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Multi-omics analyses construct
an inflammatory response based
prognostic gene signature for
cervical cancer and suggest
tumor infiltrating monocytes
subgroups as key players
Yidong Zhang1†, Jiawei Zhu1†, Ke Hu1, Jie Qiu1*

and Fuquan Zhang1,2*

1Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of
Medical Sciences and Peking Union Medical College, Beijing, China, 2Department of Radiation
Oncology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Background: Inflammatory response in the tumor micro-environment

contributes to the progression and treatment response of various types of

cancers. However, for cervical cancer, a type of cancer initiated by the

infection of HPV, the clinical relevance of the inflammatory response and the

underlying mechanisms remain to be elucidated.

Methods: The RNA-seq and clinical data of cervical cancer patients in several

public datasets was used to construct and validate a prognostic gene signature

based on the inflammatory response related genes. Risk stratification of patients

was carried out according to this gene signature, and bioinformatic analyses

were conducted to depict the immune landscape, identify the enriched

biological pathways and predict patients’ treatment response. Single-cell and

bulk RNA-seq data was jointly analysed to explore the underlying cellular and

molecular mechanisms of the gene signature. The RNA-seq data of our own

cohort and additional public datasets was used to further validate the findings

made in this study.

Results: A prognostic gene signature consisting of 16 inflammatory response

related genes was constructed and successfully validated on multiple testing

datasets. Patients in the low-risk group defined by this gene signature had

significantly better survival (hazard ratio [HR]=0.48, 95% Confidence Interval

[CI]: 0.275-0.85; Multivariate analysis on the CGCI testing dataset). The two risk

groups had different immune landscapes, enriched biological pathways and

predicted sensitivity to chemo-, radio- and immune-therapy. Two subgroups

of tumor infiltrating monocytes with possibly opposite functions might be

actively involved in the inflammatory response. SERPINE1 and ITGA5 expressed

on endothelial cells might have synergic effects and regulate the infiltration of

monocytes and macrophages. Findings were successfully validated with our own

RNA-seq data and on additional public datasets.
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Conclusion: The inflammatory response in the tumor micro-environment of

cervical cancer, possibly jointly regulated by multiple TIM subgroups, is

associated with the prognosis and treatment response of cervical cancer

patients and may be potential treatment targets.
KEYWORDS

cervical cancer, inflammatory response, gene signature, prognosis, treatment response,
single-cell RNA sequencing, multi-omics analysis, tumor infiltrating monocytes
1 Introduction

Cervical cancer (CC) is the fourth most common cancer among

females and causes over 300,000 deaths around the world each year,

posing a great challenge to the modern health care system (1). At

present, risk stratification and treatment decision for CC patients

are still mainly based on the FIGO staging. In the past years, with

the fast development of machine learning algorithms (2–4) and the

establishment of publicly available -omics datasets, predictive and

prognostic models have been constructed, aiming to advance

individualized treatment of CC patients (5–11). These models not

only facilitated the risk stratification of CC patients but also

brought insights to the mechanisms of tumor progression and

treatment resistance.

Tumor-promoting inflammation was recognized as an enabling

characteristics of cancer in 2011 (12). It was found to be not only

related to the initiation and progression of tumors (13–16), but held

promise for cancer treatment as well. For instance, drugs interrupting

the lasting inflammation like JAK inhibitors were shown to be

synergic with cancer immunotherapy in clinical trial (17). For

many cancer types including cervical cancer, prognostic gene

signatures based on inflammatory response related genes have been

constructed, which were found to have associations with

characteristics of tumor, including their immune landscape,

stemness and mutational burden, as well as response to chemo/

immunotherapy (18–22). For CC, it is likely that the inflammatory

response plays a more active part than other cancer types, as chronic

HPV infection causes the vast majority of CC, creating an

inflammatory local environment for the tumor (23). To date, many
IC, tumor infiltrating
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systemic inflammation markers such as the Systemic Inflammation

Response Index (SIRI) have been identified as prognostic markers for

CC (24–26). Meanwhile, via analyzing gene expression data, the

association between the relapse of CC and the inflammatory response

in the tumor microenvironment (TME) has also been identified (27).

However, till now relevant studies have not explored the underlying

mechanisms of the prognostic inflammatory response related genes.

In recent years, single-cell technology and data has been developing

and accumulating swiftly, which has tremendously improved our

ability to interrogate the functions of genes in different types of cells

in the tumor microenvironment.

In this study, we developed and validated a prognostic multi-gene

signature for CC composed of inflammatory response related genes

(28–31), and found that CC patients in different risk groups defined

by this gene signature had distinct enriched biological pathways,

immune landscapes and sensitivity to common anti-cancer therapies.

Via multi-omics analyses we discovered that two subgroups of tumor

infiltrating monocytes (TIM) might have important and different

roles in regulating the inflammatory response in the TME, which was

further validated with our own data and additional public datasets.

Besides, we found that SERPINE1 and ITGA5 expressed on

endothelial cells might have synergic biological effects and were

associated with the infiltration of TIM. In summary, our study

demonstrates the importance of considering inflammatory response

in the risk stratification and treatment optimization for CC patients.

In addition, certain groups of TIM as well as their interactions with

other cells are involved in the inflammatory response, and may

therefore serve as potential therapeutic targets.
2 Materials and methods

The flowchart of this study was shown in Supplementary

Figure S1.
2.1 Construction of the prognostic gene
signature

200 inflammatory response related genes were downloaded

from the GSEA website (http://www.gsea-msigdb/org/gsea/
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index.jsp) (Supplementary Table S1). The bulk RNA-sequencing

(RNA-seq) data of the TCGA-CESC cohort was obtained from the

Genomic Data Commons (GDC, https://portal.gdc.cancer.gov/)

website. The raw count data was normalized using the “voom”

algorithm in the R package “limma”. To construct the gene

signature, univariate Cox regression was firstly applied to screen

for individual prognostic genes, with overall survival (OS) used as

the clinical endpoint. P-value smaller than 0.01 was chosen as the

significance threshold. With individual candidate genes, Lasso-

COX regression was used to construct the final multi-genes

prognostic signature by shrinking the coefficients of less relevant

genes to zero. More specifically, on the training dataset (TCGA

dataset) Lasso-COX models were fitted and the penalty term

“Lambda” of the model was determined by “three-folds cross

validation”. The “Harrel C-Index” (measures the predictive

discrimination of a survival model in terms of its ability to rank

individuals’ survival times) was used to evaluate different models

(with different values of Lambda) on the validation data so that the

optimal value of Lambda could be identified. With Lambda fixed,

the inflammatory response related genes with non-zero coefficients

were selected to construct the final model.
2.2 Validation of the prognostic gene
signature

The CGCI-HTMCP-CC (CGCI) dataset (29) was used as the

main validation dataset of the prognostic gene signature. It

contained the bulk RNA-seq and clinical data of 118 CC patients.

