of Th2 and Th17 cell responses, and promotion of Ig isotype

switching (143).

Type III IFNs were discovered almost 50 years after the

identification of type I IFNs and comprise four subtypes, IFN-l1
(IL-29), IFN-l2 (IL-28A), IFN-l3 (IL-28B), and IFN-l4 (144, 145).
All type III IFN cytokines signal through a shared heterodimeric

receptor, composed of IFNLR1 and IL10Rb (146, 147). Like type I

interferons, ligand binding activates JAK1 and TYK2, as well as

downstream STATs transcription factors, primarily STAT1 and

STAT2 (148). Although the downstream signaling pathways and

transcriptional responses activated by type III IFNs are remarkably

similar to those of type I IFNs, type III IFNs also display unique

roles in the immune response. For example, type III IFNs protect

epithelial cells from viral, bacterial, and fungal infections (149). In

terms of immune cells, type III IFNs inhibit neutrophil recruitment

and activity (150) and promote Th1 cell responses and CD8+ T cell

activity (151).

3.2.2 IL-10 family cytokine
The IL-10 family comprises IL-10 and five members of the IL-

20 subfamily: IL-19, IL-20, IL-22, IL-24, and IL-26 (152). IL-10 is a

cytokine that plays a crucial role in regulating the immune system.

It signals through its heterodimeric receptor, which consists of two

subunits: IL-10RA and IL-10RB (153, 154). The receptor complex

associates with two JAKs, JAK1 and TYK2, respectively (155). Upon

binding to the receptor, IL-10 primarily activates STAT3, although

it can also activate STAT1 and STAT5 in specific cell types (156).

This leads to suppressive effects on myeloid cells by inhibiting

proinflammatory cytokines and antigen-presenting cells (APCs).

Furthermore, IL-10 directly inhibits memory Th17 and Th2 cells,

while promoting the survival and function of Tregs and the

differentiation and isotype switching of B cell (157, 158).

The IL-20 subfamily of cytokines signals through various types

of receptors. Specifically, IL-20RB, the common b chain, can form a

functional heterodimeric receptor with either the IL-20RA, enabling

binding of IL-19, IL-20, and IL-24, or with the IL-22RA1, which

only allows signaling of IL-20 and IL-24. Conversely, IL-10RB, the

other common b chain, heterodimerizes with either IL-22RA1 or

IL-20RA to create a functional receptor for IL-22 or IL-26,

respectively (159). All IL-20 subfamily cytokines transmit signals

through the JAK-STAT pathway. Notably, all family members

preferentially phosphorylate JAK1 and TYK2, which in turn

primarily activate STAT3 (160). The IL-20 subfamily of cytokines

possesses partially similar biological activities, such as promoting

epidermal integrity and innate defense (161). However, each
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cytokine has distinctive functions. For instance, IL-19 is responsible

for polarizing T-lymphocytes to Th2 type and macrophages to M2

type (162), whereas IL-20 is involved in the promotion of DC

maturation (163). IL-20 has been found to regulate neutrophil

recruitment (164) while IL-24 could stimulate peripheral blood

mononuclear cell to produce pro-inflammatory cytokines and

inhibit plasma cell differentiation (165, 166).

In addition to the aforementioned cytokines closely related to

the JAK-STAT pathway, other cytokines, such as TNF-a, IL-1 or

IL-17 family, etc., although not signaling directly through the JAK-

STAT pathway, are influenced by JAK-STAT-dependent cytokines

in terms of expression and biological function due to cytokine

network effects (15). These further underscores the importance of

the JAK-STAT pathway in immune homeostasis and immune-

mediated diseases.
4 Cytokine and JAK-STAT pathway in
AIBDs

4.1 Pemphigus vulgaris

4.1.1 Cytokine network in pemphigus vulgaris
PV is a severe organ-specific AIBD. The underlying cause is the

production of autoantibodies that attack the essential proteins Dsg1

and/or Dsg3. This attack results in the loss of cell adhesion of

keratinocytes, a process known as acantholysis. This process

ultimately leads to the formation of blisters and erosion of the

skin and mucous membranes (4). Multiple factors, including drugs,

environment, infections, and others, are known to initiate the

formation of autoantibodies that expose Dsgs. Once exposed,

these Dsgs are recognized by APCs such as DCs, macrophages, or

B cells, which present them to T cells through the MHC II-antigen

complex interaction. In susceptible individuals, T cells with

autoreactive potential have evaded both central and peripheral

clonal deletion. Upon recognition of the MHC II-self peptide

ligand complex and in the presence of inflammatory mediators,

these T cells are activated and differentiate into Th1, Th2, Th17,

Tfh, or Treg. Ultimately, these cells secrete various cytokines that

can drive B-cell proliferation, activation, pathogenic DSG-specific

IgG antibody production, as well as differentiation into plasma cells

and memory cells (Figure 2) (167).

4.1.1.1 Th1 and Th2 cytokines in PV

Th1 cells are primarily responsible for secreting IFN-g and IL-2,
which play a crucial role in cellular immunity against intracellular

microorganisms. In contrast, Th2 cells secrete cytokines such as IL-

4, IL-5, IL-10, and IL-13, which are associated with host immunity

to extracellular pathogens and the development of allergic diseases

(168). Early studies suggest that PV pathogenesis involves both Th1

and Th2 cells. During the active phase of PV, DSG3-reactive Th2

cells secreting IL-4 are predominant. Conversely, during the

chronic phase, DSG3-reactive Th1 cells secreting IFN-g become

more prevalent (169). This pattern correlates with the production of

IgG4 antibodies during active disease and IgG1 antibodies during
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clinical remission. Additionally, there is a significant correlation

between the presence of IgG1 and IgG4 antibodies against Dsg3 and

the ratio of Dsg3-reactive Th1/Th2 cells (170). However, recent

evidence has highlighted the critical role of Th2 cells in the

development of PV. By constructing mouse or human Dsg-3

reactive T cell lines, researchers have found that Dsg-3 reactive T

cells predominantly secrete Th2 cytokines IL-4 and IL-10 both in

vivo and in vitro (171, 172). Further studies on PV patients have

shown that the number of DSG-reactive Th2 cells is positively

correlated with Dsg-3 antibody titer and disease activity (173).

