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Background: Disease progression from human immunodeficiency virus (HIV)

infection to acquired immunodeficiency syndrome (AIDS) is marked by chronic

immune activation, partly due to increased translocation of gut-derived microbial

antigens. Elevated mucosal tumour necrosis factor-a (TNF-a) and resulting

epithelial cell apoptosis may be the etiology. However, studies using carcinoma

cell lines have failed to find a causal link, possibly due to cellular abnormalities

related to the malignant transformation of these immortal cell lines.

Methods: We established intestinal organoid monolayers from healthy controls

and HIV-infected adults and characterized their growth dynamics and cellular

composition. We then examined the effects of HIV-associated cytokines on

transepithelial resistance (TER), apoptosis and macromolecule translocation.

Results: Organoid monolayers from HIV-infected patients grew similarly to

healthy controls, forming confluent monolayers within one to two weeks

containing enterocytes, Paneth, goblet and stem cells. IFN-g synergized with

TNF-a, allowing TNF-a to cause caspase-mediated apoptosis and TER reduction

within 5 ± 3 hours, reflecting patient sample heterogeneity. This led to paracellular

passage of 4 kDa Dextran and transcytosis of 44 kDa horse radish peroxidase, both

of which could be blocked by pan-caspase inhibitor, Q-VD-Oph.

Conclusion: Our study confirms that intestinal organoid monolayers from biopsies

of HIV-infected individuals can be used to study apoptosis-related epithelial barrier

dysfunction and macromolecular translocation. We provide direct evidence that

TNF-a-induced apoptosis triggered two pathways ofmacromolecular translocation:

paracellular passage via apoptotic leaks and transcytosis. Therapies targeting

apoptosis may be useful in preventing disease progression from HIV to AIDS.
KEYWORDS

HIV, organoids, TNF-a, macromolecule uptake, microbial translocation, transcytosis,
paracellular passage, barrier function
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1 Introduction

Despite the immense success of antiretroviral therapy in

preventing human immunodeficiency virus (HIV) transmission

and HIV-related deaths, as of 2024, an estimated 9 million people

were still living with untreated HIV infection and are at risk of

dying from acquired immunodeficiency syndrome (AIDS) (1).

Disease progression from HIV infection to AIDS is marked by

chronic immune activation, which can also occur in virally

suppressed HIV-treated patients (2). Elevated levels of circulating

microbial antigens during HIV infection have been shown to drive

this immune activation (3–6). Increased uptake of microbial

antigens across the gut mucosa, a process termed microbial

translocation, has been hypothesized as one of the possible

reasons behind these circulating microbial antigens (3, 7, 8). In

agreement with this model, we previously found increased

macromolecule translocation across the small and large intestinal

mucosa of HIV-infected patients (9). However, the possible

mechanisms of microbial translocation are still largely unknown.

Several cytokines such as tumour necrosis factor-a (TNF-a) and
interleukin-4 (IL-4) are elevated in the gut mucosa during HIV

infection (10). Gut mucosal apoptosis is high in untreated HIV

infection and only partially mitigated by treatment (10–12),

strongly implicating TNF-a as it is notoriously known for causing

apoptosis (13). This provides a possible mechanism for

translocation via apoptotic leaks. However, the role of apoptosis

in causing microbial translocation is yet to be confirmed as previous

studies, mainly using carcinoma cell lines, have yielded conflicting

results (14).

To solve this question, suitable experimental models are needed,

that allow for controlled epithelial barrier function perturbation via

apoptosis induction and simultaneous measurement of

macromolecule translocation. Traditionally, carcinoma cell lines

such as T84 (15), Caco2 (16) or HT-29/B6 (17) were used for this

purpose; however, they have failed to find a causal link between

epithelial apoptosis and macromolecular translocation (14).

Carcinoma cell lines lack cellular diversity and various active

transport pathways found in the gut (18–24). Most importantly,

they have cancer-associated mutations that make them less

susceptible to cell death (25) and thus fall short as models for

studying cell death. Animal models of lentiviral infection are also

not ideal as HIV is so highly specific to humans that even close

relatives like nonhuman primates cannot fully recapitulate the

disease progression of HIV infection. Finally, using patient-

derived intestinal biopsies is also not feasible for these kinds of

experiments because their limited survival in vitro precludes the

long incubation times needed for experimental induction

of apoptosis.