OS was again used as the clinical endpoint. For each patient, the

inflammation risk score was calculated as:oibi � Gi, where “b” in
the equation were the regression coefficients of genes in the

inflammation signature, and “G” were the expression values of

genes in the signature. All patients were divided into high (high

inflammation score) and low (small inflammation score) risk

groups using the median score of the entire cohort as cut-off.

Survival probability of the two groups was estimated using the K-

M (Kaplan-Meier) analysis, and significance of difference was tested

using the log-rank test. The R-package “survival-ROC” was used to

calculate the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve (AUROC). In addition, multivariate

COX regression was conducted with both the risk groups defined

by the inflammation score and other important clinical variables as

predictor variables.

To further validate the gene signature, a GEO microarray

dataset (“GSE68339”) with 246 CC patients’ survival data (OS)

was used, and the validation method was same as that for the CGCI

dataset. As an additional validation, the paired microarray data and

patients’ response to concurrent chemo-radiotherapy from the

GEO dataset “GSE168009” was utilized. The inflammation scores

were compared between the groups of patients with/without

durable clinical benefit (defined as having Disease free survival

(DFS) larger than five years and smaller than three years).
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2.3 Immune landscape of tumor
microenvironment

Various immune components of the TME were estimated using

bioinformatics tools and compared between the high and low risk

groups defined using the inflammation score on the TCGA-CESC

and TCGA-CGCI datasets. The overall fractions of immune and

stroma cells were calculated using the algorithm “ESTIMATE” (32).

Diverse tumor infiltrating immune cells (TIIC) were estimated

using both marker gene-based algorithms [XCell (33) and MCP-

counter (34)] and deconvolution algorithms [Cibersort-abs (35)

and quantiseq (36)]. The expression values of multiple MHC (major

histocompatibility complex) and immune checkpoints (IC)

molecules were also compared between the two risk groups.
2.4 Gene set enrichment analysis and
single-sample gene set enrichment
analysis

To compare the enrichment of diverse biological pathways

between the high and low-risk groups, the R package “limma”

was firstly used to identify differentially expressed genes (DEGs)

between the two risk groups, and then the R package “fgsea” was

used to carry out GSEA. The reference gene sets for GSEA were the

hallmark gene sets in the human MSigDB database (https://

www.gsea-msigdb.org/gsea/msigdb). ssGSEA was applied using

the R package “GSVA” to calculate different functional scores of

each individual using the corresponding marker genes

(Supplementary Table S2).
2.5 Patients’ predicted response to major
anti-cancer treatments

Patients’ response to chemo drugs (in the form of half maximal

inhibitory concentration, IC50) was predicted based on their gene

expression data and the information in the Genomics of Drug

Sensitivity in Cancer (GDSC) database using the R package

“pRRophetic” (37). The GDSC database contained the drug

sensitivity information of nearly 700 cancer cell lines to 138 anti-

cancer drugs, including both approved drugs and drugs in clinical

trials/early phase development. The radiosensitivity index (RSI)

(38) is a pan-cancer gene signature that measures the intrinsic

sensitivity of tumor to radiotherapy, which was constructed based

on cancer cells’ in vitro survival rate upon exposure to SF2 (2 Gy

radiation). It was calculated for each individual to investigate the

correlation of the inflammation score with patients’ predicted

sensitivity to radiotherapy. Patients’ response to immune

checkpoint (IC) blockers was predicted with two tools: 1) The R

package “EaSIeR”, which comprehensively characterizes the TME

from different perspectives (such as TIIC and intra-/intercellular

communications) based on the gene expression data, and then
frontiersin.org
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predicts the outcome of immunotherapy by integrating all these

information (39); 2) The “TIDE” score, which predicts response to

immunotherapy by modelling two tumor immune evasion

mechanisms (40). We also used the above algorithms to analyze

the association between CC patients’ predicted treatment responses

and their scores of three immune signatures (20, 41, 42)

(Supplementary Table S3) developed in recent years for

comparison with the inflammation signature. These immune

signatures were selected as relatively reliable ones among others

since they had been validated on independent datasets. Multivariate

COX regression models were fitted using the risk groups defined by

the scores of the inflammation/immune signatures and other

important clinical variables as independent variables and

covariates, so that the additional prognostic value of the

inflammation gene signature over the immune gene signatures

could be assessed.
2.6 Analysis of single-Cell RNA sequencing
data

The scRNA-seq data of 18 CC patients from two publicly available

datasets (the “GSE171894” dataset contains four CC samples and was

used as the discovery dataset; the dataset “SDBS11624” at the “science

data bank” (10.57760/sciencedb.11624) contains 14 CC samples and

was used as validation dataset) was downloaded. The R package

“Seurat” was used to process the scRNA-seq data. Cells with over

10%mitochondrial gene expression and cells with total gene expression

values ranging below 200 or above 7000 were excluded. The

“RunHarmony” function in the R package “Harmony” was used to

remove the batch effect when multiple samples were jointly analyzed.

Functions “FindNeighbors” and “FindClusters” in the Seurat package

were used to cluster single cells, and the “resolution” parameter of the

clustering algorithmwas chosen using the result given by the R package

“clustree” as reference, where the movement of samples between

clusters can be visualized as the total number of clusters increase.

Marker genes of different cell types (including cancer cells, various

immune cells, fibroblasts, endometrial stromal cells, etc) from previous

studies (43, 44) were used to annotate the obtained cell clusters. The R

package “escape” was used to carry out GSEA for single cell clusters.

The “Hallmark” gene-sets from the “MsigDB” collections (https://

www.gsea-msigdb.org/gsea/msigdb/collections.jsp) were used as the

reference gene sets for GSEA. The R package “liana” (45) was used

to infer cell-cell communication between each pair of cell clusters,

based on prior knowledge of ligand-receptor interactions and the

gene expression data of single cells.

