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Intervertebral disc degeneration (IDD) is a prevalent and debilitating condition that

affects millions worldwide, leading to chronic back pain and a reduced quality of life.

This review shifts the focus to the pivotal role of the immune microenvironment in

IDD, highlighting its dual functions—exacerbating degeneration through chronic

inflammation while also offering protective mechanisms under certain conditions.

Recent research highlights how immune cells such as macrophages, T cells, and B

cells, along with cytokines like IL-1b, TNF-a, and IL-6, play dual roles in both

exacerbating and potentially mitigating disc degeneration. Key signaling pathways,

including NF-kB, MAPK, JAK-STAT, and the NLRP3 inflammasome, are discussed to

illustrate their involvement in disc cell apoptosis, extracellular matrix degradation,

and chronic inflammation. By synthesizing current research, this review underscores

the potential of novel therapeutic strategies that target immune modulation. Anti-

inflammatory drugs, biologics, stem cell therapy, and gene editing technologies are

explored as promising avenues for treatment. Understanding the immune landscape

of IDD not only enhances our knowledge of its pathogenesis but also opens new

possibilities for effective, targeted therapies, aiming to improve patient outcomes

and reduce the societal burden of this debilitating condition.
KEYWORDS

intervertebral disc degeneration, immune microenvironment, immune modulation,
immune cells, therapeutic strategies
1 Introduction

Intervertebral disc degeneration (IDD) is a prevalent and far-reaching spinal disorder

characterized by progressive degeneration of disc structure and function. The normal

intervertebral disc consists of the annulus fibrosus, nucleus pulposus, and cartilaginous

endplates, and its primary function is to absorb and distribute mechanical loads,

thereby maintaining flexibility and stability of the spine. With age, the water content
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and elasticity of the intervertebral disc decreases, resulting in

impairment of its load-carrying and distribution functions (1).

This degenerative process involves multiple pathophysiologic

mechanisms, including extracellular matrix (ECM) degradation,

apoptosis, and inflammatory responses (2). Key enzymes, such as

ma t r i x me ta l l op ro t e ina s e s (MMPs) and de in t eg r in

metalloproteinases bound to the structural domain of

thrombopoietin (ADAMTS), play an important role in ECM

degradation, destroying collagen and proteoglycans, thereby

compromising the structural integrity of the disc. In addition,

oxidative stress and nutritional deficiencies induce apoptosis and

autophagy in intervertebral disc cells, further impairing their repair

capacity (3, 4). Clinically, IDD mainly manifests as chronic lower

back pain and sciatica, with symptoms that may be continuous or

intermittent and are often accompanied by radiating pain and

sensory abnormalities in the lower extremities. Severe herniated

discs may also lead to spinal instability and limited mobility,

significantly affecting the patient’s daily life and ability to work. (5).

The prevalence of IDD is high worldwide and is the leading

cause of chronic lower back pain. Statistics show that

approximately 80% of the population will experience lower back

pain at least once in their lifetime, and the prevalence of IDD

among people over the age of 40 reaches 60-80%. In the United

States, IDD-related lower back pain is the leading cause of work

absenteeism and decreased productivity, resulting in tens of

billions of dollars in medical costs and indirect economic losses

each year. (6). Therefore, elucidating the pathophysiological

mechanisms of IDD and developing effective treatment

strategies are crucial for improving patient quality of life and

alleviating public health burdens. Investigating the immune

microenvironment in IDD could unveil novel therapeutic

targets, providing new insights and approaches for the

prevention and treatment of this debilitating condition.

IDD has long been considered an irreversible degenerative

disease primarily driven by age-related physiological changes (7,

8). Traditional treatments have focused on symptom relief and

improving quality of life, including conservative and surgical

treatments. Among conservative treatments, physical therapy,

nonsteroidal anti-inflammatory drugs (NSAIDs), steroid

injections, and lifestyle modifications can provide some pain

relief, but cannot fundamentally reverse or stop disc degeneration
Abbreviations: IDD, Intervertebral disc degeneration; ECM, extracellular matrix;

MMPs, matrix metalloproteinases; NSAIDs, non-steroidal anti-inflammatory

drugs; NK, natural killer; ADAMTS, A Disintegrin and Metalloproteinase with

Thrombospondin motifs; ROS, reactive oxygen species; NETs, neutrophils form

extracellular traps; AFCs, annulus fibrosus cells; NPCs, nucleus pulposus cells;

Anakinra, IL-1 receptor antagonists; miRNAs, microRNAs; lncRNAs, long non-

coding RNAs; DAMPs, damage-associated molecular patterns; COX,

cyclooxygenase; MSCs, Mesenchymal stem cells; scRNA-seq, single-cell

RNA sequencing.
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(9). Surgical treatments (e.g., discectomy, spinal fusion, and

artificial disc replacement), on the other hand, are aimed at severe

degeneration cases, but these methods also have certain risks and

limitations (10, 11).

The immune microenvironment plays a crucial role in

maintaining tissue health and regulating disease processes, and

includes a variety of immune cells (e.g., macrophages, T cells, and B

cells) and secreted cytokines and chemokines. Under normal

conditions, the immune microenvironment maintains tissue

homeostasis by removing cellular debris, fighting pathogens, and

promoting tissue repair. However, under pathological conditions,

the immune microenvironment may undergo aberrant changes

leading to chronic inflammation and tissue damage (12). In

recent years, more and more studies have begun to focus on the

role of the immune microenvironment in IDD, revealing the dual

role of the immune response in the degenerative process. (13, 14)

On the one hand, immune cells and inflammatory cytokines can

play a protective role by removing degenerating cells and tissue

debris, regulating ECM degradation, and promoting repair

processes (15). On the other hand, excessive or sustained immune

responses can lead to chronic inflammation, accelerated ECM

degradation and apoptosis, and thus accelerated disc degeneration

(16, 17). Specifically, the role of macrophages in IDD has garnered

significant attention. Macrophages can polarize into functionally

distinct M1 (pro-inflammatory) and M2 (anti-inflammatory) types

(18). Studies have found that in the early stages of IDD, the number

of M1 macrophages increases, secreting large amounts of pro-

inflammatory cytokines (such as IL-1b and TNF-a), which not

only directly damage the ECM but also activate other immune cells,

further exacerbating the inflammatory response (19). In the repair

stage, M2 macrophages promote ECM repair and regeneration by

secreting anti-inflammatory cytokines and growth factors (such as

IL-10 and TGF-b) (20). Additionally, the application of new

technologies such as single-cell RNA sequencing has enabled

researchers to more precisely analyze the cellular composition

and gene expression profiles within disc tissues, uncovering the

specific roles of different immune cell subsets in IDD (21). These

research findings have deepened our understanding of the

pathophysiological mechanisms of IDD and provided a

theoretical foundation for developing novel immunomodulatory

therapies. For instance, modulating macrophage polarization to

inhibit excessive inflammation or promote tissue repair could be an

effective strategy for future IDD treatments (22).

This review aims to systematically summarize the role of the

immune system in the process of IDD and explore its therapeutic

potential. In recent years, an increasing number of studies have

shown that immune cells and inflammatory cytokines play

critical roles in IDD, influencing both the progression of

degeneration and tissue repair and regeneration. By reviewing

the latest research advances, this review aims to reveal the

dual role of the immune system in IDD and discuss the

feasibility and prospects of innovative immunomodulatory

therapeutic strategies.
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2 Anatomy and immunological
characteristics of the intervertebral disc

2.1 Structure and function of the
intervertebral disc

The intervertebral disc, located between the vertebral bones, is

composed of three main parts: the annulus fibrosus, the nucleus

pulposus, and the cartilage endplates (23, 24). The annulus fibrosus

is a tough outer ring composed of multiple layers of collagen fibers

and chondrocytes, primarily functioning to provide structural

support and restrict the movement of the nucleus pulposus (25).

The nucleus pulposus, located at the center of the disc, contains a

high-water content, proteoglycans, and collagen, serving mainly to

cushion pressure and distribute loads. The cartilage endplates cover

the upper and lower surfaces of the disc, composed of hyaline

cartilage, protecting the vertebral bodies and transmitting loads (1).