To overcome the limitations of the aforementioned experimental

models, we opted to establish human organoids as a new model for

studying intestinal barrier function in HIV infection. Given the right

culture conditions, adult stem cells self-organize into mini 3D organ-

like structures in vitro known as organoids (26). Organoids can be

derived from patients, passaged long-term and/or frozen and thawed

as needed, and recapitulate the diverse cellular composition of the
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tissue from which they originate, making them superior over animal,

primary tissue and carcinoma cell line models, respectively.

Therefore, the establishment of the human-derived organoid model

represents a significant improvement in the experimental

armamentarium for studying intestinal barrier function.

As traditional three-dimensional (3D) organoids have a lumen-

facing apical side that is experimentally hard to access, we digested

3D organoids to single cells and seeded them in 2D as organoid

monolayers on Transwell permeable filter inserts. In this paper, we

present for the first time, human intestinal organoids derived from

healthy controls and HIV-infected adults. We first confirmed

whether HIV-derived organoid monolayers could become

confluent and differentiate into various duodenum-specific cells.

Based on previous data (9), we hypothesized a link between

cytokine-induced apoptosis and macromolecule translocation. We

therefore analysed the effect of TNF-a on transepithelial resistance

(TER), apoptosis and macromolecule translocation via paracellular

passage and transcytosis.
2 Materials and methods

2.1 Patient samples

This study was performed in compliance with the Ethics

Committee of Charité-Universitätsmedizin Berlin (EA4/015/13).

Written informed consent was obtained from each patient.

Patients were undergoing endoscopy for diagnostic evaluation of

gastrointestinal symptoms, unexplained anaemia or for ruling out

neoplastic disease. Duodenal biopsies were taken with 3.4 mm

biopsy forceps from three HIV-infected patients treated with

combination antiretroviral therapy (HIV-treated), one patient

who had just been diagnosed with HIV (HIV-untreated), and five

healthy controls (Table 1). Organoids were immediately generated

using up to five biopsies. Organoids could be generated with the

same efficiency, whether derived from healthy controls or HIV-

infected patient biopsies. Data was acquired for the most optimal

growing organoid line from each group and repeated for at least one

other line in at least two independent experiments. Some of the

healthy control organoid lines were previously characterized in

Masete et al. (BMC Biology, 2025) (24); all data presented in this

study were generated independently in subsequent experiments.
2.2 Organoid culture

Organoids were cultured as previously described (24). Briefly,

biopsieswereprocessed to isolate crypts,whichwere thenembedded in

50 mL Cultrex™ BME (R&D Systems) in 24-well plates (TPP/Merck).

3D organoids were cultured in 3D medium (defined in the

Supplementary File) and passaged an average of 1:4 wells weekly. To

generate 2D organoids (organoid monolayers), 3D organoids were

digested into single cells using TrypLE™ Express (Gibco/Thermo

Fisher Scientific) for 10 minutes at 37°C. Around 5·105 cells were

seeded on uncoated Transwell filter inserts (Millipore) and
frontiersin.org
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immediately differentiated using 2D medium (defined in the

Supplementary File). TER at 37°C was monitored using a chopstick

electrode (STX2, World Precision Instruments) and corrected by

subtracting the resistance of cell-free Transwells (130 W) and

multiplied by the effective area of the Transwells (0.6 cm2).
2.3 Apoptosis and inhibitor assays