To further investigate the heterogeneity of TAM (tumor

associated macrophages), which were found to have higher

inflammation scores than other cell types, the macrophages of all

samples were extracted, combined and further clustered using the

above Seurat functions. Functional signatures and marker genes of

different TAM sub-clusters were obtained from previous studies,

and their values were calculated and compared between

macrophage sub-clusters (46–48). The marker genes of

macrophage subclusters from the two scRNA datasets were found
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by running the “FindAllMarkers” function (with the “min.pct”

parameter set to 0.3 and the “min.diff.pct” parameter set to 0.2;

only positive markers of macrophage sub-clusters were kept) in the

“Seurat” package on the whole scRNA-seq data. The top 3,000 most

variable genes across all macrophage sub-clusters and the top 3,000

most variable genes across all types of single cells in a dataset were

used as the input, separately. Markers genes shared by more than

one macrophage sub-cluster on the same dataset and marker genes

of other cell types (e.g. Dendritic cell, Neutrophil, etc) were

removed before the analysis. The number of overlapped marker

genes of each pair of macrophage sub-clusters from the two datasets

was calculated to identify the corresponding sub-clusters in the two

datasets. The general similarity of macrophage sub-clusters from

the two scRNA-seq datasets was also calculated using the R package

“ClusterFoldSimilarity”, based on the average vector module and

sign of the product of logarithmic fold-changes (49). Pathway

enrichment analysis for single cell clusters was carried out using

the R package “progeny”, with the “limma” package used to test the

significance of difference between enrichment scores.
2.7 Multi-omics analysis across bulk-RNA
and scRNA data

To study the association between the inflammation score and

the positive marker genes of macrophage sub-clusters, ssGSEA was

applied again using the marker genes of different macrophage sub-

clusters as the reference gene sets. The enrichment scores of

different macrophage sub-clusters were compared between the

high and low risk groups defined by the inflammation score on

the three bulk-RNA datasets (CESC, CGCI, GSE68339). The

correlation between patients’ expression values of macrophage

sub-clusters’ marker genes and their inflammation score was

evaluated using multivariate linear regression, with patients’

inflammation scores as the response variable and their expression

values of macrophage marker genes as independent variables.

Tumor stage, tumor grade, tumor histology and other treatment

received by patients (surgery and radiotherapy), as well as the

quantities of different TIIC (estimated by the “quantiseq” algorithm,

including “B.cells”, “Neutrophils”, “NK.cells”, “T.cells.CD4”,

“T.cells.CD8”, “Tregs”, “Dendritic.cells” and “Other cells”) were

included as covariates in the regression analysis. To assess whether

ITGA5 and SERPINE1 may regulate TIIC infiltration, we analyzed

the correlation between their expression levels and the abundance

of TIIC (inferred using “Cibersort”, “quantiseq”, “XCell” and

“MCP-counter”).
2.8 Further validation of the findings from
scRNA analysis

23 formalin fixed paraffin embedded (FFPE) samples of cervical

adenocarcinoma were obtained from those who undertook surgical

removal of their tumor in our hospital from 2024–5 to 2024-10

(these patients were part of those included in the retrospective study
frontiersin.org
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named “ATTRACT-Retro”, which was registered on the

“ClinicalTrials.gov” website (NCT 06741046)). The total RNA

was extracted from these samples, and bulk RNA-sequencing

(paired ends, 150bp per read) was then carried out on the

DNBseq-T7 platform. The correlation between the expression of

marker genes of the corresponding macrophage sub-clusters across

the two scRNA-seq datasets and patients’ inflammation score was

calculated using both our institutional cohort (23 cervical

adenocarcinoma) as well as nine public RNA-seq/microarray

datasets (including the CESC, CGCI and GSE68339 datasets, and

six additional small microarray datasets: GSE151666, GSE52903,

GSE7410, GSE9750, GSE63514, GSE7803).
2.9 Statistical analysis

The Wilcoxon rank-sum test was employed to assess the

statistical significance of score distribution differences between

two risk groups. For comparison between multiple groups, the

Kruskal-Wallis test was applied followed by the Dunn test (pairwise

tests). The two-proportions z-test was employed for the significance

of differences between proportions. The P-values were adjusted for

multiple comparisons via the Benjamini-Hochberg method. P

value<0.05 was chosen as the significance threshold for all

statistical tests. All statistical tests were carried out using R 4.2.2.
3 Results

3.1 Construction and validation of the
prognostic gene signature based on
inflammatory response genes

The univariate Cox regression identified 26 prognostic genes

(Supplementary Table S4). The Lasso-Cox regression retained 16 of

them in the final multi-genes signature (Supplementary Figure S2,

Supplementary Table S5). An inflammation score was then calculated

for each individual (Figures 1A–D), and patients were divided into

high (high inflammation score) and low (low inflammation score)

risk groups. KM analysis showed that patients in the high-risk group

had significantly shorter OS on both the TCGA (training) and CGCI

(testing) datasets. AUROC of the inflammation score was 0.819 at

five years on the training data, and 0.719 at three years on the CGCI

testing dataset (Figures 1E–H). The inflammation score had no

correlation with common clinical variables except for the T stage of

tumor (Supplementary Figure S3) on the training data. Multivariate

analysis indicated that the risk group defined by the inflammation

score was an independent prognostic factor on both the training and

testing datasets (Figures 1I, J). The inflammation score was further

validated on two additional microarray datasets. On dataset

GSE68339 the risk group was an independent prognostic factor in

the multivariate analysis, and KM analysis showed that the high-risk

group had significantly shorter OS. AUROC of the inflammation

score was 0.668 at five years. On dataset GSE168009, the averaged

inflammation score was 2.72 among the five patients with durable
Frontiers in Immunology 05
clinical benefit and 3.94 among the four patients without durable

clinical benefit (Supplementary Figure S4).
3.2 Risk groups defined by the
inflammation gene signature had distinct
biological characteristics and treatment
response

Comparative analyses were conducted between the high and low

risk groups defined by the inflammation gene signature to elucidate

the underlying biological mechanisms and explore the clinical

implication. Bioinformatic analyses were used to depict the

immune landscape of TME. The overall immune scores given by

the “ESTIMATE” algorithm were 536±702 and 122±796 for the high

and low risk groups, respectively. Four algorithms were used to

estimate the abundance of TIIC, and in general they gave consistent

results (Figure 2A, Supplementary Figures S5, S6, Supplementary

Table S6). The low-risk group had significantly more CD8+ T-cell,

Regulatory T-cells (Treg), B-cells, plasma cells and myeloid dendritic

cells and M2-macrophages compared to the high-risk group. The

low-risk group also had higher expressions of common MHC

molecules and immune checkpoints (PD1, PD-L1, CTLA-4, LAG3)

(Figures 2B–F, Supplementary Table S7). A previous pan-cancer

study classified cancers into six immune subtypes (50). For CC

patients in the TCGA-CESC cohort, the C2 subgroup (Interferon-

gamma dominant) had significantly smaller inflammation score than

the C1 subgroup (wound healing) (Figure 2G).