Moreover, the expression of Th2 cytokines such as IL-4, IL-5, and

IL-10 was significantly increased during the active phase of the

disease but decreased after disease control (174, 175). Dupilumab, a

fully human monoclonal antibody that simultaneously blocks IL-4

and IL-13 signals by targeting IL-4Ra, is anticipated to be a valuable
addition to the therapeutic intervention for PV (176), as

demonstrated in several case reports in recent years (177–179).

Upon differentiation of the naïve T cells into Th2, they release

Th2 cytokines that impede the Th1 response and down-regulate the

production of Th1 cytokines (180). This phenomenon has been

substantiated in patients with PV. The study conducted by Satyam

et al. has verified that PV patients exhibited elevated levels of serum

Th2 cytokines (IL-4 and IL-10) and reduced levels of Th1 hallmark

cytokines (IFN-g and IL-2) (174). Analogously, other studies have

also affirmed that patients with PV exhibit reduced levels of serum

IFN-g and heightened levels of IL-4. This suggests that during the

active phase of the disease, the Th2 response inhibits the Th1

response (181, 182). The underlying reason might be attributed to

the functional alterations in NK cells in PV patients. Studies have

demonstrated that the peripheral blood of PV patients contains an

increased number of NK cells, while the IL-12 signaling pathway is

impaired, and the expression of IL-5 and IL-10 is elevated in NK

cells, thereby promoting a predisposition toward a Th2 type

immune response in PV patients (183).
4.1.1.2 Th17 cytokines in PV

Upon exposure to cytokines TGF-b, IL-23, and IL-6, T cells

undergo differentiation into Th17 cells, characterized by the secretion

of a range of cytokines including IL-17, IL-21, IL-22, IL-26, and GM-

CSF. Several studies have reported a significant increase in the number

of Th17 cells in the peripheral blood and skin lesions of PV patients

compared to the general population (184–186). Yang et al. (187) found

that in PV skin lesions, the predominant T cell population was

composed of CD4+ T cells expressing IL-21 and IL-17A, rather than

classical Tfh cells expressing CXCR5. They speculate that these IL-21

+/IL-17+ CD4+ T cells may contribute to the activation and

differentiation of B cells, ultimately leading to the production of

pathogenic autoantibodies in PV lesions. Additionally, another study

discovered a greater number of CD154+ CD4+ T cells in the peripheral

blood of PV patients, which highly expressed IL-17 and IL-21 and

positively correlated with the level of Dsg-3 titer (188). Analyses for

Th17-related cytokines revealed significantly elevated serum levels of

IL-17, IL-21, and IL-23, but decreased levels of IL-22 in patients with

PV compared to normal controls (189–191), and similar results were

obtained in PV lesions (186, 192). Andrés et al. (193) reported the
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treatment of a PV patient with ustekinumab, an inhibitor of the p40

subunit of IL-12 and IL-23, after one month, the patient showed

significant improvement in clinical symptoms and reduced serum

levels of IL-12, IL-17, IFN-g, and IL-6 without any adverse effects.

However, as the treatment continued, a complete relapse of clinical

symptoms was observed.

4.1.1.3 Tfh cytokines in PV

Tfh cells are a specialized subset of CD4+ T cells that localize to

lymphoid follicles. Under the influence of cytokines such as IL-6,

IL-21, and IL-27, naïve T cells induce the expression of Bcl-6

through the activation of transcription factors STAT3 or STAT4,

thereby promoting differentiation along the Tfh lineage. Tfh cells

can secrete cytokines like IL-21, IL-6, and IL-10, which support the

survival and proliferation of B cells in the germinal center. This

process ultimately drives B cell differentiation into plasma cells,

immunoglobulin class-switching, and affinity maturation of

antibodies (194). Tina et al. (195) found that IL-27 levels in the

plasma of PV patients were positively correlated with Dsg-specific

autoantibodies, as well as a significant increase in the frequency of

Tfh cells and IL-21 levels, a cytokine produced by both Th17 and

Tfh cells. Two other recent studies have also confirmed that Tfh cell

frequencies are increased in PV patients and are strongly correlated

with Dsg antibody levels, and that serum levels of cytokines such as,

IL-6, and IL-21 are also significantly elevated (196, 197). However,
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there have been no reports on the function of IL-21 and the effects

of anti-IL-21 therapy in PV.