Confluent monolayers were basolaterally stimulated with human

TNF-a (Peprotech/Thermo Fisher Scientific), always after 72h

basolateral pre-stimulation with 1 ng/mL human interferon-gamma

(IFN-g, Peprotech). In initial experiments, stimulation with IL-4

(Peprotech) alone or in combination with IFN-g and TNF-a was

also carried out. Unstimulated negative controls were included in each

experiment, henceforth simply referred to as “Control”. Caspase 3/7

activity was measured using the SensoLyte Homogenous AFC

Caspase-3/7 Assay Kit (Anaspec) according to manufacturer’s

instructions. Apoptosis was blocked with Quinoline-Val-Asp-

Difluorophenoxymethylketone (Q-VD-Oph, MedChemExpress/

Hycultec), which was added apically and basolaterally, 18h before

(overnight) and during TNF-a stimulation. Transcytosis was blocked

with 40 µMDynasore (Enzo Biochem), which was added apically and

basolaterally, 30 minutes before and during permeability

measurements. Negative controls were treated with dimethyl

sulfoxide (DMSO) in the same manner during the Q-VD-Oph or

Dynasore experiments.
2.4 Protein and mRNA expression

For the real-time quantitative PCR (RT-qPCR), total RNA was

extracted with the NucleoSpin™ RNA/Protein Purification Mini

Kit (Macherey-Nagel) and reverse transcribed with the High-

Capacity RNA-to-cDNA Kit (Applied Biosystems/Thermo Fisher

Scientific) according to the manufacturer’s protocol. RT-qPCR

reactions were performed using a QuantStudio 3 thermocycler
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(Applied Biosystems) with 2 mg of cDNA template, 1 mL of each

probe, 10 mL of RT-qPCR Master Mix (Applied Biosystems) and

was made up to 20 ml using nuclease-free water. GAPDH (Applied

Biosystems) was used for normalization following the 2-DCT method

(27). Immunofluorescent staining (28) and Western blots (29) were

performed according to previous publications. Human probes and

antibodies used can be found in the Supplementary File.
2.5 Permeability measurements

Unless otherwise stated, permeability measurements were

conducted after TER decreased to around 130-200 W·cm2 following

5 ± 3h 5 ng/mL (100 units/mL) TNF-a stimulation, based on each

organoid line’s sensitivity to TNF-a. Permeabilitymeasurements were

performed at 37°C in 24 well plates (TPP/Merck) in 10 mM glucose-

enriched, pH 7.4, HEPES-buffered Ringer solution (plate assay). In all

plateassays, 0.4mMdialyzedfluorescein isothiocyanate-labelled4kDa

dextran (FD4, TdBConsultancy) and 25 nM 44 kDa Horse Radish

Peroxidase (HRP, Sigma-Aldrich/Merck)was added to eachTranswell

(apical solution). To eliminate the concentration gradient, 0.4 mM

unlabelled dextran was added to each well (basolateral solution). FD4

and HRP permeability was measured by transferring Transwells from

one well to another at 0 (blank), 30, 60 and 90 minutes. HRP was

quantified using a fluorogenic peroxidase substrate kit (Quanta Blu™,

Thermo Fisher Scientific) and, along with FD4, detected

fluorometrically using a plate reader (Infinite M200, Tecan).

Permeabilities were calculated as the ratio of flux, J (mol·h-1·cm-2)

over concentration gradient, Dc (mol/L). Initial experiments were

performed in Ussing chambers as described before (9), yielding

qualitatively identical macromolecule permeabilities as plate assays.
2.6 Statistics

GraphPad Prism (version 10) was used for graphing and statistical

analysis. Results are given as mean ± SEM. Multivariate analysis was
TABLE 1 Patient clinical data.

Group Organoid line Sex Age Viral load
(copies/mL)

CD4 Count
(per µL)

Years on ART ART

Healthy Control 1C1 M 30 ND ND – –

Healthy Control 3C2 M 53 ND ND – –

Healthy Control 4C3 F 37 ND ND – –

Healthy Control 5C4 F 32 ND ND – –

Healthy Control 6C5 F 35 ND ND – –

HIV-treated 7T1 M 25 <LOD 520 1 3TC, DGV

HIV-treated 8T2 M 84 <LOD 280 27 ABC, 3TC, DGV

HIV-treated 9T3 M 54 <LOD 980 16 TAF, FTC, BGV

HIV-untreated 2U1 M 41 1216000 110 – –
ART, Antiretroviral therapy; 3TC, lamivudine; ABC, abacavir; BGV, bictegravir; DGV, dolutegravir; FTC, emtricitabine; F, female; M, male; ND, not determined, TAF, tenofovir alefenamide;
<LOD, lower than the limit of detection (<20 copies/mL).
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performed using one-way or two-way ANOVA. Bonferroni–Holm