GSEA showed that EMT, mTOR, MYC, hypoxia and unfolded

protein response related pathways were enriched in the high-risk

group; while allograft rejection, interferon-gamma and interferon-

alpha response pathways were enriched in the low-risk group

(Figures 3A, B, Supplementary Table S8). ssGSEA showed that

the high-risk group had higher angiogenic activity, EMT (epithelial

mesenchymal transition), tumorigenic cytokine, stemness and

hypoxia scores than the low-risk group. Among them only the

hypoxia score was significantly different between the two groups on

both training/testing datasets (Figures 3C, D, Supplementary

Table S9).

Patients’ responses to chemo-, radio- and immuno- therapies were

predicted using bioinformatic algorithms. The two risk groups had

similar sensitivity to the three common chemo- drugs for CC

(Paclitaxel, Cisplatin and Gemcitabine), yet the low-risk group had

significantly larger sensitivity for two relatively novel drugs (Metformin

and Gefitinib) (Figures 4A–E). For radiotherapy, the low-risk group

had significantly smaller RSI (indicating larger sensitivity) (Figure 4F).

For immunotherapy, both the “EaSIeR” and TIDE scores suggested

that the low-risk group had better response (Figures 4G, H). On the

CGCI testing dataset, similar results were obtained for all three

treatment modalities (Supplementary Figure S7).

The inflammatory response has a close relationship with the

immune response in TME. In recent years various prognostic

immune signatures were developed and used to predict patients’

response to immunotherapy. We analyzed three immune signatures

with respect to patients’ predicted treatment responses on the CGCI
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testing dataset, and compared the results with that of the inflammation

signature. Both the inflammation signature and the three immune

signatures divided patients into risk groups with significantly different

sensitivity to chemo- drugs. For radiosensitivity, the inflammation

signature had better differentiative power, as only one of the three

immune signatures divided patients into two risk groups with

significantly different RSI. For immunotherapy, the three immune

signatures better distinguished responders/non-responders than the

inflammation signature (Supplementary Figure S8) (the differences of

averaged EaSIeR scores between the two risk-groups were 0.517, 0.380

and 0.629 for the three immune signatures, and 0.310 for the

inflammation signature). The FIGO stage, age, tumor histology and
Frontiers in Immunology
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tumor grade of the two risk groups in the TCGA/CGCI datasets were

shown in Supplementary Table S10. Multivariate Cox regression

demonstrated that the inflammation signature-defined risk groups

remained an independent prognostic factor after adjusting for

immune gene signature-based risk stratification on the CGCI dataset

(Supplementary Figure S9).

Collectively, analyses showed that the risk groups stratified by

the inflammation gene signature exhibited distinct biological

behaviors and therapeutic responses, despite comparable clinico-

pathological features, underscoring the critical need of integrating

inflammatory response in TME into the risk stratification and

treatment optimization for CC.
FIGURE 1

Construction and validation of the prognostic multi-genes signature for CC patients based on inflammatory response related genes. The TCGA-
CESC cohort (A, B, E, F, I) was used as the training dataset, and the CGCI cohort (C, D, G, H, J) as the testing dataset. (A, C) Distribution of scores of
the inflammation gene signature among patients. (B, D) The survival status and scores of the inflammation gene signature of patients. (E, G) The
Kaplan-Meier curves of OS (overall survival) of patients in the high/low risk groups defined by the inflammation gene signature. (F, H) AUC (area
under the curve) of the time-dependent ROC (receiver operating characteristic) curve of patients’ scores of the inflammation gene signature. (I, J)
Hazard ratios (HR) and P-values of important clinical variables and the risk groups defined by the inflammation gene signature given by multivariate
cox regression. Significance levels: “*”: 0.01<=P<0.05; “**”: 0.001<=P<0.01; “***”: P<0.001.
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3.3 scRNA-seq analysis shows monocyte
subclusters as regulators of the
inflammatory response in TME

The scRNA data of CC patients was analyzed to further study

the cellular basis of the inflammation gene signature in different

types of cells. In the GSE171894 dataset (the discovery dataset),

14,409 tumor cells from four CC samples passed quality control
Frontiers in Immunology 07
processes and were put together and clustered, resulting in 15

distinct cell clusters. Marker genes of different cell types were

used to annotate these cell clusters (Figure 5A). Among them,

cluster 9 exclusively expressed markers of macrophage. The

expression patterns of the 16 genes in the inflammation signature

across single cell clusters were presented in Figure 5B. Many of

them were highly expressed in macrophages, including C5AR1,

ITGA5, CCR7, IL1B, EREG, TNFAIP6 and NAMPT. There were
FIGURE 2

Comparison of the immune landscape of patients in the high and low risk groups defined by the inflammation gene signature. (A) Comparison of the
quantities of different types of tumor infiltrating immune cells estimated by “Cibersort-abs” of patients in the high and low risk groups define by the
score of the inflammation gene signature on the TCGA-CESC dataset. (B) Comparison of the expression of MHC molecules between the two risk
groups. (C-F) Comparison of the expression of immune checkpoint molecules. (G) Distribution of patients’ scores of the inflammation gene
signature in different immune subgroups. Significance levels: “.”: 0.05<=P<0.1; “*”: 0.01<=P<0.05; “**”: 0.001<=P<0.01; “***”: 0.0001<=P<0.001;
“****”: P<.0001; ns: not-significant.
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also genes highly expressed in other cell types, such as SERPINE1 in

cluster 14 (Endothelial/stromal/fibroblast/smooth muscle). The

inflammation score was calculated for each cell (Figure 5C). A

fraction of macrophages had much smaller inflammation score than

other types of cells (as indicated by its small 25th percentile).

ssGSEA for single cells showed that the macrophage cluster had

much larger enrichment score for the inflammatory response

(Figure 5D) than all the other cell clusters. To investigate the

heterogeneity of the TAM (tumor infiltrating macrophage)

cluster, we extracted all macrophages from all single cells and

further clustered them, and obtained four distinct sub-clusters.