4.1.1.4 Treg cytokines in PV

Previous studies have detected Dsg3-specific T cells in healthy

individuals carrying PV-associated HLA class II alleles (198, 199),

However, these genetically susceptible individuals do not manifest PV

phenotypes, which is attributed to the presence of IL-10- and TGF-b-
secreting Dsg-3-specific Treg cells in this population—a cell type

rarely found in PV patients (200). Naive T cells, upon stimulation by

IL-2 and TGF-b, differentiate into Treg cells, which predominantly

secrete TGF-b and IL-10 for immunosuppressive and

immunomodulatory functions (201). Several studies have indicated

that the proportion of Treg cells in the peripheral blood of PV

patients is significantly reduced (202, 203) and negatively correlates

with the number of Th17 cells (185, 191), which the latter is

significantly increased in PV patients. Increasing Treg cell numbers

through adoptive transfer or using the superagonistic anti-CD28

antibody D665 inhibits the production of Dsg-3 autoantibodies in a

mouse model of PV, while Treg depletion enhances autoantibody

production (204). A recent study found that Dsg3-specific CD4+ T

cells could overcome peripheral tolerance in regulatory T cell

depleted mice, inducing skin lesions, but not in wild-type mice

(205). However, cytokine-level studies have found elevated levels of

TGF-b and IL-10 in PV patients compared to normal subjects,
FIGURE 2

Cytokine involvement in pemphigus vulgaris. Exposed desmogleins (Dsgs) identified by antigen-presenting cells such as dendritic cells and present
the antigen to autoreactive naïve CD4+T cells. Subsequently, under the influence of various cytokines, these T cells differentiate into distinct subsets,
secreting cytokines that predominantly exert their biological effects via the JAK-STAT pathway. Specifically, Th2 differentiation is enhanced, leading
to the secretion of Th2 cytokines IL-4, IL-5, and IL-10, while simultaneously suppressing Th1 responses and downregulating Th1 cytokines such as
IL-2 and IFN-g. This shift may be associated with cytokines released by NK cells. Additionally, Th17 and Tfh cell differentiation is amplified, resulting in
the secretion of IL-6, IL-17, IL-21, and IL-23. Notably, IL-6 and IL-17 promote inflammatory responses, IL-21 enhances B cell activation into plasma
cells, and IL-4 and IL-10 facilitate antibody class switching, prompting plasma cells to secrete IgG4 antibodies against Dsgs, culminating in
acantholysis. Furthermore, a reduction in Treg cell differentiation is crucial for the proliferation of autoreactive T cells and antibody production.
Figure image created with Adobe Illustrator2023.
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suggesting the existence of other cellular sources of secretion besides

Treg cells (174, 191, 206, 207). An explanation for this may relate to

the pleiotropic nature of these cytokines; for instance, TGF-b
contributes to the differentiation of Tregs while also promoting the

development of Th17 cells. Similarly, IL-10 supports the

differentiation of Tregs and regulatory B cells and acts as a key

member of the Th2 cytokine family. Notably, PV patients have shown

significant increases in both Th17 and Th2 responses.

4.1.1.5 Other proinflammatory cytokines in PV

IL-6, IL-8, TNF-a, and IL-1 are archetypal pro-inflammatory

cytokines predominantly secreted by non-Th immune cells.

Elevated levels of these cytokines have been observed in PV

patients and are known to decrease post-treatment, aligning with

disease activity (175, 206, 208–215). TNF-a and IL-1 are implicated

in promoting keratinocyte acantholysis via C3 complement

activation, plasminogen activator induction, or through

independent mechanisms (211, 216). Notably, PV-susceptible

mice lacking TNF-a and IL-1 receptors show attenuated disease

upon passive transfer, underscoring the role of these cytokines

(211). Emerging research highlights TNF-a’s capacity to

compromise keratinocyte adhesion by upregulating ST18 in PV

lesions (217). Encouragingly, TNF-a inhibitors, such as etanercept

and infliximab, have been instrumental in managing refractory PV

cases (218–221). Additionally, IL-6 receptor monoclonal antibodies

have demonstrated therapeutic success in PV (222). However, the

therapeutic potential of IL-8 and IL-1 monoclonal antibodies

remains unexplored in PV.

In aggregate, cytokines including Th2 (IL-4, IL-5, IL-10), Th17

(IL-17, IL-21, IL-23, TGF-b), and other pro-inflammatory

cytokines (IL-6, IL-8, TNF-a, IL-1) exhibit heightened expression

in PV, with certain cytokines correlating positively with disease

severity and autoantibody titers, and their diminished expression

post-successful treatment. These cytokines have a significant role in

promoting T-cell differentiation, B-cell maturation, and antibody

production, indicating their crucial involvement in the pathogenesis

of PV, rather than transcending a mere epiphenomenon during

disease evolution. Despite the pronounced role of these cytokines,

monoclonal antibodies targeting individual cytokines have not

matched the anticipated therapeutic impact observed in

conditions like psoriasis (223), AD (224), or RA (225). This

divergence suggests a multi-cytokinetic interplay in PV,

advocating for therapeutics targeting a constellation of cytokines.

Notably, cytokines including IL-4, IL-5, IL-6, IL-10, IL-17, IL-21,

and IL-23 exert their effects via the JAK-STAT pathway, with IL-8,

TNF-a, IL-1, and TGF-b’s expression being modulated indirectly

by this pathway. Consequently, JAK inhibitors emerge as a

promising therapeutic contender for PV.

4.1.2 JAK inhibitors in PV
A research group scrutinized the expression levels of JAK3,

STAT2, STAT4, and STAT6 proteins in skin and oral mucosal

lesions of PV patients through immunohistochemistry. Their

findings indicated a significant upregulation of these proteins in
Frontiers in Immunology 10
the lesions compared to those in healthy controls. The authors

hypothesize that this upregulation correlates with the heightened

levels of various cytokines in PV patients and propose that JAK/

STAT proteins could emerge as novel therapeutic targets for PV

(226, 227). Given that the activation of the JAK-STAT pathway is

contingent upon the phosphorylation status of JAK and STAT

proteins, and considering that cytokines implicated in PV primarily

operate through STAT3 and STAT6, we assessed the levels of

phosphorylated STAT3 and STAT6 in the skin lesions of PV

patients and healthy controls. The results showed that pSTAT3

and pSTAT6 expression were significantly elevated in PV lesions

(unpublished data).