adjustment was used for post hoc analysis in multiple testing. Adjusted

P-values < 0.05 were considered significant.
3 Results

3.1 HIV-derived organoid monolayers are
comparable to those of healthy controls

3D organoids derived from five healthy controls, three HIV-

treated and one HIV-untreated patient were digested to single cells

and seeded as organoid monolayers. Irrespective of their source,

organoid monolayers reached confluence within one to two weeks

(TER ≥ 100 W·cm2, marked by a dotted line, Figure 1A). This TER

threshold for confluence is consistent with a previous report (30)

and corresponds to the lowest TER value where apical medium

volume consistently remained unchanged for at least two days. TER

increased on average by 108.7 ± 0.1 W·cm2 weekly, with an average

increase of 217.4 ± 19.9 W·cm2 from week 1 to 3 and no TER

differences between healthy control and HIV-infected patient

organoids (Figure 1A, Supplementary Table S1). Organoid

monolayers of all 9 lines had an abundance of lysozyme (Paneth

cell marker) and Villin (enterocyte marker) and modest expression

of Mucin-2 (Goblet cell marker) and LGR5 (stem cell marker)

mRNA transcripts (Figure 1B). Immunofluorescence staining

showed protein expression of Villin, Lysozyme and Mucin-2

localized towards the apical side of healthy control, HIV-treated

and HIV-untreated organoid monolayers (Figure 1C). This was

confirmed in one other healthy control and HIV-treated line

(Supplementary Figure S1). There were no qualitative differences

in epithelial integrity based on occludin staining of healthy control,

HIV-treated and HIV-untreated organoid monolayers (Figure 1C,

Supplementary Figure S1). There were numerous significant

differences between mRNA transcript levels of different organoid

lines (Supplementary Table S2). However, qualitative protein

expression of cell markers did not differ between organoid

monolayers obtained from healthy controls, HIV-treated and

HIV-untreated patients (Figure 1C, Supplementary Figure S1).

Further experiments were conducted using three-week-old

organoid monolayers, as organoid monolayers had the highest

TER at this time point, using at least two HIV-derived

monolayers and the two most optimal-growing healthy control

lines (5C4 and 6C5, Supplementary Table S1).
3.2 TNF-a causes epithelial barrier defects
in IFN-g-stimulated organoid monolayers

Next, we investigated the effects of HIV-associated cytokines,

TNF-a, IFN-g and IL-4, on organoid monolayers. It has long been

reported that IFN-g increases TNF-a receptor mRNA levels (31),

cell-surface expression (32) and binding (33) in cancer cell lines. We

found that a 72h pre-stimulation with 1 ng/mL IFN-g was necessary
to see a TNF-a-induced TER reduction (Supplementary Figure
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S2A). We confirmed in Ussing chamber experiments that this small

dose of IFN-g neither reduced TER nor induced macromolecular

permeability (Supplementary Figure S2B). IFN-g merely sensitized

organoid monolayers to TNF-a, not by changing TNF-a receptor

protein expression levels (Supplementary Figure S2C), but rather by

relocating the TNF-a receptor from the intracellular space to the

apical cell surface as shown by immunofluorescence staining

(Supplementary Figure S2D).

To preclude unspecific effects of unphysiologically high

cytokine concentrations, we wanted to identify the lowest effective

concentration of TNF-a. In dose-response experiments, we found

the effect of TNF-a on TER started to unfold at a concentration of 5

ng/ml (Figure 2A). Unlike TNF-a, IL-4 (20 ng/mL) only modestly

and transiently altered TER after 24h (p = 0.0375, Figure 2B).