The primary function of the intervertebral disc is to absorb and

distribute mechanical pressures generated by daily activities and

movements (26). It achieves this through the gel-like properties of

the nucleus pulposus and the tough structure of the annulus

fibrosus, enabling the spine to flexibly move and maintain

stability (27). Additionally, the intervertebral disc plays a crucial

role in maintaining the height and shape of the spine, ensuring

normal spinal curvature and rotation.
2.2 Composition of the immune
microenvironment

The immune microenvironment of the intervertebral disc

consists of various immune cells, cytokines, and other signaling

molecules (28, 29). Under normal conditions, the disc contains

very few immune cells due to its low blood supply and immune-

privileged status (30). The main immune cells include macrophages,

T cells, and B cells (15). Macrophages are key regulators of the disc’s

immune response, playing vital roles in tissue repair and the clearance

of cell debris (31). T cells and B cells, as components of the adaptive

immune system, are crucial in chronic inflammation and immune

memory (32). Additionally, neutrophils and natural killer (NK) cells

also play important roles in acute and chronic inflammatory

responses (33). Cytokines such as IL-1b, TNF-a, and IL-6 are

critical in both healthy and pathological states of the disc. These

cytokines influence disc function and health by regulating cell

migration, inflammatory responses, and tissue repair (4, 34).

Chemokines, on the other hand, guide immune cell migration to

sites of damage or infection, thereby participating in the regulation of

the immune microenvironment (30, 35).
2.3 Immunological characteristics of the
intervertebral disc

Under normal conditions, the low oxygen environment and

lack of vascular supply within the disc restrict the entry of immune
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cells (36). However, during disc degeneration, this immune

privilege can be compromised, leading to immune cell infiltration

and chronic inflammation. Common immune cells found in

degenerated discs include macrophages, T cells, and neutrophils

(37). Studies indicate that the increase in inflammatory cytokines

and immune cells in degenerated discs is closely related to disc

tissue degradation and pain (7, 38). For instance, the upregulation

of cytokines such as IL-1b and TNF-a further enhances the activity

of degradative enzymes like MMPs and ADAMTS, leading to ECM

breakdown (39). These inflammatory cytokines not only directly

damage the disc’s ECM components but also induce cell apoptosis

and inhibit cell proliferation, thereby accelerating disc

degeneration (40).

Understanding these immunological characteristics and their

changes is crucial for developing new therapeutic strategies (41).

Research indicates that modulating the immune response within the

disc can reduce inflammation and tissue damage, thereby delaying or

reversing disc degeneration (42). For example, using anti-inflammatory

drugs and biologics can effectively inhibit the activity of key

inflammatory cytokines, thereby alleviating pain and improving

function (43, 44). Additionally, cell therapy and gene therapy have

shown potential in modulating the disc’s immune microenvironment,

promising new avenues for future IDD treatments (45). By further

studying the immune microenvironment of the intervertebral disc and

its changes during degeneration, we can better understand the

mechanisms of IDD and explore the potential of immunomodulation

in its treatment. This multidisciplinary research approach not only helps

to elucidate the pathophysiological mechanisms of IDD but also

provides new insights and methods for clinical treatment (43, 46).
3 Immune response in the process of
intervertebral disc degeneration

3.1 Immune cells

IDD is a complex pathological process involving multiple

interacting factors, with immune responses playing a crucial role.

Various immune cells, such as macrophages, neutrophils, natural

killer (NK) cells, and lymphocytes (T cells and B cells), participate

in this process, influencing the progression of disc degeneration

through different mechanisms (Table 1).

3.1.1 Macrophages
Macrophages are among the earliest identified and studied

immune cells in IDD. They are widely present in degenerated discs

and regulate inflammatory responses and tissue remodeling by

secreting various cytokines and enzymes (47). Macrophages play

different roles in the early and late stages of disc degeneration. In the

early stages, macrophages are primarily of the M1 type, secreting pro-

inflammatory cytokines such as IL-1b and TNF-a, promoting

inflammation and accelerating ECM degradation (31, 48). These

pro-inflammatory macrophages also secrete MMPs, directly

damaging the annulus fibrosus and nucleus pulposus structures (49).

In the late stages of degeneration, the proportion of M2 macrophages
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TABLE 1 Immune cell types and their roles in IDD.

Immune cell Role in IDD Key regulatory molecules Potential targets and drugs Clinical implications References

rgeting M1 macrophages could reduce
ronic inflammation and tissue destruction,
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rapeutic effects.

(31, 48, 49, 174–177)

odulating M2 macrophages could enhance
sue repair and reduce degenerative changes
the disc. Targeting specific pathways like
ARg and utilizing exosome-based therapies
uld potentiate M2’s reparative capabilities.

(50, 51, 178–181)

ntrolling neutrophil activity could reduce
ondary tissue damage and chronic
ammation in IDD. Targeting NETs and
utrophil-derived proteases could mitigate
harmful effects of prolonged

utrophil activation.

(58–60, 182–185)

odulating NK cell function might help
ntrol excessive immune responses in IDD.
cell activity can be fine-tuned through
use of checkpoint inhibitors and cytokine
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ronic inflammation.

(33, 70–72, 186–188)

lancing T cell subsets could reduce chronic
ammation and promote tissue repair,
ering a potential therapeutic strategy in
D. Targeting specific cytokines and
nscription factors involved in T cell
ferentiation (e.g., STAT3, FOXP3) could
hance therapeutic outcomes.

(32, 73–76, 78, 151,
189, 190)

ducing B cell activity may help alleviate
ronic inflammation and prevent further
M degradation in IDD. B cell-specific
rapies, including BTK inhibitors and
R-T cells, represent advanced strategies to
get B cell-driven pathology in chronic
eases like IDD.

(174–176) (32, 177–
181, 191)
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inflammasome, ROS, NF-kB, JNK, IL-6,
IL-18

TNF-a inhibitors (Etanercept), IL-1b
inhibitors (Anakinra), NLRP3 inhibitors
(MCC950), ROS scavengers (N-
acetylcysteine), NF-kB inhibitors
(Parthenolide): IL-6
inhibitors (Tocilizumab)
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Secrete IL-10 and TGF-b, promoting
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IL-10, TGF-b, Arg-1, CD206, PPARg,
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cytokine therapy, VEGF modulators
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chronic inflammation.
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increases. M2 macrophages secrete anti-inflammatory cytokines such

as IL-10 and TGF-b, suppressing inflammation and promoting tissue

repair (50). However, studies indicate that in chronic degeneration, the

imbalance between M1 and M2 macrophages leads to persistent

inflammation and tissue damage (51). Recent studies have further

revealed the complex role of macrophages in IDD. Zhao et al. (34)

found that M1 macrophages promote disc cell apoptosis and ECM

degradation through the activation of the NLRP3 inflammasome (52).

Additionally, Hou et al. discovered that the polarization state of

macrophages can be regulated by specific microenvironmental

factors such as hypoxia and high glucose, which are prevalent in

degenerated discs (53). Another key finding is the interaction between

macrophages and disc cells. In vitro co-culture experiments showed

that disc cells could attract macrophages by secreting chemokines like

CCL2 and regulate macrophage polarization by secreting cytokines

such as IL-6 and TNF-a (54). This interaction plays an important role

in maintaining the immune microenvironment of the disc. Recent

findings have demonstrated that the metabolic features of the

degenerated disc—particularly elevated lactate due to hypoxia and

increased ROS—are potent modulators of macrophage phenotype (55).

Lactate can stabilize HIF-1a and promote M2-like polarization,

contributing to a reparative but potentially fibrotic environment (56).

Conversely, high ROS levels activate the NF-kB pathway, skewing

macrophages toward a pro-inflammatory M1 state (57). These

metabolic cues may contribute to the imbalance between M1 and

M2 macrophages observed in chronic IDD.