Although clinical trials on JAK inhibitors for PV treatment are

lacking, Tavakolpour et al. (228). regard tofacitinib, a JAK1/3-

targeting small molecule inhibitor, as a potential therapeutic

agent for refractory PV. Tofacitinib has been reported to inhibit a

spectrum of cytokines from diverse cellular origins across a range of

diseases, including IL-4, IL-5, IL-6, IL-10, IL-17, IL-21, IL-23, IL-8,

TNF-a, and IL-1 (229–232), all of which are intricately linked to PV
pathogenesis. Vander et al. (233). presented a case of PV with severe

nail involvement, where a combination treatment of tofacitinib and

rituximab led to a significant amelioration of skin and nail

conditions within three weeks. The authors attribute the swift

symptom improvement to tofacitinib, given rituximab ’s

protracted therapeutic onset. M Grace et al. recently reported the

successful treatment of refractory oral mucosal lesions in a patient

with PV using upadacitinib (234). Our team recently administered a

treatment regimen of tofacitinib 5mg twice daily, in conjunction

with prednisone 1mg/kg daily, to a patient with refractory PV. This

treatment led to a noticeable improvement in the patient’s skin

lesions and a decrease in corticosteroid reliance (unpublished data).

These outcomes hint at tofacitinib’s potential as an efficacious drug

for PV management. Nonetheless, further clinical trials are

imperative to substantiate these findings. To date, no clinical

applications of other JAK inhibitors in PV have been

documented (Table 2).
4.2 Bullous pemphigoid

4.2.1 Cytokine network in bullous pemphigoid
BP, akin to pemphigus, originates from a multifactorial

interplay among patient-specific elements such as genetic

susceptibility, regulatory Treg dysregulation, and aging, as well as

external inciters like physical trauma, infections, malignancies, and

medications. These elements may synergistically precipitate the

collapse of immune tolerance to the BPAG protein, culminating

in autoantibody production and disease manifestation (235).

Specifically, DCs present a BPAG epitope via MHC class II,

which subsequently activate BPAG-specific CD4+ T cells. These

activated T cells further differentiate into distinct Th cell subsets,

releasing a spectrum of cytokines encompassing IL-4, IL-13, IL-5,

IL-6, IL-17, IL-21, and IL-31. This cytokine milieu fosters B cells

differentiation and the production of IgG and IgE autoantibodies
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(236). The autoantibodies then bind to the basement membrane

zone of the skin, instigating subepidermal blistering in BP via both

complement-dependent and complement-independent

mechanisms (Figure 3) (237, 238).

4.2.1.1 Role of type 2 inflammation-related cytokines in
BP

In contrast to PV, BP is characterized by not only blister formation

but also by the frequent presence of erythema, urticaria, eczematous-

like rashes, and intense pruritus. This is due to the involvement of IgE

and various innate immune cells, such as eosinophils and mast cells, in

the pathogenesis of BP, indicating a close association between BP and

type 2 inflammation. Indeed, Multiple studies have demonstrated

elevated levels of type 2 inflammation-related cytokines, including

IL-4, IL-5, IL-13, IL-31, and TSPL in BP patients (239–242).

IL-4 is particularly implicated in BP pathogenesis due to its role

in Th2 cell differentiation and its facilitation of B cell

immunoglobulin class switching to IgG1 and IgE (56). Pickford

et al. reported that peripheral blood mononuclear cells from BP

patients exhibit a significant increase in IL-4 secretion upon

exposure to NC16A peptides (243). Furthermore, recent research

has identified two major epitope peptides within BP180-NC16A

that correlate with the induction of IL-4 production and

autoantibody secretion in BP (244). IL-13, which shares

functional similarities with IL-4 through its action on the IL-4Ra,
is also implicated in BP. It synergizes with IL-4 to enhance B cell
Frontiers in Immunology 12
differentiation and IgE production (224). Researchers have reported

the association between IL-13 gene polymorphism and the risk of

BP (245, 246). In addition, IL-13 levels have been found to be

positively correlated with the severity of pruritus in BP (247).

Due to their pivotal role in the pathogenesis of BP, several

targeted therapeutic agents have been developed and are now in

clinical use. Among these, dupilumab has garnered considerable

attention. Since Alex et al. first reported the successful treatment of

a refractory case of BP with dupilumab in 2018 (248), multiple case

reports, case series, retrospective cohort studies, and systematic

reviews have further substantiated its efficacy (249–252). These

studies consistently demonstrate that dupilumab is a safe and

effective therapeutic option, and its combined use with

corticosteroids or immunosuppressants is recommended for the

treatment of moderate to severe BP (253). Furthermore, a

multicenter, randomized, double-blind, placebo-controlled clinical

trial (NCT04206553) is underway, led by Dédée et al., to assess the

efficacy and safety of dupilumab in adult patients with BP (254).