Therefore, organoid monolayers were stimulated with 5 ng/mL

TNF-a (following IFN-g pre-stimulation) and/or 20 ng/mL IL-4 for

24h. Only TNF-a but not IL-4 caused modest TER reduction

sufficient to induce FD4 (p = 0.0515) and HRP (p = 0.0231)

permeability in plate assays (Figure 2C). All further experiments

were conducted without IL-4, with 5 ng/mL TNF-a following IFN-g
pre-stimulation, in plate assays.
3.3 Low-level TNF-a-induced apoptosis
triggers macromolecular translocation

To measure early apoptotic events, we investigated whether low-

level apoptosis could be induced by a 5h TNF-a stimulation. TNF-a
reduced TER of most organoid lines, with 6C5 (healthy control) TER

being drastically reduced below the threshold of confluence

(Figure 3A). Simultaneously, TNF-a increased caspase activity by at

least 5.5-fold (p < 0.0001), with 6C5 (healthy control) and 8T2 (HIV-

treated) having the highest and lowest caspase 3/7 activity, respectively

(Figure 3B). Epithelial integrity was assessed by immunofluorescence

staining. Compared to the unstimulated control, 5 ng/mL stimulation

did not affect the overall epithelial integrity of the organoid monolayers

(Figure 3C). To confirm that it was in fact apoptosis that caused the

TNF-a-induced macromolecular permeability seen in Figure 2C,

Q-VD-OPh, a pan-caspase inhibitor, was used to block apoptosis

induced by 5 ng/mL TNF-a. Pre-treatment with 40 µM Q-VD-Oph

prevented the TNF-a-induced reduction in TER (p = 0.0099),

FD4 permeability (p = 0.0228) and interestingly, also HRP

permeability (p = 0.0050, Figure 3D).
3.4 Q-VD-Oph blocks TNF-a-induced
macromolecular translocation

The effects of 40 µM Q-VD-Oph on TNF-a-induced epithelial

barrier defects of healthy control, HIV-treated and HIV-untreated

organoid monolayers were analysed. Q-VD-Oph generally protected

healthy control, HIV-treated and HIV-untreated organoid

monolayers against the TNF-a-induced reduction in TER

(Figure 4A). Furthermore, Q-VD-Oph prevented their respective

TNF-a-induced HRP (Figure 4B) and FD4 (Figure 4C) translocation.
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3.5 TNF-a induces macromolecular
paracellular passage and transcytosis

To further elucidate the mechanism of macromolecule

translocation caused by TNF-a, organoid monolayers were

treated with Dynasore, a molecule known to inhibit endocytosis

by inhibiting the activity of dynamin and dispersing the
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organization of lipids in lipid rafts (34). Without affecting TER

(Figure 5A), Dynasore blocked HRP (Figure 5B) but not FD4

(Figure 5C) translocation of 5C4 (healthy control, p = 0.0046)

and 7T1 (HIV-treated, p < 0.0001). This implicates transcytosis as

well as paracellular passage through apoptotic leaks as mechanisms

of macromolecule translocation. For 2U1 (HIV-untreated) and 6C5

(healthy control), a strong TNF-a response led to TER reducing
FIGURE 1

Characterising HIV-derived organoid monolayers. (A) Growth kinetics of organoid monolayers, n = 5. (B) Relative mRNA expression (normalized to
GAPDH, log10-transformed) of major duodenum cell markers, n = 4. (C) Z-axis and confocal projections of organoid monolayers stained for
enterocytes (Villin) and Paneth cells (Lysozyme), Goblet cells (Mucin-2) and tight junction marker (occludin). Scale bar, 20 mm.
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below the confluence threshold (Figure 5A), resulting in high

macromolecular translocation that could not be blocked by

Dynasore (Figures 5B, C). Inversely for 8T2 (HIV-treated), a

weak TNF-a TER response (Figure 5A) resulted in low-level HRP

translocation that was modestly but insignificantly reduced by

Dynasore (Figure 5B, p = 0.0852). Hence, Dynasore could block

HRP translocation only when monolayers were intact but

sufficiently impaired by TNF-a.
4 Discussion

We established intestinal organoids to study epithelial barrier

function and macromolecule translocation in HIV infection.