3.1.2 Neutrophils
Neutrophils, as key components of the innate immune system,

also play critical roles at different stages of IDD. Neutrophils are

among the first immune cells to respond rapidly to injury and

infection (58, 59). In the acute stage of disc degeneration,

neutrophils are quickly recruited to the lesion site, where they

release reactive oxygen species (ROS) and proteolytic enzymes to

directly kill pathogens and clear damaged cells (60). However, these

molecules can also damage surrounding healthy tissues, further

exacerbating disc degeneration (61). In the chronic stage, the

persistent presence and activation of neutrophils lead to sustained

low-grade inflammation, which is associated with chronic low back

pain and further structural damage to the disc (62). Neutrophil

migration is primarily regulated by chemokines such as CXCL8

(63). These chemokines are upregulated during disc degeneration,

inducing neutrophil aggregation at the lesion site (64). Neutrophils

further break down ECM components by releasing various effector

molecules such as elastase and MMPs, damaging disc structure.

(65). Recent studies indicate that neutrophils not only participate in

the initial inflammatory response but also play important roles in

chronic inflammation. For example, Dudli et al. (66) found that

neutrophils form extracellular traps (NETs) in chronic disc

degeneration, which capture and kill invading microbes but

also cause self-tissue damage (67, 68). NETs can also interact

with macrophages and other immune cells, further exacerbating

the inflammatory response. In summary, neutrophils have

multifaceted roles in IDD. Initially, they protect by responding

rapidly to inflammatory signals, clearing pathogens, and damaged
Frontiers in Immunology 05
cells. However, the ROS and proteolytic enzymes released by

neutrophils can also damage surrounding healthy tissues,

especially during chronic inflammation (69). Therefore, careful

regulation of neutrophil function is needed in treatment to

balance pathogen clearance and tissue protection.

3.1.3 Natural killer cells
NK cells primarily kill virus-infected and tumor cells by

releasing perforin and granzymes (70).In IDD, NK cells also

participate in regulating local inflammatory responses (71).

Although specific studies on NK cells in IDD are limited, there is

evidence that NK cells can interact with macrophages and

neutrophils to modulate the immune microenvironment in disc

degeneration (72).
3.1.4 T cells
T cells play various roles in IDD, including promoting and

regulating inflammatory responses (73). CD4+ helper T cells can

differentiate into different subsets (such as Th1, Th2, Th17, and

Treg cells), each playing distinct roles in inflammation and immune

regulation (74). For instance, Th1 cells secrete IFN-g, promoting

M1 macrophage polarization and activation, thus enhancing

inflammation. Th17 cells secrete pro-inflammatory cytokines such

as IL-17, playing significant roles in autoimmune diseases and

chronic inflammation (19). In contrast, Treg cells secrete anti-

inflammatory cytokines such as IL-10 and TGF-b, suppressing
inflammation and promoting tissue repair (75). The imbalance of

T cells in IDD can lead to sustained inflammation and tissue

damage (76). Recent studies show that T cells’ roles in IDD

extend beyond local inflammatory responses. Weiler et al. (77)

found significant T cell infiltration in the disc tissues of IDD

patients, with these T cells secreting various cytokines and

chemokines to regulate the local immune microenvironment (78).

Additionally, T cells can amplify inflammatory responses by

interacting with other immune cells such as macrophages and B

cells, further exacerbating disc degeneration.
3.1.5 B cells
Despite limited studies on B cells in IDD, their potential roles

should not be overlooked. B cells can regulate immune responses by

secreting antibodies and presenting antigens (79). Studies show that

in autoimmune diseases such as rheumatoid arthritis, B cells promote

inflammation and tissue destruction by secreting autoantibodies. In

IDD, B cells may participate in chronic inflammation through similar

mechanisms. Recent research has further revealed specific roles of B

cells in IDD. Significant B cell infiltration was found in degenerated

discs, with these B cells promoting local inflammation by secreting

autoantibodies and cytokines (80). Moreover, B cells can amplify

immune responses by interacting with T cells, leading to further disc

tissue damage (81).
3.1.6 Potential therapeutic targets
In chronic stages of IDD, the persistent activation and

dysregulation of T cells and B cells lead to chronic inflammation
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and tissue destruction. Therefore, regulating the functions of T cells

and B cells may be a potential strategy for treating IDD. For

example, inhibitors targeting specific T cell subsets, such as IL-

17A antibodies or Treg cell enhancers, may reduce chronic

inflammation and promote tissue repair (82, 83). Clinical trials

involving IL-17A inhibitors, like Secukinumab, have demonstrated

their potential in treating inflammatory conditions such as

ankylosing spondylitis, providing a rationale for their application

in IDD (84).

Similarly, Treg cell enhancers, such as low-dose IL-2 therapy,

have been explored in early-phase clinical trials for autoimmune

diseases, showing promising results in enhancing Treg function and

reducing pathological inflammation (85). These findings suggest

that modulating Treg cells could be beneficial in IDD by restoring

immune balance and promoting tissue repair. For B cells, depletion

therapies like Rituximab, which targets CD20+ B cells, have been

successful in treating rheumatoid arthritis by reducing B cell-

mediated chronic inflammation (86). Although specific studies in

IDD are limited, these results imply that B cell depletion could

potentially control the chronic inflammation seen in advanced
Frontiers in Immunology 06
stages of IDD. Additionally, small molecule inhibitors targeting B

cell activation pathways, such as Bruton’s tyrosine kinase (BTK)

inhibitors, are currently under investigation in clinical trials for

various autoimmune conditions, offering another avenue for

potential IDD treatment (87).

In summary, T cells and B cells play critical roles in the progression

of IDD by regulating the local immune microenvironment and

amplifying inflammatory responses. Immunomodulatory therapies

targeting these cells, supported by evidence from other inflammatory

and autoimmune diseases, may represent novel strategies for treating

IDD. Future research should focus on validating these approaches in

the context of IDD through targeted clinical trials to improve patient

outcomes (Figure 1).
3.2 Cytokines and chemokines

During IDD, inflammatory factors play a crucial role. These

factors mediate local inflammatory responses and affect disc cell

survival, apoptosis, and matrix degradation (Table 2).
FIGURE 1

Complex interactions of the immune microenvironment with cell types, signaling pathways, and ECM degradation in intervertebral disc
degeneration: This figure illustrates the complex interactions within the immune microenvironment during IDD. It includes various immune cells
such as M1/M2 macrophages, T cells, B cells, NK cells, and dendritic cells, highlighting their roles in IDD. These cells secrete multiple cytokines and
chemokines, which regulate the degradation and repair processes of the ECM. Arrows indicate the interactions and signaling pathways between
these cells, illustrating the dual role of the immune microenvironment in either promoting or inhibiting disc degeneration.
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TABLE 2 Key cytokines and chemokines in IDD and their potential therapeutic targets.

Cytokine/
gs Clinical Implications References

Targeting IL-1b can mitigate ECM
degradation and reduce disc cell apoptosis,
potentially slowing the progression of IDD.
Combination therapy targeting both IL-1b
and its downstream pathways could offer
more comprehensive protection.

(34, 175, 176, 192).
(34, 193)

bitors,

TNF-a is a central mediator of inflammation
and cell death in IDD. Inhibition of TNF-a
and its associated signaling pathways could
reduce chronic inflammation and protect
against ECM degradation.

(34, 89, 90, 194, 195)

bitors,

Targeting IL-6 and it’s signaling pathways
could reduce chronic inflammation and
potentially restore immune balance in IDD.
The dual role of IL-6 necessitates careful
modulation to avoid adverse effects on
tissue repair.

(93–95, 196, 197)

Rgt
IL-17 plays a significant role in chronic
inflammation and ECM degradation in IDD.
Targeting IL-17 and it’s signaling pathways
could reduce inflammation and protect
against tissue damage.

(19, 63, 73, 198, 199)

in),

Targeting CXCL8 and its receptors could
reduce neutrophil-driven inflammation and
subsequent tissue damage in IDD. This
approach could be particularly effective in the
early stages of inflammation.Targeting
specific cytokines and transcription factors
involved in T cell differentiation (STAT3,
FOXP3) could enhance therapeutic outcomes.

(64, 65, 67, 200, 201)

kB

Inhibiting CCL2 could reduce the
recruitment of pro-inflammatory
macrophages and monocytes, potentially
mitigating chronic inflammation and ECM
degradation in IDD.