Recently published data demonstrate that the dupilumab treatment

group achieved all primary and secondary endpoints, including a

significantly higher proportion of patients achieving complete

remission, reduced disease severity, and alleviated pruritus

compared to the control group, with no differential safety profile

observed (255). Tralokinumab, a monoclonal antibody targeting

IL-13, has also been documented in the successful treatment of a

patient with BP complicated by end-stage kidney disease (256).
FIGURE 3

Cytokine involvement in bullous pemphigoid (BP). Patient-specific factors and external stimuli lead to the exposure of BPAG antigens, recognized
and presented by dendritic cells to naïve CD4+ T cells. These cells differentiate into CD4+ T cell subsets that secrete cytokines inducing pruritus and
vesicle formation, predominantly through the JAK-STAT pathway. Specifically, Th2 cells secrete IL-4 and IL-13, which regulates IgG and IgE isotype
switching, while IL-5 enhances eosinophil accumulation and activation. Eosinophils secrete IL-31 and toxic proteins, contributing to local
inflammation. Th17 cells produce IL-17 and IL-23, activating neutrophils that release neutrophil elastase and MMP-9, degrading the extracellular
matrix and disrupting dermal-epidermal junctions. Tfh cells stimulate high-affinity autoantibody production by B cells via IL-21. However, the role of
Treg cells in BP remains controversial. Figure image created with Adobe Illustrator2023.
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IL-5 serves as a pivotal cytokine for the maturation, survival,

and functional activity of eosinophils, with its levels correlating with

the severity of BP (257). In the presence of BP autoantibodies, IL-5

can activate eosinophils, which are implicated in the direct

promotion of dermal-epidermal separation (258). Furthermore,

another study has demonstrated that IL-5 is elevated in BP blister

fluid, and is essential for the release of toxic proteins by eosinophils

and the detachment of keratinocytes (259). Immunotherapies

targeting the neutralization of IL-5 and its receptor have been

documented in the treatment of, including mepolizumab,

reslizumab, and benralizumab (260). A phase 2 double- blind trial

(NCT01705795) of mepolizumab in BP demonstrated a significant

reduction in peripheral blood eosinophil counts among treated

patients. However, there were no significant differences in the

proportion of patients remaining relapse-free or in the median

time to relapse between the mepolizumab and placebo groups (261).

For reslizumab, to date, two cases of refractory BP have been

reported successfully managed with reslizumab, highlighting its

efficacy in treating this condition (262, 263). In addition, recently,

Arisa et al. reported a severe asthma patient developing BP during

treatment with benralizumab. The authors hypothesized that BP

may paradoxically arise through diverse mechanisms, even with

therapeutic agents typically efficacious against the condition (264).

A phase 3, double-blind clinical trial (NCT04612790) is currently

evaluating benralizumab for BP treatment.

IL-31 serves as a principal inducer of pruritus and

predominantly produced by eosinophils, is posited to exert

immunomodulatory effects, specifically by promoting Th2-type

immune responses (265). Elevated levels of IL-31 were detected in

both lesional tissue and serum in BP patients (266, 267), and

chemotactic and stimulated eosinophils to release reactive oxygen

species and the chemokine CCL26 (268). While IL-31’s

contribution to BP-associated itching is recognized, its role as the

principal mediator of pruritus in BP remains to be definitively

established. Nemolizumab, a monoclonal antibody directed against

the IL-31RA, has shown efficacy in reducing pruritus in AD and

prurigo nodularis (269). This suggests that nemolizumab may also

be effective in the treatment of pruritus in BP, underscoring the

need for further exploration of its therapeutic potential in

this condition.

TSLP is a critical initiator of type 2 allergic responses, activating

DCs, ILC2, naïve CD4+ T cells, and Th2 cells, and is implicated in

the pathogenesis of itching (270). Elevated concentrations of TSLP

have been reported in skin lesions, blister fluid, and sera of patients

with BP (271–274). Dysfunction of BP180 has been shown to

upregulate TSLP expression in keratinocytes, and this

upregulation is strongly correlated with the severity of itch in a

mouse strain. Moreover, the administration of an anti-TSLP

neutralizing antibody could result in diminished scratching

behavior, indicating the potential therapeutic efficacy of TSLP

inhibition (271). Although no clinical trials have yet been

conducted on TSLP inhibitors for BP treatment, Tezepelumab—a

human monoclonal antibody targeting TSLP—is currently in trials

for asthma and AD (275). Given its potential, Tezepelumab may

emerge as an adjunctive therapy in BP treatment, offering a novel
Frontiers in Immunology 13
approach to alleviate pruritus and enhance the quality of life

for patients.

4.2.1.2 Role of Th17 cytokines in BP

The role of IL-17 and IL-23 in the pathogenesis of BP has been

underscored by multiple studies demonstrating elevated levels of

these cytokines in lesional skin, blister fluid, and serum of BP

patients (276–280). Notably, persistently increased serum levels of

IL-17 and IL-23 have been correlated with a higher risk of disease

relapse post-treatment initiation (280). Genetic associations have

also been identified, with two single-nucleotide polymorphisms

(rs2201841 and rs7530511) in the IL-23R linked to BP (281). The

absence of the NC14A domain of BP180 in mice triggers an

autoimmune response against the cutaneous basement

membrane, which is mitigated by anti-IL-17A treatment (282).

IL17A-deficient mice exhibit resistance to autoantibody-induced

BP, and pharmacological inhibition of IL-17A has been shown to

reduce BP induction (283). These cytokines are implicated in BP

development through the upregulation of MMP-9 and neutrophil

elastase expression, processes that facilitate the separation of the

dermis and epidermis (284, 285). Additionally, IL-17 and IL-23

have been shown to upregulate the expression of the glucocorticoid

receptor-b, potentially contributing to glucocorticoid resistance in

BP (286). Collectively, these findings suggest that the IL-17 axis

plays a functional role in BP, and targeting this pathway with

biologics presents a promising therapeutic strategy.