Compared to carcinoma cell lines traditionally used for this

purpose, our organoid model is a superior representation of the

intestinal mucosal barrier as stem cells used for organoid generation

were endoscopically obtained from HIV-infected patients and

healthy controls. Furthermore, the organoids formed confluent

monolayers reflecting all major duodenum-specific cell types and,

as shown previously, better reproduce active transport pathways of

the intestinal mucosa than carcinoma cell lines (24). Most

importantly, it is unknown to what extent the results obtained

using carcinoma cell lines were biased by cellular abnormalities

related to their malignant transformation as previous studies using

carcinoma cell lines failed to find a causal link between epithelial

apoptosis and macromolecule translocation (14). In contrast, TNF-

a caused caspase-mediated apoptosis that induced paracellular

passage and transcytosis of macromolecules in our organoid

monolayers. Both pathways of macromolecular translocation
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could be pharmacologically blocked by pan-caspase inhibitor, Q-

VD-Oph, suggesting a link between apoptosis and transcytosis.

In addition to TNF-a, IL-4 is also elevated in the gut mucosa of

HIV-infected patients (10). IL-4 increases intestinal macromolecule

translocation in T84 cells and mouse models (35). However, the

TER and macromolecule translocation of our duodenum-derived

organoid monolayers were largely unaffected by basolateral and/or

apical stimulation with up to 160 ng/mL IL-4. This was also the case

for IL-13, which shares the same receptor as IL-4; furthermore,

colon-derived organoid monolayers were similarly unaffected by IL-

4 (data not shown). Our organoid monolayers’ insensitivity to IL-4

could be due to low receptor expression, improper localization, or

other regulatory factors. This, as well as the role IL-4 may play in

intestinal epithelial barrier function, remains an open question.

Unlike TNF-a and IL-4, IFN-g is not elevated in the intestinal

mucosa during HIV infection (10) but is involved in the immune

response to HIV [reviewed in (36)]. IFN-g impairs barrier integrity

of intestinal organoids (37, 38) and T84 cells (15, 39) at

concentrations higher than 10 ng/mL. This was also the case in

our hands (data not shown), but we found optimal experimental

conditions where a 72h 1 ng/mL (20 units/mL) IFN-g pre-

stimulation merely sensitized organoid monolayers to TNF-a
without impairing barrier integrity.

The synergy between IFN-g and TNF-a in potentiating

intestinal barrier disruptions was recently summarized (14). Even

though TNF-a is known to cause epithelial apoptosis, the

mechanism by which it increases intestinal epithelial permeability

has long been solely attributed to apical junction disruptions (15).

This was based on many reports that pharmacological inhibition of

TNF-a-induced epithelial apoptosis failed to block TNF-a-induced
FIGURE 2

Effects of HIV-associated cytokines on epithelial barrier function. Effects of different concentrations of (A) TNF-a and (B) IL-4 on TER, n = 4. (C)
Effects of 20 ng/mL IL-4 and/or 5 ng/mL TNF-a stimulation for 24h on TER, FD4 and HRP translocation, n = 8. Data was obtained from various
patient lines. *p<0.05 and **p<0.01.
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macromolecule translocation [reviewed in (14)]. Most studies with

this conclusion were done using carcinoma cell lines like T84 and

Caco2 cells, which by definition are immortalized by mutations that

select for survival. Mouse (MC38) and human carcinoma (Caco2)

cell lines were more resistant to cell death when exposed to the same

doses of TNF-a, cytotoxic drugs, and X-ray irradiation compared to
Frontiers in Immunology 07
mouse-derived organoids (25). Alternatively, the failure of pan-

caspase blockers against TNF-a-induced barrier defects in previous

studies could be due to the use of less potent, more toxic pan-

caspase blockers such as zVAD (40) and/or toxic concentrations of

IFN-g/TNF-a. We used the lowest effective concentration of TNF-

a, leading to threshold-dependent responses where some
FIGURE 3

TNF-a-induced low-level apoptosis triggers macromolecule translocation. Effects 5 ng/mL 5h TNF-a stimulation on (A) TER and (B) caspase activity,
n = 4. (C) Confocal projections of tight junction marker (ZO-1) and cleaved caspase-3 of representative organoid monolayers following 5 ng/mL 5h
TNF-a stimulation. Scale bar, 20 mm. (D) Apoptosis was blocked with Q-VD-Oph overnight before 5 ng/mL TNF-a stimulation and TER, FD4 and
HRP translocation was measured. An unstimulated control was included. n = 6-15, obtained from various patient lines. *p<0.05, **p<0.01
and ****p<0.0001.
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monolayers exhibited a clear TER effect, while others barely had a

TER effect. This resulted in considerable variability in TER after

TNF-a stimulation across organoid lines and replicates, likely due

to differences in initial TER, organoid monolayer cellular

composition and TNF-R1 cell-surface expression. However, this

low TNF-a dose ensured minimal epithelial disruptions, which

were attenuated by Q-VD-Oph in a dose-dependent manner. The
Frontiers in Immunology 08
highest Q-VD-Oph concentration (40 µM) significantly blocked

TNF-a-induced TER reduction and macromolecule translocation,

even for the most TNF-a-sensitive organoid lines.