(33, 37, 38, 54, 202)

, Reactive Oxygen Species; NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells;
-aspartic acid protease 3; IL-6, Interleukin 6; JAK, Janus Kinase; STAT3, Signal Transducer and
igand 8 (also known as Interleukin 8); PI3K-Akt, Phosphatidylinositol 3-kinase/Protein kinase B
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chemokine
Role in IDD Key regulatory molecules Potential targets and dru

IL-1b
Key pro-inflammatory cytokine
promoting ECM degradation and disc
cell apoptosis.

NF-kB, MAPK, Caspase-1,
NLRP3 inflammasome

IL-1b inhibitors (Anakinra), NF-kB
inhibitors (Parthenolide), Caspase
inhibitors (Z-VAD-FMK), NLRP3
inhibitors (MCC950)

TNF-a
Promotes disc cell apoptosis, ECM
degradation, and chronic inflammation.

NF-kB, JNK, AP-1, Caspase-3
TNF-a inhibitors (Etanercept), JNK
inhibitors (SP600125), Caspase inhi
AP-1 inhibitors

IL-6

Multifunctional cytokine involved in
inflammation and immune response
modulation. Plays dual roles in promoting
and resolving inflammation.

JAK-STAT3, NF-kB, MAPK
IL-6 inhibitors (Tocilizumab), JAK
inhibitors (Tofacitinib), STAT3 inh
MAPK inhibitors (U0126)

IL-17
Promotes recruitment and activation of
neutrophils, contributing to chronic
inflammation and ECM degradation

STAT3, RORgt, NF-kB, IL-23
IL-17 inhibitors (Secukinumab), RO
inhibitors, IL-23 inhibitors
(Ustekinumab), STAT3 inhibitors

CXCL8 (IL-8)
Attracts neutrophils to the site of injury,
contributing to acute and chronic
inflammation in IDD.

NF-kB, MAPK, PI3K-Akt
CXCR1/CXCR2 inhibitors (Reparix
NF-kB inhibitors, PI3K inhibitors,
MAPK inhibitors

CCL2 (MCP-1)
Recruit monocytes and macrophages to
the site of injury, contributing to chronic
inflammation and tissue remodeling.

CCR2, NF-kB, MAPK
CCR2 antagonists (RS102895), NF-
inhibitors, MAPK inhibitors

IL-1b, Interleukin 1 beta; TNF-a, Tumor Necrosis Factor alpha; MMPs, Matrix Metalloproteinases; NLRP3, NOD-like receptor pyrin domain-containing protein 3; ROS
MAPK, Mitogen-Activated Protein Kinase; Caspase-1, Cysteine-aspartic acid protease 1; JNK, c-Jun N-terminal kinase; AP-1, Activator Protein 1; Caspase-3, Cystein
Activator of Transcription 3; IL-17, Interleukin 17; RORgt, Retinoid-related orphan receptor gamma t; IL-23, Interleukin 23; CXCL8 (IL-8), C-X-C motif chemokine
pathway; CCL2 (MCP-1), C-C motif chemokine ligand 2 (also known as Monocyte Chemoattractant Protein-1); CCR2, C-C Chemokine Receptor Type 2.
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3.2.1 IL-1b
IL-1b is a key pro-inflammatory cytokine involved in IDD (4).

It binds to its receptor IL-1R1 on the cell surface, activating

downstream NF-kB and MAPK signaling pathways, thereby

promoting the expression and activity of MMPs and accelerating

the degradation of the disc matrix (83). Additionally, IL-1b induces

oxidative stress and activates caspase signaling pathways, leading to

the apoptosis of nucleus pulposus cells (NPCs) and annulus fibrosus

cells (AFCs), further exacerbating disc degeneration (88).

3.2.2 TNF-a
TNF-a is another pro-inflammatory cytokine that plays a

significant role in IDD (89). It exerts its effects through TNFR1

and TNFR2 receptors, activating NF-kB and JNK signaling

pathways, and regulating the expression of various inflammatory

mediators (90). Recent studies indicate that TNF-a increases disc

cell death by inducing oxidative stress and is positively correlated

with the severity of disc degeneration (34, 91). Moreover, TNF-a
promotes the expression of MMPs and ADAMTSs, accelerating

matrix degradation (92).

3.2.3 IL-6
IL-6 has a complex role in IDD. It binds to IL-6R and forms a

complex with gp130, activating the JAK-STAT signaling pathway

(93). As a pro-inflammatory cytokine, IL-6 promotes the

expression of MMPs and ADAMTSs, accelerating matrix

degradation (94). On the other hand, IL-6 is also considered to

have anti-inflammatory effects, modulating immune cell

responses through the STAT3 signaling pathway (95). This dual

role makes IL-6’s function in disc degeneration complex

and significant.

3.2.4 Chemokines
Chemokines primarily regulate the migration and localization

of immune cells during IDD. For example, CCL5 (RANTES)

mediates its effects through the CCR5 receptor, attracting

macrophages and neutrophils to the lesion site, enhancing local

inflammatory responses (96). CXCL8 (IL-8) mediates its effects

through CXCR1 and CXCR2 receptors, attracting neutrophils to the

site of inflammation and promoting acute inflammatory responses.

This cell migration not only exacerbates local tissue damage but also

contributes to the maintenance of chronic inflammation (97).
3.3 Regulation of disc cell survival and
apoptosis by inflammatory mediators

Inflammatory mediators regulate disc cell survival and

apoptosis through various pathways. Pro-inflammatory cytokines

such as IL-1b and TNF-a can activate several apoptosis-related

signaling pathways, such as the caspase family, inducing cell

apoptosis (98). Additionally, oxidative stress and mitochondrial

dysfunction are important mechanisms by which inflammatory

mediators induce cell death.
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3.4 Regulation of matrix degradation

Pro-inflammatory cytokines like IL-1b and TNF-a can activate

the caspase signaling pathway, inducing cell apoptosis.

Furthermore, these cytokines can increase apoptosis rates by

inducing oxidative stress and mitochondrial dysfunction (99).

MMPs and ADAMTSs are major enzymes responsible for disc

matrix degradation, and their expression and activity are regulated

by various inflammatory factors. IL-1b and TNF-a can significantly

increase the expression of these degradative enzymes by activating

NF-kB and MAPK signaling pathways, thus accelerating matrix

degradation. For example, IL-1b binds to its receptor IL-1R1 on the

cell surface, activating downstream NF-kB and MAPK signaling

pathways, promoting the expression of MMP-3 and MMP-13 genes

and proteins, leading to the breakdown of collagen and

proteoglycans (100). TNF-a exerts its effects through TNFR1 and

TNFR2 receptors, activating NF-kB and JNK signaling pathways,

regulating the expression of ADAMTS-4 and ADAMTS-5 genes

and proteins, further promoting matrix degradation (34, 101).
3.5 Prospects for the application of novel
inflammatory modulators

With a deeper understanding of the mechanisms of IDD,

significant progress has been made in developing novel

inflammatory modulators. For instance, IL-1 receptor antagonists

(Anakinra) and TNF-a inhibitors (such as Etanercept) have shown

promising results in preclinical studies (102, 103). Additionally,

novel small molecule inhibitors targeting NF-kB and MAPK

signaling pathways also show potential therapeutic prospects.

These new drugs precisely modulate inflammatory responses, not

only alleviating symptoms but potentially delaying or reversing the

progression of disc degeneration fundamentally.

In summary, the mechanisms by which inflammatory cytokines

function in IDD are complex and diverse. In-depth research into these

mechanisms and regulatory pathways not only aids in understanding

the pathophysiology of IDD but also provides an important theoretical

basis for developing novel therapeutic strategies.
4 Signaling pathways of the immune
system in intervertebral disc
degeneration

4.1 NF-kB signaling pathway

The NF-kB signaling pathway plays a crucial role in disc

degeneration and immune responses. NF-kB is a family of

transcription factors that are key regulators of cellular stress and

inflammatory responses (104). In IDD, NF-kB activation is primarily

mediated by pro-inflammatory cytokines such as IL-1b and TNF-a
(105). Upon binding to their receptors (IL-1R1 and TNFR1/TNFR2),

these cytokines activate the IKK complex, leading to the
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phosphorylation and degradation of IkB proteins, thereby releasing

NF-kB transcription factors. These factors then translocate to the

nucleus and initiate the transcription of inflammatory genes (106).