Indeed, targeting the IL-17/IL-23 axis has shown efficacy in

patients with coexisting BP and psoriasis (287, 288). However, there

are reports of new-onset BP in individuals treated with

ustekinumab, secukinumab, or guselkumab for psoriasis,

highlighting the complexity of cytokine-targeted therapies (289–

291). A phase 2 open-label clinical trial (NCT03099538)

investigating ixekizumab, a monoclonal antibody against IL-17A,

did not meet its primary endpoint, as no cessation of blister

formation within 12 weeks. Despite this setback, ongoing clinical

trials are exploring the efficacy of biologics targeting IL-12/23

(Ustekinumab, NCT04117932) and IL-23 (Tildrakizumab,

NCT04465292) in BP patients.

4.2.1.3 Tfh and IL-21 in BP

Tfh cells play a pivotal role in the generation of high-affinity

autoantibodies by B cells within germinal centers through the

secretion of IL-21 (292). The proportion of circulating Tfh cells

and the plasma levels of IL-21 have been found to be markedly

elevated and exhibit a positive correlation with both anti-BP180-

NC16A autoantibody titers and disease severity in BP. In vitro

studies have shown that the depletion of Tfh cells or the blockade of

IL-21 can effectively suppress T cell-mediated B cell activation and

the secretion of BP autoantibodies (293). Ohuchi et al. have

reported an increase in both CXCL13, a chemokine critical for

Tfh cell homing to germinal centers, and Tfh cells in the lesional

skin and peripheral blood of BP patients, with a positive correlation

to serum anti-BP180-NC16A titers (294). Furthermore, in STAT6-

deficient scurfy mice, which are incapable of Tfh cell development,

the Tfh cell population is markedly reduced, and these mice exhibit
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diminished production of autoantibodies against BP antigens (295).

Collectively, these findings underscore the importance of the Tfh/

IL-21 axis in the immunopathogenesis of BP and suggest that

modulation of this pathway could represent a promising

therapeutic approach for the disease.

4.2.1.4 Treg and IL-10 in BP

The presence of Tregs and the cytokine IL-10 in peripheral

blood and skin of BP patients is a subject of ongoing debate. Some

studies have reported a decrease in the frequency of Tregs and IL-10

levels in BP, correlating with disease activity, while others have

yielded conflicting results (240, 296–299). Nonetheless, it is

established that Tregs are crucial for maintaining peripheral

immune tolerance by suppressing the activation and proliferation

of autoreactive T cells. In both human conditions such as immune

dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX)

syndrome, and in animal models like scurfy mice, Treg deficiency is

associated with the spontaneous generation of autoantibodies

against BP180 and BP230, suggests a significant role for Tregs in

the regulation of autoantibody production in BP (295, 300).

However, the precise role of Tregs in the pathogenesis of BP—

whether they play a primary or ancillary role—remains to be

elucidated through further investigation.

4.2.1.5 Other proinflammatory cytokines in BP

Elevated expression of multiple pro-inflammatory cytokines,

including IL-1b, IL-6, and TNF-a, has been observed in the serum

of patients with BP and correlates positively with disease severity

(207). IL-6 may be implicated in the development of BP by

promoting the differentiation of Th17 and Tfh cells, as well as the

production of antibodies by B cells (301). TNF-a can induce the

release of inflammatory mediators such as IL-1, IL-6, IL-8, eotaxin-

1, and MMP-9, and modulate the differentiation of T and B cells

(302). Similarly, IL-1b can facilitate the release of TNF-a, IL-6, and
MMP-9, leading to the recruitment of immune cells and the

development of T-cell and B-cell-driven inflammatory responses

(303). Despite the association of these cytokines with BP

pathogenesis, their specificity in the disease is constrained. To

date, no studies targeting IL-6/IL-6R or IL-1b for the treatment of

BP have been reported. The application of TNF-a inhibitors in BP

treatment has been documented in several case reports with

inconsistent outcomes (304, 305), and in some instances, the use

of TNF-a inhibitors has been associated with the onset of BP (306).

The presented data indicate that, similar to pemphigus vulgaris,

the pathogenesis of BP is primarily linked to Th2 (IL-4, IL-5, IL-13,

IL-31) and Th17 (IL-17, IL-23) cytokines. These cytokines are

variably involved in the production of autoantibodies, the

recruitment of eosinophils and neutrophils, the induction of

pruritus, and the formation of bullae. Clinical trials targeting

individual cytokines with biologic agents are currently in

progress, with some showing favorable therapeutic outcomes,

while others have demonstrated less satisfactory results. This

variability suggests that BP is not a disease dominated by a single

cytokine. Therefore, the concurrent inhibition of multiple
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cytokines, such as with JAK inhibitors, may offer a novel and

potentially efficacious therapeutic alternative for this condition.

4.2.2 JAK inhibitors in bullous pemphigoid
The involvement of the JAK/STAT signaling pathway in the

pathogenesis of BP has been established. Juczynska et al. reported

increased expression of all STAT proteins and JAK2 and JAK3 in

BP skin lesions, and they proposed that JAK2 is implicated in the

signaling pathways of IFN-g and IL-5, whereas JAK3 predominantly

influences the IL-4 and Th17 axes (307). Our recent findings

indicate significantly elevated levels of phosphorylated STAT3

and STAT6 in BP lesions, reflecting overactivation of the JAK-

STAT pathway at both the protein and transcriptional levels, as

confirmed by immunohistochemistry (IHC) and transcriptome

sequencing. Notably, these levels were substantially reduced

following treatment with the JAK inhibitor tofacitinib (308). A

review of the literature identified 17 cases of BP patients treated

with JAK inhibitors since 2022 (309–317). The JAK inhibitors used

included tofacitinib (JAK1/3, in 10 patients), baricitinib (JAK1/2, in

1 patient), upadacitinib (JAK1, in 3 patients), and abrocitinib

(JAK1, in 3 patients). The treatment showed high efficacy and an

acceptable safety profile (Table 2).