Macrophage sub-clusters 2 and 3 had both larger enrichment

score of the inflammatory response (Figure 5E) and higher cell-

cell communication activity (especially with cell cluster 14)

(Figure 5F) than the other 2 sub-clusters. Figures 5G, H

compared the expression of canonical marker genes of TAM and

the scores of various functional signatures of TAM between the four

macrophage sub-clusters (discussed in the paragraph below).

We applied the same analyses on the scRNA-seq data of 14

additional cervical cancer samples (the validation dataset,

Supplementary Figure S10). The annotations of single cell clusters

in the original study were directly used. Again, macrophages had
Frontiers in Immunology 08
higher expression of certain genes in the inflammation signature

(C5AR1, ICOSLG, IL1B, EREG, NAMPT) (Supplementary Figure

S10A), smaller inflammation score (Supplementary Figure S10B)

and larger enrichment score for the inflammatory response than

other cell types (Supplementary Figure S10C). Macrophages were

further clustered, and again two of the four resulting sub-clusters

(sub-clusters 1-2) had larger enrichment scores for the

inflammatory response (Supplementary Figure S10D) and higher

cell-cell communication activity (Supplementary Figure S10E),

particularly with the endothelial cells having high expression of

SERPINE1 and ITGA5. Analyses across the two scRNA datasets

showed that sub-clusters 2 and 3 in the 1st dataset and sub-clusters

1 and 2 in the 2nd dataset had high expression of CD14 and IL1B,

and larger scores for the INFLAM (inflammatory cytokine-

enriched) and TIM (tumor infiltrating monocytes) gene

signatures (these two macrophage sub-clusters are therefore

named as “TIM” sub-clusters from here). Sub-cluster 3 in the 1st

dataset (TIM-D1C3: TIM-Dataset1 Cluster3) and sub-cluster 2 in

the 2nd data (TIM-D2C2) had higher expression of CD16, FCN1,

NAMPT and EREG, and larger values of the ANGIO

(proangiogenic), TIM and SPP1 signatures; while TIM-D1C2 and

TIM-D2C1 had larger values of the LA (lipid associated) and C1QC
FIGURE 3

GSEA/ssGSEA results for patients in the high and low risk groups defined by the inflammation gene signature. (A, C) The TCGA-CESC cohort. (B, D)
The CGCI cohort. (A, B) Enriched pathways of patients in the high and low risk groups given by GSEA. (C, D) Comparison of the “Hypoxia”,
“angiogenic”, “stemness”, “EMT” and “tumorigenic cytokines” scores of patients in the two risk groups given by ssGSEA. Significance levels: “.”:
0.05<=P<0.1; “*”: 0.01<=P<0.05; “**”: 0.001<=P<0.01; “***”: P<0.001; ns: not-significant.
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signatures (Supplementary Figures S10F, G). The two pairs of TIM

sub-clusters from the two datasets also had overlapped marker

genes and were defined as cor r e spond ing ones by

“clusterFoldSimilarity” (Figures 6A–D, Supplementary Tables S11,

S12). Pathway enrichment analysis showed that TIM-D1C3/TIM-

D2C2 had larger enrichment scores of the MAPK, NFkB and TNFa

pathways compared to TIM-D1C2/TIM-D2C1 across the two

scRNA datasets (Supplementary Figure S11).

We jointly analyzed the scRNA and bulk RNA data to study the

association of marker genes of TIM sub-clusters and individual’s

scores of the inflammation signature. On all bulk-RNA/microarray

datasets (TCGA-CESC, TCGA-CGCI, GSE68339), most positive

marker genes of TIM-D1C3/TIM-D2C2 were positively correlated

with patients’ inflammation score, while most marker genes of
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TIM-D1C2/TIM-D2C1 were negatively correlated with patients’

inflammation score (Figures 6E, F, Supplementary Tables S11, S12).

Besides, across the three datasets the high and low risk groups

defined by the inflammation signature all had larger enrichment

scores of the marker genes of TIM-D1C3/TIM-D2C2 and TIM-

D1C2/TIM-D2C1, respectively (Supplementary Figure S12). These

results might suggest opposite roles of the two TIM sub-clusters in

regulating the inflammatory response in TME.

To explore the interaction between different cell types, we

calculated the correlation of expression of the 16 genes in the

inflammation signature on the three bulk-RNA datasets. We found

that the expression of SERPINE1 and ITGA5 was positively

correlated with the marker genes of TIM (IL1B and C5AR1)

(Supplementary Figure S13A). In addition, the expression of
FIGURE 4

The inflammation risk scores and patients’ predicted response to cancer treatments. (A-E) Comparison of predicted sensitivity to chemo- drugs of
patients in the two risk groups defined by the inflammation gene signature on the TCGA-CESC dataset. (F) Comparison of the radiosensitivity index
(RSI) of patients in the two risk groups. (G) Comparison of response to immunotherapy predicted by the “EaSIeR” algorithm. (H) Comparison of
response to immunotherapy predicted by the “TIDE” score.
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FIGURE 5

Integrated analyses of the scRNA-seq data of four cervical cancer patients. The scRNA-seq data of the four samples in the “GSE171894” dataset was
combined, normalized and then analyzed. (A) Expression of the marker genes of different cell types among the 15 clusters of single cells. Marker
genes of different types of cells were given different colors. (B) Expression of the 16 genes in the inflammation signature among the 15 clusters of
single cells. Cell clusters were annotated according to the expression of marker genes in panel (A). (C) Scores of the inflammation signature of single
cells in the 15 clusters. (D) Enrichment scores of the “inflammatory response” pathway of the 15 clusters of cells. (E) Enrichment scores of the
“inflammatory response” pathway of the 4 macrophage sub-clusters. P-values were given by the Wilcoxon test. (F) The numbers of significant
ligand-receptor interactions given by cell-cell communication analysis between all pairs of cell clusters (the 4 macrophage sub-clusters were
included in the analysis separately with other cell clusters). (G) The expression of common TAM marker genes among the 4 macrophage sub-
clusters. (H) The scores of different tumor associated macrophage (TAM) functional signatures of the 4 macrophage sub-clusters. IFN, interferon-
primed; INFLAM, inflammatory cytokine-enriched; LA, lipid-associated; ANGIO, proangiogenic; PRO, proliferating; REG, immune regulatory; RTM,
resident-tissue macrophages; TIM, tumor infiltrating macrophages; MONO, monocyte.
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SERPINE1 and ITGA5 was associated with the estimated quantities

of macrophages/monocytes subtypes (see above sections), and the

discrepancy between results given by different algorithms was

possibly attributable to their different definitions of the

macrophage/monocyte subtypes (Supplementary Figure S13B).