NF-kB activation leads to a cascade of downstream effects, including

the upregulation of inflammatory cytokines (such as IL-6 and IL-8),

chemokines (such as CCL5), and matrix metalloproteinases (MMP-3

and MMP-13) (107). These effects not only exacerbate the

inflammatory response of disc cells but also accelerate matrix

degradation (108). Moreover, NF-kB is linked to oxidative stress,

mitochondrial dysfunction, and ferroptosis, which further promote

cellular damage and matrix degradation (109). NF-kB also influences

cell death pathways, including ferroptosis, cuproptosis, and pyroptosis,

by regulating Bcl-2 family proteins (110). Given the pivotal role of NF-

kB in disc degeneration, targeting this pathway presents significant

therapeutic potential. Currently, some NF-kB inhibitors have shown

promising results in preclinical studies. For instance, IKKb inhibitors

significantly slowed the progression of disc degeneration in animal

models (111). Additionally, small-molecule drugs targeting the NF-kB
pathway, such as BAY 11–7082 and Parthenolide, have demonstrated

potential in inhibiting disc degeneration-related inflammatory

responses (112).
4.2 MAPK signaling pathway

The activation of theMAPK signaling pathway in disc cells and its

impact on immune responses have also garnered significant attention.

The MAPK family includes three major pathways: ERK, JNK, and

p38, which play critical roles in cell proliferation, differentiation, stress

response, and death (103). In IDD, the MAPK signaling pathway is

also activated by inflammatory cytokines such as IL-1b and TNF-a,
influencing disc cell functions through various mechanisms (113).

The ERK pathway is primarily involved in cell proliferation and

differentiation, but its excessive activation in an inflammatory

environment may lead to abnormal cell proliferation and matrix

metabolic imbalance (114). The JNK and p38 pathways are mainly

involved in stress responses, with their activation leading to increased

expression of pro-inflammatory genes and promoting novel cell death

pathways such as ferroptosis and cuproptosis by regulating caspase

family proteins (115). Additionally, the MAPK signaling pathway is

involved in epigenetic and post-transcriptional regulation, affecting

gene expression and protein function by modulating histone

modifications and RNA stability. Regulators targeting the MAPK

pathway hold broad prospects in the treatment of disc degeneration

(116). For example, the p38 MAPK inhibitor SB203580 has shown

efficacy in suppressing inflammatory responses in disc cells in vitro,

and the JNK inhibitor SP600125 has demonstrated potential in

slowing disc degeneration in animal models (117).
4.3 JAK-STAT signaling pathway

The JAK-STAT pathway mediates signal transduction through

cytokine receptors and plays a vital role in inflammation and immune

responses. Cytokines such as IL-6 and IL-10 bind to their receptors,
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activating JAK kinases, which in turn activate STAT transcription

factors. These STAT factors then translocate to the nucleus to

regulate the expression of target genes (118). In IDD, the JAK-

STAT signaling pathway contributes to disease progression by

regulating the expression of inflammatory cytokines and the

activation of immune cells. For example, IL-6 activates the JAK-

STAT3 pathway, promoting the expression of pro-inflammatory

genes, thereby exacerbating inflammation and matrix degradation

in the disc (93). The JAK-STAT signaling pathway is also closely

related to disc cell survival and death, influencing cell death pathways

such as ferroptosis, cuproptosis, and pyroptosis by regulating the

expression of Bcl-2 family proteins (119). Recent studies have also

found that the JAK-STAT pathway plays an important role in

epigenetic regulation, affecting gene expression through DNA

methylation and histone modifications. JAK-STAT inhibitors show

promising potential in the treatment of disc degeneration. For

instance, Tofacitinib, a JAK inhibitor, has demonstrated efficacy in

suppressing disc degeneration-related inflammatory responses in

preclinical studies (120). Additionally, small-molecule inhibitors

targeting STAT3 have shown potential in regulating inflammatory

responses and slowing the degeneration process (121).
4.4 NLRP3 inflammasome

The NLRP3 inflammasome is a multiprotein complex that senses

intracellular danger signals, activating caspase-1, which promotes the

maturation and release of IL-1b and IL-18 (122). In IDD, danger

signals such as oxidative stress, mitochondrial damage, and matrix

degradation products can activate the NLRP3 inflammasome.

Activation of the NLRP3 inflammasome leads to a strong local

inflammatory response and cell death in the disc (34). The release of

IL-1b not only promotes the expression of more inflammatory

cytokines but also further activates the NF-kB and MAPK signaling

pathways through a positive feedback mechanism, exacerbating disc

degeneration. NLRP3 is also closely related to pyroptosis, an

inflammatory form of cell death, which further intensifies the local

inflammatory response (123). Activation of the NLRP3 inflammasome

also involves ubiquitination processes that regulate protein degradation

and function (124). The potential of NLRP3 inflammasome inhibitors

in the treatment of disc degeneration is gradually becoming apparent.

For example, MCC950, a specific NLRP3 inhibitor, significantly slowed

the progression of disc degeneration in animal models (125).

Additionally, other NLRP3 inhibitors such as Bavachin (BHB) and

Berberine have shown efficacy in suppressing inflammatory responses

and protecting the disc in preclinical studies (126).

In summary, signaling pathways such as NF-kB, MAPK, JAK-

STAT, and NLRP3 inflammasome play critical roles in disc

degeneration (Table 3). In-depth studies of the activation

mechanisms and functions of these pathways not only aid in

understanding the pathophysiological processes of disc degeneration

but also provide an important theoretical basis for developing novel

therapeutic strategies (Figure 2). Increasing evidence highlights the

complex crosstalk among these signaling pathways. For instance, NF-

kB activation primes the expression of NLRP3 inflammasome
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TABLE 3 Signaling pathways in IDD and associated therapeutic interventions.

Signaling
ules Potential targets and drugs Clinical implications References

-6, IL-8,
IKK inhibitors (BAY 11-7082), NF-kB
inhibitors (Parthenolide), ROS scavengers
(N-acetylcysteine)

Targeting the NF-kB pathway can
significantly reduce inflammation and ECM
degradation in IDD. Inhibiting this pathway
may prevent chronic inflammation and
protect against progressive disc degeneration.

(104–106, 203, 204)

IL-1b,
p38 MAPK inhibitors (SB203580), JNK
inhibitors (SP600125), ERK inhibitors,
AP-1 inhibitors

Inhibiting the MAPK pathway can mitigate
the inflammatory response and protect
against ECM degradation in IDD. Targeting
specific MAPK components may allow for
more precise therapeutic interventions.

(103, 113, 114, 117,
205, 206)

0, SOCS3
JAK inhibitors (Tofacitinib), STAT3
inhibitors (WP1066), SOCS3 mimetics,
IL-6 inhibitors (Tocilizumab)

Targeting the JAK-STAT pathway could
reduce inflammation and apoptosis in IDD,
potentially offering a strategy to halt or
reverse disease progression. Combination
therapies targeting both JAK and STAT
proteins may provide enhanced efficacy.

(118–120, 207, 208)

b, IL-
NLRP3 inhibitors (MCC950), Caspase-1
inhibitors (Ac-YVAD-cmk), ROS
scavengers, IL-1b inhibitors (Anakinra)

Targeting NLRP3 inflammasome can reduce
inflammation and cell death in IDD,
potentially preventing further damage.
Combining NLRP3 inhibitors with
antioxidants may improve outcomes.

(88, 122–124, 209, 210)

a B; IL-6, Interleukin 6; MMPs, Matrix Metalloproteinases; ROS, Reactive Oxygen Species; MAPK, Mitogen-Activated Protein Kinase; ERK, Extracellular
-a, Tumor Necrosis Factor alpha; JAK, Janus Kinase; STAT3, Signal Transducer and Activator of Transcription 3; SOCS3, Suppressor of Cytokine Signaling
in Containing a CARD; Caspase-1, Cysteine-aspartic acid protease 1; IL-18, Interleukin 18.
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pathway
Role in IDD Key regulatory mole

NF-kB Pathway

Central mediator of inflammation and
ECM degradation in IDD. Activated by
pro-inflammatory cytokines (IL-1b, TNF-
a) leading to the transcription of
inflammatory genes and
degradative enzymes.