2U1 (HIV-untreated) and 6C5 (healthy control) were the most

responsive to TNF-a with as little as 2h TNF-a stimulation

resulting in a rapid TER reduction and robust macromolecular

translocation that could not be blocked by Dynasore, thus likely
FIGURE 4

TNF-a-induced macromolecule translocation. Effects of 40 µM overnight Q-VD-Oph pre-treatment on (A) TER, (B) HRP and (C) FD4 translocation
measured after 5 ng/mL TNF-a stimulation, n = 4. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001
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occurring primarily via apoptotic leaks. On the other hand,

translocation of HRP occurred mainly via transcytosis in intact

monolayers of 7T1 (HIV-untreated) and 5C4 (healthy control)

following 5h TNF-a stimulation. Abrogation of transcytosis by

Q-VD-Oph suggests that apoptosis triggered transcytosis. This

follows our previous observations of transcytosis induction in T84
Frontiers in Immunology 09
cells by apoptosis inducer, camptothecin (9). During early

apoptosis, elevated adenosine triphosphate levels cause accelerated

intracellular transport (41), providing a possible reason for elevated

transcytosis following apoptosis initiation.

High TNF-a receptor expression inWestern blots of 6C5 and 2U1

offers an explanation for their high TNF-a sensitivity. 8T2 (HIV-
FIGURE 5

TNF-a-induced transcytosis of large molecules. Effects of 30 minutes pre-treatment with 40 µM Dynasore on (A) TER, (B) HRP and (C) FD4
translocation after 5 ng/mL TNF-a stimulation. n = 4-6. *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.
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treated) was the least responsive to TNF-a, leading to barely any TER
reduction, caspase activity nor macromolecular translocation even after

8h stimulation. 8T2 organoids were derived from a patient classified as

an ART-suppressed immunologic nonresponder [<350 CD4 cells/µL

(42)] and interestingly, time on treatment seemed to negatively

correlate with TNF-a sensitivity (8T2, 27 years; 7T1, 1 year, and

2U1, untreated). TNF-a also causes intestinal epithelial apoptosis in

Crohn’s disease (43) and interestingly, colon-derived organoid

monolayers from Crohn’s disease patients have impaired epithelial

integrity compared to healthy controls, with those from patients treated

with anti-TNF-a antibody (adalimumab) tending to be less sensitive to

bacteria-induced barrier defects (44). While this study (44) and ours

were limited by small sample size, we speculate that these findings may

reflect the in vivo state as a separate study reported that Crohn’s

disease-associated epigenetic alterations (DNA methylation patterns)

present in intestinal biopsies could be retained in organoids (45). Given

that T helper cell cytokine signalling has been shown to modulate

intestinal stem cell fate (46), it appears plausible that chronic

inflammation during HIV infection may similarly induce epigenetic

alterations that might alter epithelial function.

In summary, we present for the first time intestinal organoids

derived from HIV-infected patients. While growth dynamics and

cellular composition did not differ, significant differences in TNF-a
sensitivity were observed in different organoid lines warranting future

studies with larger sample sizes to investigate differences between

HIV patient groups. TNF-a reduced TER, caused apoptosis and

triggered macromolecule translocation paracellular passage via

apoptotic leaks and transcytosis were identified as translocation

pathways. It would be valuable to investigate the translocation of

biologically relevant macromolecules, such as lipopolysaccharides in

future studies. Therapies targeting epithelial apoptosis may be useful

in preventing disease progression from HIV to AIDS (47). Perhaps

even for other pathologies such as Crohn’s disease where TNF-a also

causes apoptosis.
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