AUTHOR=Masete Kopano Valerie , Massarani Alain S. , Schulzke Jörg-Dieter , Epple Hans-Jörg , Hering Nina A. TITLE=Tumour necrosis factor-α induces macromolecule translocation in HIV-derived duodenal organoids JOURNAL=Frontiers in Immunology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2025.1563702 DOI=10.3389/fimmu.2025.1563702 ISSN=1664-3224 ABSTRACT=BackgroundDisease progression from human immunodeficiency virus (HIV) infection to acquired immunodeficiency syndrome (AIDS) is marked by chronic immune activation, partly due to increased translocation of gut-derived microbial antigens. Elevated mucosal tumour necrosis factor-α (TNF-α) and resulting epithelial cell apoptosis may be the etiology. However, studies using carcinoma cell lines have failed to find a causal link, possibly due to cellular abnormalities related to the malignant transformation of these immortal cell lines.MethodsWe established intestinal organoid monolayers from healthy controls and HIV-infected adults and characterized their growth dynamics and cellular composition. We then examined the effects of HIV-associated cytokines on transepithelial resistance (TER), apoptosis and macromolecule translocation.ResultsOrganoid monolayers from HIV-infected patients grew similarly to healthy controls, forming confluent monolayers within one to two weeks containing enterocytes, Paneth, goblet and stem cells. IFN-γ synergized with TNF-α, allowing TNF-α to cause caspase-mediated apoptosis and TER reduction within 5 ± 3 hours, reflecting patient sample heterogeneity. This led to paracellular passage of 4 kDa Dextran and transcytosis of 44 kDa horse radish peroxidase, both of which could be blocked by pan-caspase inhibitor, Q-VD-Oph.ConclusionOur study confirms that intestinal organoid monolayers from biopsies of HIV-infected individuals can be used to study apoptosis-related epithelial barrier dysfunction and macromolecular translocation. We provide direct evidence that TNF-α-induced apoptosis triggered two pathways of macromolecular translocation: paracellular passage via apoptotic leaks and transcytosis. Therapies targeting apoptosis may be useful in preventing disease progression from HIV to AIDS.