IKK complex, IkB, p65/p50, I
MMPs, ROS

MAPK Pathway

Regulates cellular responses to stress and
inflammation. In IDD, it promotes the
expression of pro-inflammatory cytokines
and enzymes involved in
ECM degradation.

ERK, JNK, p38, MMPs, AP-1
TNF-a

JAK-STAT Pathway

Mediates cytokine signaling involved in
inflammation and immune responses. In
IDD, it promotes inflammatory gene
expression and contributes to chronic
inflammation and disc cell apoptosis.

JAK1/2/3, STAT3/5, IL-6, IL-

NLRP3
Inflammasome

Activates caspase-1, leading to the
maturation of IL-1b and IL-18,
promoting inflammation and pyroptosis
in IDD.

NLRP3, ASC, Caspase-1, IL-1
18, ROS

NF-kB, Nuclear Factor kappa-light-chain-enhancer of activated B cells; IKK, IkB kinase; IkB, Inhibitor of kapp
Signal-Regulated Kinase; JNK, c-Jun N-terminal kinase; AP-1, Activator Protein 1; IL-1b, Interleukin 1 beta; TNF
3; NLRP3, NOD-like receptor pyrin domain-containing protein 3; ASC, Apoptosis-associated Speck-like Prote
c
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components, thus facilitating pyroptosis under stress (127).Meanwhile,

IL-6-mediated activation of the JAK-STAT3 pathway can modulate

NF-kB transcriptional output, amplifying inflammation (128). MAPK

pathways (notably p38 and JNK) intersect with both NF-kB and

NLRP3 activation cascades, creating a positive feedback loop (129).

This synergy suggests that dual or multi-pathway inhibitors—such as

those targeting both NF-kB and NLRP3—may offer enhanced

therapeutic efficacy. Notably, intradiscal AAV-CRISPR/Cas9 knock-

down of b-catenin not only preserves notochord-derived cells and

annulus integrity but also attenuates NF-kB-driven NLRP3 priming,

highlighting b-catenin as an upstream modulator of this

inflammasome axis and positioning gene editing as a precise, multi-

pathway regenerative strategy (130).
5 The relationship between the
immune microenvironment and ECM
degradation

5.1 Role of inflammatory mediators in ECM
degradation

The ECM, mainly composed of collagen, proteoglycans, and

other matrix molecules, provides structural support and elasticity to
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the disc. Inflammatory mediators such as IL-1b and TNF-a
significantly accelerate ECM degradation by upregulating the

expression of MMPs and ADAMTS proteases (131). These

inflammatory cytokines not only directly promote ECM

degradation but also exacerbate the degenerative process by

inducing mitochondrial autophagy in nucleus pulposus cells and

altering the balance of ECM synthesis and degradation (132).
5.2 Role of miRNAs and lncRNAs in
regulating inflammatory mediators and
ECM degradation

During IDD, non-coding RNAs such as microRNAs (miRNAs)

and long non-coding RNAs (lncRNAs) play increasingly recognized

roles in regulating inflammatory mediators and ECM degradation.

For example, miR-27b inhibits MMP-13 expression by directly

targeting its 3’UTR region, thereby slowing ECM degradation

(133). Studies indicate that miRNAs can regulate the expression

of MMPs and ADAMTS through various pathways, influencing

ECM degradation and the progression of disc degeneration.

Furthermore, lncRNA HOTAIR, by binding to polycomb protein

EZH2, promotes H3K27me3 modification, thereby inhibiting the

expression of MMP-1 and MMP-3 and reducing matrix
FIGURE 2

Schematic representation of key signaling pathways in intervertebral disc degeneration: This diagram depicts the activation and interactions of key
signaling pathways, including NF-kB, MAPK, JAK-STAT, and NLRP3, during IDD. It includes pro-inflammatory actions, anti-inflammatory effects, and
apoptosis. The schematic shows how these signaling pathways transmit signals between different immune cells, triggering inflammatory responses
that further promote or inhibit the progression of disc degeneration.
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degradation (134). These molecular mechanisms illustrate the

multi-layered regulatory roles of non-coding RNAs in ECM

degradation. Additionally, miR-21 indirectly promotes the

expression of MMP-3 and MMP-9 by downregulating tissue

inhibitor of metalloproteinases 3 (TIMP3), leading to accelerated

ECM degradation (135). LncRNA MEG3, through interaction with

the tumor suppressor p53, inhibits the expression of MMP-2 and

MMP-9, protecting the ECM from excessive degradation (136).

Notably, non-coding RNAs not only play important roles in gene

expression regulation but also influence signal transduction and

intercellular communication, playing key roles in the pathogenesis

of disc degeneration. For instance, lncRNA TUG1 regulates the

Wnt/b-catenin signaling pathway, affecting inflammatory responses

and ECM degradation (137). Future research should further

elucidate the specific functions and mechanisms of non-coding

RNAs in disc degeneration and explore their potential as

therapeutic targets.
5.3 Immunoregulatory role of ECM
degradation products

ECM degradation not only impacts the structure and function

of the disc but also produces degradation products that have

important immunoregulatory roles. ECM degradation products

such as collagen fragments, proteoglycan fragments, and

hyaluronic acid fragments can act as damage-associated

molecular patterns (DAMPs), activating immune cells and

triggering and sustaining inflammatory responses. For example,

collagen fragments activate downstream NF-kB and MAPK

signaling pathways through TLR2 and TLR4, inducing the

expression of IL-1b, TNF-a, and IL-6, further exacerbating

inflammation and ECM degradation (138). Hyaluronic acid

fragments can similarly activate macrophages through the same

pathways, enhancing their pro-inflammatory responses (55).

Additionally, proteoglycan fragments such as aggrecan and

versican fragments, by binding to the CD44 receptor, activate

macrophages and dendritic cells, enhancing their pro-

inflammatory and antigen-presenting functions (139).

Despite significant progress in the study of IDD and ECM

degradation, many gaps and controversies remain. First, the

molecular mechanisms of ECM degradation are not yet fully

elucidated. Although many key proteases and signaling pathways

have been identified, their specific roles and interactions at different

pathological stages require further investigation. Additionally, the

precise mechanisms by which inflammatory mediators and ECM

degradation products regulate the immune microenvironment,

especially in different types of immune cells (such as

macrophages and T cells), remain unclear. Moreover, current

animal models and in vitro systems have limitations in fully

simulating the complex pathological processes of human IDD.

Many findings have yet to be validated in clinical trials, and

effective strategies for clinical treatment are still facing challenges.

Therefore, future research needs to develop more precise and

effective experimental models and adopt multidisciplinary
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approaches to further uncover the complex mechanisms of IDD.

In conclusion, although progress has been made in understanding

the relationship between IDD and ECM degradation, many

scientific questions and technical challenges remain to be

addressed to advance the field and provide more effective

strategies for clinical treatment.
6 Potential of immune regulation in
the treatment of intervertebral disc
degeneration

6.1 Anti-inflammatory drugs

In recent years, the application of anti-inflammatory drugs in

IDD has increased. Non-steroidal anti-inflammatory drugs

(NSAIDs) are the most commonly used anti-inflammatory drugs,

reducing prostaglandin synthesis by inhibiting cyclooxygenase

(COX) to alleviate pain and inflammation. However, long-term

use of NSAIDs can cause gastrointestinal and cardiovascular side

effects (140). More targeted anti-inflammatory drugs, such as

selective COX-2 inhibitors, TNF-a antagonists, and IL-1b
inhibitors, have shown better therapeutic effects and fewer side

effects. For example, studies have shown that the use of TNF-a
antagonists (such as Etanercept) can effectively reduce pain and

inflammation in patients with IDD (141). Additionally, IL-1b
inhibitors (such as Anakinra) block the IL-1b signaling pathway,

slowing the progression of IDD and improving patient symptoms

(142). These novel anti-inflammatory drugs offer new directions for

the treatment of IDD, but their long-term efficacy and safety need

further study.
6.2 Biologics

Biologics also show great potential in the treatment of IDD.