Overall, the analysis of single cell/bulk RNA-seq data suggested

the possibility of two TIM sub-clusters being key regulators of the

inflammatory response in the TME.
3.4 Key TIM marker genes correlated with
patients’ inflammation score

As a further validation of the findings from scRNA analyses, the

Pearson correlation of the expression values of marker genes of TIM

sub-clusters and patients’ inflammation score was calculated on

nine public RNA-seq/microarray datasets and the RNA-seq data of

23 cervical adenocarcinoma patients from our hospital. Three

marker genes (ADAMDEC1, MMP9, MMP12) were shared by

the TIM-D1C2/TIM-D2C1, and six marker genes (MCEMP1,

FCN1, CD300E, CLEC12A, CD36, TRIM25) were shared by

TIM-D1C3/TIM-D2C2. On all but two datasets, the expression of

ADAMDEC1 was significantly negatively correlated with the

inflammation score. Besides, on most datasets, MMP9, FCN1 and

CLEC12A were negatively correlated with the inflammation score,

while MCEMP1 and CD300E were positively correlated with the

inflammation score (Figure 6G, Supplementary Table S13).
4 Discussion

4.1 Summary of the study

Inflammatory response plays important roles in the

tumorigenesis and progression of cancer and their treatment

response. Evidence shows that activated pro-inflammatory

pathways with impaired resolution function in TAM possibly

contributes to the tumor promoting inflammation in TME. Till

now, little research has been done for CC in terms of the

inflammatory response in TME and their clinical relevance, as well

as the related cellular components andmolecular mechanisms. In this

study, we constructed a prognostic gene signature for CC based on

genes of the inflammatory response pathway, and validated it on

multiple independent datasets using various methods. We found that

the high and low risk groups defined by the inflammation signature

had different immune landscape and enriched biological pathways. In

addition, the low-risk group had better sensitivity to chemo-, radio-

and immuno-therapies. Besides, the inflammation signature better

correlated with patients’ sensitivity to radiotherapy compared to

immune signatures, and offered irreplaceable contribution in

prognostic prediction. Combined analysis of scRNA and bulk

RNA-seq data showed that two sub-clusters of CD14/IL1B

expressing TIM and two genes (SERPINE1 and ITGA5) expressed

by endothelial cells might be critical mediators of the inflammatory

response in TME of CC.
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4.2 Functions of genes in the inflammation
signature

The 16 genes in the inflammation signature belong to a few

functional groups: CCL22 (C-C motif chemokine ligand 22), CCL17

(C-C motif chemokine ligand 17), CCR7 (C-C motif chemokine

receptor 7), IL1B (interleukin 1 beta), LIF (interleukin 6 family

cytokine) and EREG (epiregulin) are chemokines, cytokines or their

receptors involved in the regulation of inflammation and immune

response (13); SERPINE1 (serpin family E member 1), ICOSLG

(inducible T cell co-stimulator ligand) and C5AR1 (complement C5a

receptor 1) are also modulators of tumor’s immune microenvironment,

since they are components of the innate antiviral immunity, T cell

receptor signaling and complement related pathways respectively (51–

53); Three genes are related to cell migration and invasion of tumors:

TNFAIP6 (TNF alpha induced protein 6) (54), ITGA5 (integrin subunit

alpha 5) (55) and PROK2 (prokineticin 2) (56). Lastly, SLC11A2 (solute

carrier family 11 member 2), SLC7A1 (solute carrier family 7 member

1), NAMPT (nicotinamide phosphoribosyltransferase) and GCH1

(GTP cyclohydrolase 1) participate in cell metabolism (57–59). In

summary, most genes in the inflammation signature were found to

be prognostic of cancer patients and participating in fundamental tumor

biological processes, thereby validating the clinical relevance of the gene

signature established in this study.

GSEA and ssGSEA showed that hypoxia, EMT, Myc, glycolysis

and TNF-alpha pathways were enriched in the high-risk group, which

were known to contribute to the development of cancer (60–63). By

contrast, the interferon family related pathways were enriched in the

low-risk group. Interferon-gamma played dual roles in the anti-tumors

immunity for many cancer types including cervical cancer (64, 65), and

was related to the efficacy of immune-therapy and radiotherapy (66,

67). Nevertheless, to date there is no study focusing on the interplay of

the inflammatory response and the interferon-gamma pathways in

cancer progression, warranting further investigation.
4.3 Immune landscape of patients in risk
groups defined by the inflammation
signature

Inflammatory response in TME has complex interactions with

anti-tumor immune response. Analyses in this study showed that the

high and low-risk groups defined by the inflammation signature had

different immune landscape. The low-risk group had higher level of

TIIC, therefore “hot” immune state. Specifically, the levels of CD8+ and

CD4+ T lymphocytes, Tregs, M2-macrophage, B cells and myeloid

dendritic cells were significantly higher in the low-risk group. These

results were consistent with previous findings (68, 69). Tregs and M2-

macrophage are usually regarded as immunosuppressive and indicate

worse prognosis (70–72), while CD8+ T-cell is a positive prognostic

factor. The CD8+ T-cell/Treg and CD8+ T-cell/M2-macrophage ratios

[whichmight be positive prognostic factors (71)] of the two groups had

no significant difference (Cibersort-abs algorithm, Wilcox test),

suggesting the necessity of taking all types of immune cells into

account instead of focusing on a single cell type. Results for subsets
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FIGURE 6