In summary, while JAK inhibitors present promising new

therapeutic avenues for managing refractory PV/BP, the absence of

large-scale randomized controlled trials (RCTs) and head-to-head

comparison of JAK inhibitors and current first-line treatments—

such as rituximab, corticosteroids, and dupilumab—limits our

understanding of their relative efficacy, safety, and cost-effectiveness

in PV/BP patients.
5 Safety issues of JAK inhibitors

The safety profile of JAK inhibitors was initially regarded as

comparable to biologic DMARDs (bDMARDs) based on early

clinical trials in rheumatoid arthritis (RA) patients without severe

comorbidities, which showed no significant increase in major adverse

cardiovascular events (MACEs), venous thromboembolism (VTE), or

malignancies, except for a higher risk of herpes zoster (318–327).

However, this perspective shifted after the FDA’s 2021 black box

warning, prompted by findings from the ORAL Surveillance trial

(A3921133; NCT02092467).

The ORAL Surveillance was a 4-year, randomized, open-label,

non-inferiority, post-authorization safety endpoint trial, compared

tofacitinib (5 mg or 10 mg twice daily) with TNF inhibitors

(etanercept or adalimumab) in RA patients (aged ≥50 years with

at least one additional cardiovascular risk factors).The risks of

MACE and cancers (excluding nonmelanoma skin cancer) were

higher with the combined tofacitinib doses compared to TNF

inhibitors, and the non-inferiority of tofacitinib was not

demonstrated (328). Specifically, for tofacitinib at the approved

dose of 5 mg twice daily, the ORAL Surveillance trial showed a

numerically but not statistically higher risk of MACEs, serious

infections, adjudicated hepatic events, VTE, deep vein thrombosis,
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pulmonary embolism, or adjudicated death from any cause

compared to a TNF inhibitor. Additionally, there was a

numerically and statistically significant increase in the risk of

malignancies and adjudicated opportunistic infections, including

herpes zoster and tuberculosis, as well as all cases of herpes zoster

(both nonserious and serious) (328).

Following these results, FDA expanded safety warnings to all

JAK inhibitors (baricitinib, upadacitinib, filgotinib), and the

European Medicines Agency emphasizing caution in high-risk

populations, including patients aged ≥65 years, smokers, and

those with cardiovascular/metabolic comorbidities or prior

histories of malignancies or VTE (329, 330). Subsequent post-hoc

analyses of the ORAL Surveillance trial data have further elucidated

which patients are at the highest risk for MACEs, malignancies,

VTE, and death: (1) Patients with high risk or history of ASCVD

have the highest risk of MACEs, and the appropriate use of statin

therapy should be considered (331). (2) The increased incidence of

malignancies is associated with a history of MACEs or ASCVD

(332). (3) The risk of VTE is heightened in patients with a prior

history of VTE, active RA, advanced age, obesity, or those

undergoing hormone replacement therapy, when treated with

either tofacitinib or TNF inhibitors. The causal role of JAK

inhibitors in VTE remains inconclusive (333). (4) Elderly

patients, smokers, and those with active disease are more

susceptible to infections when treated with JAK inhibitors (334,

335). (5) Events including MACEs, malignancies, VTE, and serious

infections nearly exclusively occur in “high-risk” patients (aged ≥ 65

years and/or former smokers), and are seldom seen in “low-risk”

patients (aged < 65 years with no smoking history) (336). These

studies provide valuable insights into better understanding of the

true risks associated with JAK inhibitor use in clinical practice and

how to mitigate such risks.

However, the ORAL Surveillance study has also raised several

unresolved issues. Firstly, sustained systemic inflammation and

disease activity have been identified as significant contributors to

the development of MACEs, malignancies, VTE, and infections in

patients with RA (337, 338). It remains contentious whether the

adverse events observed in the ORAL Surveillance study are due to

the disease itself or to the toxicity of tofacitinib. As several studies

utilizing surrogate markers have revealed that JAK inhibitors can

mitigate cardiovascular risk by reducing inflammation (339, 340).

Secondly, the ORAL Surveillance study lacks a comparator group

treated with placebo or conventional synthetic DMARDs

(csDMARDs). This limitation precludes answering whether JAK

inhibitors reduce the incidence of MACEs, malignancies, and VTE

compared to inadequate treatment or csDMARD therapy in RA

patients. The study only indicates that JAK inhibitors may not be as

effective as TNF inhibitors in reducing the risk of these events, as

TNF inhibitors have been shown to decrease the occurrence of

MACEs (341).

Several clinical trials, meta-analyses, and integrated safety

analyses for dermatological conditions such as AD, psoriasis, and

AA have also confirmed the favorable safety profile of JAK
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inhibitors (342–344). Common adverse reactions include

respiratory tract infections, nasopharyngitis, headache, and herpes

zoster, all of which are self-limiting or can be alleviated with

symptomatic treatment. The incidence of serious adverse events,

such as MACEs, malignancies, and VTE, is not different from that

of the control group. Similar to the ORAL Surveillance study, the

incidence of these serious adverse events is also higher in

dermatological patients aged 65 or older or those with a history

of smoking (345). Due to the limited application of JAK inhibitors

in AIBD, there have been no reports of serious adverse events to

date. However, since pemphigus and pemphigoid diseases

predominantly affect the elderly, and these patients have a higher

risk of malignancies (346), VTE (347), and MACEs (348) compared

to the general population, vigilance is warranted when using JAK

inhibitors. Accordingly, prior to treatment initiation, a detailed

medical history should be obtained to assess for VTE, malignancies,

and associated risk factors. A comprehensive blood count, liver and

kidney function tests, lipid panel, and screenings for hepatitis B,

hepatitis C, HIV, and tuberculosis are recommended. Adult patients

are advised to receive pneumococcal and herpes zoster vaccinations.