Biologics are protein-based drugs produced through genetic

engineering techniques, capable of precisely targeting specific

inflammatory factors or cells. Studies have shown that using

monoclonal antibodies to block specific inflammatory factors can

significantly slow the progression of IDD. For instance, anti-IL-6

receptor monoclonal antibody (such as Tocilizumab) has shown

good anti-inflammatory effects in animal models, reducing disc

tissue damage and inflammatory cell infiltration (143).

Furthermore, stem cell therapy, as an emerging biological

treatment, has shown potential in regenerating and repairing disc

tissue (24, 101). Mesenchymal stem cells (MSCs) can regulate

immune responses and promote disc cell proliferation and ECM

synthesis by secreting various anti-inflammatory factors and growth

factors (144). Clinical trials have shown that MSC injections can

significantly improve symptoms in patients with IDD and promote

disc tissue repair (145, 146). Despite their promise, MSC therapies

face challenges in clinical application. The harsh, hypoxic, and

nutrient-poor environment of the degenerated disc significantly

limits MSC survival and function (147). Additionally, unmodified
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MSCs may have limited homing ability and paracrine activity.

Recent advances, such as engineering MSCs with hypoxia-

adaptive genes or embedding them in biomaterial scaffolds, have

shown improved outcomes (148). Exosome-based delivery also

emerges as a minimally immunogenic and stable alternative

(145, 149).
6.3 Immunomodulatory therapy

Immunomodulatory therapy aims to modulate the immune

system’s function, restore immune balance, and slow or reverse the

progression of IDD. Recent studies on regulatory T cells (Tregs) and

macrophages have shown significant therapeutic potential.

Research indicates that Tregs can secrete anti-inflammatory

cytokines (such as IL-10 and TGF-b), suppressing inflammatory

responses and slowing IDD progression (150, 151). Additionally,

the role of macrophages in IDD has gained considerable attention.

M1 macrophages have pro-inflammatory effects, while M2

macrophages have anti-inflammatory and tissue repair functions.

Promoting the polarization from M1 to M2 macrophages can

significantly slow the progression of IDD (152, 153). An emerging

immunomodulatory therapy involves using exosomes, which are

nanoscale particles capable of delivering anti-inflammatory and

reparative signals (Table 4). Studies have shown that exosomes

derived from MSCs can modulate immune responses and slow disc

degeneration (24).
7 Future research directions and
challenges

7.1 Discovery of novel immune biomarkers

Identifying and validating new immune biomarkers is crucial

for better understanding and monitoring the immune environment

in IDD. Recent studies have emphasized the role of inflammatory

cytokines like IL-6 and TNF-a, which are not only markers of

inflammation but also active contributors to disc degeneration. For

example, a 2021 study highlighted how elevated IL-6 and TNF-a
levels in disc tissue correlate with increased MMP activity, leading

to accelerated ECM degradation (154).

Beyond these traditional markers, emerging research has

identified specific microRNAs (miRNAs) and long non-coding

RNAs (lncRNAs) as promising biomarkers in IDD (144) (150,

155). Notably, miR-146a and miR-21 have been shown to regulate

inflammatory responses and ECM homeostasis, with studies in

2022 and 2023 respectively demonstrating their potential as

therapeutic targets in IDD (156). Additionally, lncRNAs like

HOTAIR and MEG3 have been implicated in disc degeneration,

with HOTAIR promoting ECM degradation and apoptosis, while

MEG3 offers protective effects by inhibiting MMP expression (157).

The discovery of these markers has been significantly advanced by

high-throughput screening and systems biology approaches, such as

single-cell RNA sequencing (scRNA-seq), which have enabled the
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identification of distinct immune cell subsets and molecular

networks within degenerated disc tissues (21, 158). A 2022 study

using scRNA-seq, for example, revealed distinct macrophage

populations that play differential roles in inflammation and tissue

repair (68). Furthermore, systems biology approaches integrating

multi-omics data have provided comprehensive insights into the

molecular landscape of IDD, as evidenced by a 2023 study that

uncovered key regulatory networks involving miRNAs, lncRNAs,

and cytokines (159). These advancements underscore the potential

of novel biomarkers to improve early detection, monitor disease

progression, and guide personalized treatment strategies in IDD.
7.2 Development of personalized
immunotherapy

Developing personalized immunotherapy strategies tailored to

patients’ unique immune profiles is a promising future direction in

the treatment of IDD. For example, analyzing patients’ immune cell

lineages and inflammatory cytokine levels can help design targeted

treatment plans, such as using specific antibodies or small-molecule

inhibitors to block key inflammatory pathways (160). Recent

advancements have highlighted the potential of specific immune

modulators and gene therapies to achieve precision medicine. By

analyzing individual immune cell lineages and inflammatory cytokine

levels, clinicians can design targeted treatment plans that are more

effective and have fewer side effects. For example, a 2021 study

demonstrated that patients with elevated Th17 cell levels responded

favorably to IL-17 inhibitors, emphasizing the importance of immune

profiling in therapy selection (161). Additionally, modulating

macrophage polarization has shown potential, with research

indicating that adjusting the M1/M2 balance through specific

small-molecule inhibitors can reduce chronic inflammation and

promote tissue repair in degenerative discs. These approaches

underscore the value of personalized immunotherapy in addressing

the specific immune dysfunctions associated with IDD (51).

Gene editing technologies, particularly CRISPR/Cas9, are at the

forefront of personalized immunotherapy, offering precise

modifications of genes involved in inflammatory responses.

Recent studies have explored the use of CRISPR/Cas9 to edit

genes within the NF-kB pathway, leading to reduced

inflammation and slowed disease progression in IDD models

(130). Moreover, correcting mutations responsible for excessive

cytokine production has shown promise in reversing some of the

pathological changes associated with the disease. The integration of

multi-omics data, including genomics, transcriptomics, and

proteomics, further enhances the development of personalized

treatments by providing a comprehensive understanding of each

patient’s unique disease biology. This data-driven approach enables

the identification of key biomarkers and therapeutic targets, paving

the way for more tailored and effective therapies. As personalized

immunotherapy continues to evolve, future directions may include

combination therapies that integrate multiple targeted approaches,

potentially revolutionizing the management of IDD and improving

patient outcomes.
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TABLE 4 Immune regulation strategies in the treatment of IDD.

Immune modulation
Potential therapies Clinical implications References

TNF-a)
while

GF-b)

Agents promoting M2 polarization (IL-
4, IL-13, PPARg agonists), NLRP3
inhibitors (MCC950)

Targeting macrophage polarization could reduce
chronic inflammation and promote tissue repair in
IDD, potentially slowing disease progression.
Modulating the M1/M2 balance is crucial for
achieving optimal therapeutic outcomes.

(88, 211–213)

, IL-1b,
g
on of
M-

TNF-a inhibitors (Etanercept), IL-1b
inhibitors (Anakinra), IL-17
inhibitors (Secukinumab)

Inhibiting pro-inflammatory cytokines can help
control chronic inflammation and prevent further
disc degeneration. This approach is particularly
effective in reducing pain and slowing disease
progression in IDD.

(142, 179,
214–216)

hibit
ing
damage.

Treg enhancers (Low-dose IL-2), TGF-b
therapy, FOXP3 gene therapy

Enhancing Treg activity could suppress chronic
inflammation and autoimmunity in IDD, potentially
leading to improved tissue repair and reduced
disease progression

(217–219)

e
n of IL-

IDD.

NLRP3 inhibitors (MCC950) Caspase-1
inhibitors (VX-765) ROS scavengers

Inhibiting the inflammasome pathway can
significantly reduce inflammation and prevent cell
death in IDD, potentially slowing or reversing
disc degeneration.

(220–222)
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n also
us-like

MSC transplantation, MSC-derived
exosomes, Combination therapies

MSC therapy offers a regenerative approach to
treating IDD by promoting tissue repair and
modulating the immune environment. This strategy
has the potential to not only halt disease progression
but also restore disc function.