Marker genes of macrophage (TIM) sub-clusters and patients’ risk scores of the inflammation signature. (A-D) Correspondence of macrophage sub-
clusters in the two scRNA datasets. (A, C) The top 3000 most variable genes across all single cells were used for analysis. (B, D) The top 3000 most
variable genes across all macrophages were used for analysis. (A, C) Numbers of overlapped marker genes of all pairs of macrophage sub-clusters
from the two scRNA datasets. Dataset 1 was the discovery dataset (Figure 5) and dataset 2 was the validation dataset (Supplementary Figure S10). (B,
D) The corresponding macrophage sub-clusters from the two scRNA datasets identified using the “ClusterFoldSimilarity” R-package. Naming of the
macrophage sub-clusters: “D” means “Dataset” and “C” mean “sub-Cluster”. (E, F) The association between individual marker genes of two
macrophage (TIM) sub-clusters and patients’ scores of the inflammation signature on three bulk RNA-seq/micro-array datasets was evaluated using
linear regression. (E) Genes whose -log10 (adjusted P-value) were larger than 10 were labelled. macrophage-2: TIM-D1C2; macrophage-3: TIM-
D1C3. (F) Genes whose -log10 (adjusted P-value) were larger than 5 were labelled. macrophage-1: TIM-D2C1; macrophage-2: TIM-D2C2. P-values
and effect sizes of the marker genes (independent variables in the linear regression) were shown. (G) Correlation of marker genes of TIM sub-
clusters and patients’ score of the inflammation signature. On nine public RNA-seq/microarray datasets and our in-house RNA-seq dataset of
cervical cancer patients, the Pearson correlation of marker genes of TIM sub-clusters and patients’ inflammation scores was calculated. There are
three marker genes shared by the TIM-D1C2/TIM-D2C1 sub-clusters across the two scRNA-seq datasets (ADAMDEC1, MMP9 and MMP12, green in
color, also see Supplementary Tables S11, S12) and six marker genes (MCEMP1, FCN1, CD300E, CLEC12A, CD36 and TRIM25, pink in color, also see
Supplementary Tables S11, S12) shared by the TIM-D1C3/TIM-D2C2 sub-clusters. The 95% confidence interval of the correlation was plotted for
each marker gene on each dataset. The numbers after the dataset names on the x-axis denote the total numbers of patients in the datasets.
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of TAM other thanM2-macrophage given by different algorithms were

not entirely consistent, which was possibly caused by the differences in

the definition of TAM phenotypes (23, 73). Notably, the high and low

risk groups of different cancer types could have diverse immune status

(18–21), yet in all relevant studies the C2 and C4 immune subtypes

always had lower inflammation scores than the C1 subtype (18, 19, 21).

These results demonstrate that both pan-cancer immune subtyping

and cancer type specific immunological characterization are of value.
4.4 Treatment response of patients in risk
groups defined by the inflammation
signature

The high and low-risk groups defined by the inflammation

signature had different sensitivity to the three mainstream anti-

cancer treatment modality. For chemotherapy, the two risk groups

had significantly different LD50 for Metformin, which was traditionally

a hypoglycemic drug and might be able to inhibit cancer growth and

modulate anti-cancer immunity in hypoxic TME (74, 75). The two

groups also had different intrinsic radiosensitivity measured with RSI.

These findings agreed with previous studies that successfully developed

prognostic inflammation signature for cancer patients receiving

concurrent chemo-radiotherapy (76–78). Notably, two of the three

immune signatures analyzed in this study were not associated with RSI,

highlighting the need in studying the inflammatory response alongside

immune response in guiding individualized treatment. Themechanism

underlying this association is still unclear and is worthy of further

research, considering the core status of radiotherapy in the treatment of

CC, the lack of biomarkers for radiosensitivity (79) and the promise of

the combination of radiotherapy and immunotherapy (80, 81). Overall,

results illustrate that the low-risk group defined by the inflammation

signature had better treatment response, and it is necessary to find a

way to overcome the treatment resistance of high-risk patients, possibly

by modulating the inflammatory response in TME.
4.5 Combined analysis of single cell and
bulk RNA-seq data

scRNA-seq allows researchers to dissect the functions of different

types of cells in TME. Our analyses showed that a fraction of TAM/

TIM might play important roles in mediating the inflammatory

response. Traditionally, TAM was assumed to be able to polarize to

M1/M2 subtypes, having pro-/anti-inflammation activities

respectively. In recent years, single-cell technology revolutionized

our understanding of cell heterogeneity and revealed tremendous

functional diversity within TAM populations. In this study, two

macrophage sub-clusters with high enrichment scores of the

inflammatory response and high scores of the INFLAM/TIM

signatures were identified. However, across the two scRNA

datasets, these two macrophage sub-clusters didn’t have consistent

expression of the well-established M1/M2 markers (e.g. CD86,

CXCL9, CXCL10/MARCO, CD163, CD206 for M1/M2, see

Figure 5, Supplementary Figure S10 and Supplementary Tables
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S11, S12) (82) and scores of the M1/M2 signatures. These results

demonstrated the limitations of the traditional TAM phenotyping

approaches and the importance of functionally dissecting TAMs

subgroups. Interestingly, results showed that the two TIM sub-

clusters might play opposite roles in mediating the inflammatory

response, as the majority of their marker genes were oppositely

associated with the inflammation score, and they had distinct

enriched pathways (TIM-D1C3/TIM-D2C2 had larger enrichment

scores for the NF-kB, TNFa and MAPK pathways, which were linked

to the pro-inflammation M1 polarization of TAM (83), while TIM-

D1C2/TIM-D2C1 had larger scores for the PI3K and TGF-B

pathways, which were linked to the anti-inflammation M2

polarization (83). It is highly likely that the high heterogeneity and

plasticity of TAM/TIM results from the additive effect of multiple

pathways. Therefore, it is necessary to further study the association

between inflammatory response and TIM/TAM sub-clusters with

advanced high-throughput technology, such as single-cell sequencing

and time-of-flight (CyTOF) mass cytometry methods.

In this study, several marker genes with clinical potential of the

two TIM sub-clusters were found (ADAMDEC1, MCEMP1, FCN1,

CLEC12A). Among them, the results for ADAMDEC1 were

consistent across all validation datasets. ADAMDEC1 regulates

immune response and is involved in the pathogenesis of many

inflammatory diseases. It is also associated with the prognosis of

multiple types of cancers and tumor’s chemosensitivity (84).