Routine monitoring during treatment is essential, with particular

attention to complete blood count, creatinine clearance, kidney and

hepatic function. Dose adjustment or discontinuation is

recommended in cases of significant hemoglobin decline (greater

than 2 g/dL or levels below 8 g/dL), absolute neutrophil count

between 500–1000/mm³, absolute lymphocyte count between 500–

750/mm³, creatinine clearance between 30–60 mL/min or less than

30 mL/min, or in the presence of severe hepatic impairment (349).
6 The selectively of JAK inhibitors

JAKs are composed of approximately 1000 amino acids, with

molecular weights ranging from 120 to 140 kDa, and consist of

seven homology domains (JH1-7). The JH1 domain is the active

kinase catalytic domain, containing conserved tyrosine residues

that are the principal targets for JAK inhibitors. The high degree of

homology among the JH1 domains of different JAK isoforms

presents a challenge for the development of highly selective

inhibitors. Selectivity of JAK inhibitors is evaluated in vitro

assays using purified enzymes or cytokine stimulation with

assessment of pSTAT activation. In vitro kinase assays and

cellular assays have demonstrated that tofacitinib selectively

inhibits cytokines signaling through JAK1 and JAK3 over JAK2,

baricitinib shows specificity for JAK1 and JAK2 over JAK3, and

both upadacitinib and abrocitinib are identified as selective JAK1

inhibitors (350–352). Table 3 illustrates the enzymatic and whole-

cell activities of JAK inhibitors reported for the treatment of BP,

where a lower IC50 value indicates greater potency. Selectivity for

a specific JAK isoform is determined by the IC50 values and the

ratios between them for the different JAK isoforms. The outcomes

are contingent upon the assay substrates, cell lines, and cytokines

being measured.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1563286
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1563286
Although currently approved drugs have demonstrated varying

degrees of selectivity for JAK isoform, the capacity of each JAK

inhibitor to inhibit specific cytokine-signaling pathways is not

readily predictable from preclinical selectivity data in direct cell-

based assays. For instance, Dowty et al. compared the inhibitory

effects of tofacitinib, baricitinib, upadacitinib, and filgotinib on

cytokine-induced STAT phosphorylation patterns in whole blood

cells at clinically efficacious doses, revealing generally similar

cytokine receptor inhibition profiles with minor numerical

differences (353). An additional in vitro pharmacological analysis

examined the regulation of cytokine signaling by baricitinib,

upadacitinib, and tofacitinib in human leukocyte subpopulations.

While distinct cytokine pathways were modulated to varying

degrees by different JAK inhibitors, no single agent potently or

continuously inhibited an individual cytokine signaling pathway

throughout the dosing interval (354). In an industry-sponsored

study, filgotinib was found to inhibit JAK1-mediated signaling

similarly to other JAK inhibitors but with reduced inhibition of

JAK2-dependent and JAK3-dependent pathways (355). Moodley

et al. assessed the in vivo impact of pan- and selective JAK inhibitors

in mice through immunologic, genomic, and epigenomic profiling.

While selective cell type-specific effects of JAK inhibitors were

observable, there was a high overall overlap between these

compounds (356). Clinically, no head-to-head trials have

compared the efficacy of these agents; however, they have all

demonstrated similar therapeutic effects in various autoimmune

or immune-mediate diseases, such AR (357, 358), inflammatory

bowel disease (351), AD (359) or AA (360). In summary, current

experimental data do not conclusively indicate the potential

advantages of higher selectivity in next-generation JAK inhibitors.

It is only through rigorous clinical testing, including head-to-head

studies and real-world application, that the clinical significance of

differences between various JAK inhibitors will be determined.
7 Conclusions

In recent years, advancements in understanding cytokine biology

and its regulatory interplay with autoimmunity have catalyzed a
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revolution in the treatment of autoimmune diseases. Despite this

progress, the persistent burden of these conditions underscores the

ongoing need for novel therapeutics. Small molecule targeted drugs,

such as JAK inhibitors, capable of simultaneously blocking multiple

cytokines signaling pathways, have demonstrated remarkable efficacy

in a variety of autoimmune and immune-mediated inflammatory

diseases, heralding a new era in treatment.

This review comprehensively summarizes the role of cytokines

signaling through the JAK-STAT pathway in the pathogenesis of BP

and PV, positing JAK inhibitors as a potential novel therapeutic

approach for AIBD. However, the specific mechanisms of JAK/

STAT in the pathogenesis and progression of AIBDs remain to be

fully elucidated. The distinct roles of JAK1, JAK2, JAK3, and TYK2

in PV and BP remain unclear, necessitating further research to

clarify their contributions to disease mechanisms. Additionally, the

interplay between STAT-dependent and non-STAT-dependent

pathways in cytokine signaling requires exploration, as they may

differentially impact disease progression and treatment outcomes.

The correlation between JAK-STAT activation and disease severity

also remains poorly understood, highlighting the need for

mechanistic studies to determine whether JAK inhibitors block

autoantibody production or merely reduce inflammation.

In summary, despite the promising therapeutic prospects,

challenges remain in optimizing the use of JAK inhibitors.

Selectivity for different JAK isoforms, potential side effects, and

long-term safety concerns are areas that require further

investigation. Additionally, the identification of biomarkers to

predict treatment response and the development of combination

therapies to enhance efficacy and reduce toxicity are active areas of

research. Currently, there is a lack of comprehensive data on these

aspects, and future studies will be essential to fill these gaps.
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