(24, 144,
223, 224)
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strategy
Role in IDD Mechanism of action

Macrophage Polarization

Modulates inflammation and tissue
repair through the balance of M1 (pro-
inflammatory) and M2 (anti-
inflammatory) macrophages.

M1 macrophages secrete pro-
inflammatory cytokines (IL-1b,
that promote ECM degradation
M2 macrophages secrete anti-
inflammatory cytokines (IL-10,
that promote tissue repair.

Cytokine Inhibition
Reduces chronic inflammation and
tissue damage by blocking key pro-
inflammatory cytokines.

Inhibiting cytokines like TNF-a
and IL-17 disrupts their signalin
pathways, reducing the product
inflammatory mediators and EC
degrading enzymes.

Regulatory T Cells (Tregs)
Suppress excessive immune responses
and promote an anti-inflammatory
environment in IDD.

Tregs secrete anti-inflammatory
cytokines (IL-10, TGF-b) and in
pro-inflammatory T cells, reduc
overall inflammation and tissue

Inflammasome Inhibition
Reduces inflammation and cell death by
targeting the inflammasome pathway.

Inhibiting NLRP3 inflammasom
activation reduces the productio
1b and IL-18, key mediators of
inflammation and pyroptosis in

MSC Therapy
MSCs can differentiate into disc cells
and modulate the immune environment
by secreting anti-inflammatory factors.

MSCs secrete factors that prom
repair, reduce inflammation, an
modulate immune cells. They ca
differentiate into nucleus pulpos
cells to regenerate disc tissue.

M1, Pro-inflammatory macrophages (Type 1 macrophages); M2, Anti-inflammatory macrophages (Type 2 macrophages)
Interleukin 10; PPARg, Peroxisome Proliferator-Activated Receptor gamma; NLRP3, NOD-like receptor pyrin domain-co
NLRP3, NOD-like receptor pyrin domain-containing protein 3; ROS, Reactive Oxygen.
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7.3 Multidisciplinary collaboration

Promoting multidisciplinary collaboration is essential for

advancing the understanding and treatment of IDD. The

complexity of IDD, involving mechanical, biochemical, and

immunological factors, necessitates an integrated approach

drawing on expertise from fields such as immunology, molecular

biology, bioengineering, and clinical medicine. By fostering

collaboration across these disciplines, researchers can develop

innovative technologies and therapeutic strategies that address the

multifaceted nature of IDD. For example, bioengineering plays a

crucial role in designing advanced biomaterials and drug delivery

systems to enhance the therapeutic effects of immunomodulators. A

2021 study demonstrated the use of a novel hydrogel-based scaffold

for the sustained release of anti-inflammatory drugs directly into

the degenerated disc, significantly reducing local inflammation and

promoting tissue regeneration (15, 162). These innovations

highlight the importance of combining materials science,

pharmacology, and clinical expertise to create biocompatible and

effective treatments.

Moreover, integrating molecular biology with clinical research

can accelerate the translation of basic science discoveries into

therapeutic interventions. Identifying specific molecular targets,

such as cytokines or signaling pathways involved in IDD, requires

a deep understanding of both the underlying biology and the

clinical manifestations of the disease. Collaborative efforts

between molecular biologists and clinicians have led to the

discovery of novel biomarkers for early-stage IDD, paving the

way for personalized treatment plans. Additionally, collaboration

between engineering and clinical medicine has the potential to

revolutionize IDD treatment through the creation of advanced

medical devices and surgical techniques. For instance, recent

advancements in 3D bioprinting technology have enabled the

development of anatomically accurate disc implants customized

to fit individual patient anatomies, offering a promising alternative

to traditional surgical interventions (163). Such breakthroughs are

made possible through the joint efforts of engineers, biologists, and

clinicians, who together bridge the gap between experimental

technology and practical application in patient care.
7.4 Unresolved questions

The specific functions and regulatory mechanisms of immune

cells in IDD remain incompletely understood, posing significant

challenges to the development of targeted therapies. While existing

studies have established that immune cells such as macrophages

and T cells play pivotal roles in the progression of IDD, the precise

mechanisms by which these cells contribute to the disease are still

under investigation. For instance, macrophages, which can polarize

into pro-inflammatory M1 and anti-inflammatory M2 phenotypes,

exhibit dynamic and context-dependent behavior in IDD. A 2022

study by Zhang et al. indicated that M1 macrophages are

predominant in the early stages of disc degeneration, contributing

to tissue damage through the secretion of pro-inflammatory
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cytokines and matrix-degrading enzymes (50). However, the

transition from M1 to M2 macrophages, which theoretically

should promote tissue repair and resolution of inflammation,

does not appear to occur effectively in many cases of chronic IDD

(164). This suggests a potential dysregulation in macrophage

polarization, which could be a critical factor in the persistence of

inflammation and progression of the disease.

Moreover, the interaction networks between different immune

cells, such as macrophages, T cells, and other immune components,

are not yet fully mapped out. T cells, particularly the balance between

pro-inflammatory Th1/Th17 cells and anti-inflammatory Treg cells,

play a crucial role in modulating the immune environment within the

degenerative disc (165). However, recent studies suggest that this

balance is often disrupted in IDD, leading to a chronic inflammatory

state that exacerbates tissue degradation. For example, a 2021 study

highlighted that increased Th17 cell activity correlates withmore severe

disc degeneration, while Treg cell dysfunction may contribute to the

failure of inflammation resolution (160). The specific molecular signals

and pathways that govern these immune cell interactions in the disc

microenvironment are still poorly understood, and unraveling these

mechanisms could reveal new therapeutic targets. Additionally, the role

of other immune cells, such as dendritic cells and B cells, in IDD

remains underexplored. These cells could contribute to the chronicity

of inflammation or interact with resident disc cells in ways that

influence disease outcomes. In-depth research into these unresolved

questions is essential for advancing our understanding of IDD

pathophysiology and for the identification of novel, more effective

therapeutic strategies.
7.5 Technical bottlenecks

Current research faces several technical challenges. For example,

existing animal models cannot fully simulate the complex

pathological processes of human IDD, limiting the extrapolation of

research results (166). Gene editing approaches such as CRISPR/Cas9

offer precise modulation of inflammatory pathways. However, off-

target mutations, immunogenicity of the delivery vector, and ethical

concerns remain significant barriers to clinical adoption (167, 168).

Strategies like high-fidelity Cas9 variants, exosome-based delivery

systems, and transient editing protocols are being explored to

mitigate these risks (169). Additionally, obtaining human samples

poses certain difficulties, affecting the conduct of large-scale studies.

To overcome these challenges, more advanced animal models and in

vitro experimental systems need to be developed, utilizing high-

throughput screening techniques to discover new immune

regulatory factors.
7.6 Overcoming challenges

Recent research directions and technological advances provide

new ideas and methods for advancing the study of interactions

between IDD and the immune system. For example, single-cell

RNA sequencing technology can accurately analyze different cell
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types and their interactions within disc tissue, helping understand

immune cells’ functions at different pathological stages (170, 171).

Additionally, the application of organoid technology is gradually

emerging, allowing better simulation of IDD’s pathological

processes in vitro, and screening potential therapeutic drugs

(172). Furthermore, the application of artificial intelligence (AI)

and machine learning (ML) technologies in biomedical research

provides new tools for IDD research. These technologies can help

analyze large datasets of genes, proteins, and metabolites,

discovering new disease biomarkers and therapeutic targets (173).

International cooperation and data-sharing platforms also help

overcome sample acquisition limitations, promoting research

progress through shared resources and technologies.

IDD is a prevalent condition marked by the progressive

deterioration of disc structure and function. This review explores

the pathophysiological mechanisms, emphasizing the role of ECM

degradation, immune responses, and key signaling pathways like

NF-kB, MAPK, and JAK-STAT. Advances in understanding

immune microenvironments have highlighted potential

therapeutic targets, including anti-inflammatory drugs, biologics,

and immunomodulatory therapies. Future research should focus on

identifying novel immune biomarkers, developing personalized

treatments, and fostering multidisciplinary collaboration to

enhance therapeutic strategies and improve patient outcomes.
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