MCEMP1, a trans-membrane protein expressed by immune cells,

is associated with TIIC and the inflammatory response of gastric

cancer (85). Notably, some markers of the TIM-D1C3/TIM-D2C2

(FCN1, CLEC12A) were negatively correlated with the

inflammation score, possibly resulted from unresolved

heterogeneity of the TIM sub-clusters defined in this study

(FCN1 and CLEC12A were only expressed by a small fraction of

TIM in the corresponding sub-clusters) (Supplementary Tables S11,

S12). Overall, these results indicated the importance of TIM in

regulating the inflammatory response and the complexity of

their functions.

Notably, there were also genes in the inflammation signature

that were highly expressed by cells other than macrophages. We

found that the expression of SERPINE1 and ITGA5 was correlated,

and these two genes were also correlated with the genes highly

expressed in macrophages. Quite a few studies have identified both

SERPINE1 and ITGA5 as prognostic factors of different types of

cancers (86–92), indicating these two genes might have synergic

effects. Results in our study also supported this hypothesis.

Interestingly, in the studies of head and neck squamous cell

cancer, SERPINE1 and ITGA5 were frequently reported together,

suggesting their active roles in HPV related cancers (93–95).

Analyses in this study also revealed the possibility that

SERPINE1/ITGA5 promoted the infiltration of monocytes and

macrophages in their early polarization stages, in consistent with

results of previous research (87–89, 93). These findings were of

clinical relevance, as SERPINE1/ITGA5 have been explored as

therapeutic targets (96). To date no study has focused on the

functions of SERPINE1/ITGA5 in the inflammatory response,

which is worth of further research.
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Taken together, the multi-omics analyses in this study

demonstrated the critical involvement of TIM/TAM sub-clusters

in modulating the inflammatory response in TME of CC. Besides,

interactions between TIM/TAM and other cell types might also be

indispensable in driving the inflammatory response. Efforts remain

to be devoted to reveal the biological mechanisms of TIM/TAM

mediated inflammatory response, such that new strategies might be

designed to improve the treatment response and prognosis of high

risk CC patients.
4.6 Limitations

This study has a few limitations. First, the prognostic signature

was built and validated using only retrospective samples. Second,

only bioinformatic algorithms were used to estimate features of

tumors and patients’ response to treatments, with no wet-lab

functional experiment done to validate and extend the

discoveries. In particular, the classification and functional

annotation of TIM sub-clusters need further confirmation (for

instance , from proteomic analys is) , and the r isk of

overinterpretation of potential therapeutic targets need to be

made aware of, due to findings in this study are completely

obtained from analyzing transcriptomic data. Third, the

correlation of features/variables found in this study does not

necessarily imply causation. This applies to but not restricted to

the correlation of the inflammation score and various tumor

features, and the association of ITGA5/SERPINE1 and the

estimated infiltration levels of TAM/TIM sub-clusters. In

summary, what remains to be done is further validation of the

findings made in this study and subsequent research on the

biological mechanisms underlying the identified correlation,

ideally with web-lab functional experiments.
5 Conclusions

This study constructs a multi-gene prognostic model for CC

based on the inflammatory response related genes, which stratifies

patients into groups with different immune landscape and treatment

responses. Multi-omics analyses show evidence of two sub-clusters of

TIMs playing key roles in mediating the inflammatory response and

two genes regulating the infiltration of TIMs/TAMs.
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W, et al. Inferring tumor purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

33. Aran D, Hu Z, Butte AJ. xCell: Digitally portraying the tissue cellular
heterogeneity landscape. Genome biology. (2017) 8:1–14. doi: 10.1186/s13059-017-
1349-1

34. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and stromal cell
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-
016-1070-5
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1563593/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1563593/full#supplementary-material
https://doi.org/10.1016/S0140-6736(18)32470-X
https://doi.org/10.1016/j.artmed.2023.102536
https://doi.org/10.1093/bib/bbaa188
https://doi.org/10.3390/ijms24097781
https://doi.org/10.3390/ijms24097781
https://doi.org/10.1016/j.artmed.2023.102549
https://doi.org/10.1038/s41598-021-89388-w
https://doi.org/10.1016/j.intimp.2022.109273
https://doi.org/10.18632/aging.203716
https://doi.org/10.18632/aging.203716
https://doi.org/10.1371/journal.pone.0269462
https://doi.org/10.1186/s12920-022-01376-9
https://doi.org/10.1186/s12885-022-09291-z
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.immuni.2019.06.025
https://doi.org/10.1016/j.ctrv.2021.102322
https://doi.org/10.1016/j.trecan.2022.07.002
https://doi.org/10.1016/S1470-2045(14)70263-3
https://doi.org/10.1016/S1470-2045(14)70263-3
https://doi.org/10.1126/science.adf1329
https://doi.org/10.3389/fbioe.2021.772206
https://doi.org/10.1038/s41598-022-14323-6
https://doi.org/10.1038/s41598-022-19105-8
https://doi.org/10.3389/fonc.2021.644416
https://doi.org/10.3389/fmolb.2024.1394902
https://doi.org/10.1016/j.smim.2022.101671
https://doi.org/10.1002/cam4.v10.13
https://doi.org/10.3389/fonc.2020.00766
https://doi.org/10.1038/s41598-019-39150-0
https://doi.org/10.1038/s41416-021-01305-0
https://doi.org/10.1038/s41416-021-01305-0
https://doi.org/10.1038/ng.2764
https://doi.org/10.1038/s41588-020-0673-7
https://doi.org/10.1016/j.ygyno.2013.10.003
https://doi.org/10.1016/j.ygyno.2013.10.003
https://doi.org/10.1038/s41467-022-33544-x
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.3389/fimmu.2025.1563593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1563593
35. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor
infiltrating immune cells with CIBERSORT. Methods Mol Biol. (2018) 1711:243–59.
doi: 10.1007/978-1-4939-7493-1_12

36. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al.
Molecular and pharmacological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34.
doi: 10.1186/s13073-019-0638-6

37. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One.
(2014) 9:e107468. doi: 10.1371/journal.pone.0107468

38. Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee J-H, et al. A gene
expression model of intrinsic tumor radiosensitivity: prediction of response and
prognosis after chemoradiation. Int J Radiat Oncol Biol Phys. (2009) 75:489–96.
doi: 10.1016/j.ijrobp.2009.06.014
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