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The cadherin family, which includes T-cadherin, plays a significant role in

angiogenesis, a critical process involved in tumor growth, metastasis, and

recurrence. T-cadherin is extensively expressed in both normal and tumor

vascular tissues and has been shown to facilitate the proliferation and migration

of vascular cells in some studies. However, T-cadherin also exerts inhibitory effects

on angiogenesis in various tumor tissues. The functional role of T-cadherin may

vary depending on the tumor type and the interaction between tumor cells and

vascular cells, suggesting that it acts as a modulator rather than a primary driver of

angiogenesis. Additionally, T-cadherin exhibits distinct characteristics depending

on the tumor microenvironment. This review provides an overview of recent

research on the role of T-cadherin in tumor angiogenesis and discusses its

potential as a diagnostic or therapeutic marker in the field of tumor biology.
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1 Introduction

Tumor progress relies on the expansion of blood vessels to supply essential nutrients

and oxygen to malignant cells, resulting in an aberrant tumor microenvironment. This

process promotes tumor proliferation, invasion, and metastasis (1–3). Intratumor vessels

commonly exhibit structural and functional abnormalities, including disorganized vascular

structure, disruption of vascular endothelial cell (EC) junctions, loss of pericyte coverage

and an irregular or deficient basal membrane (4, 5). These anomalies impact tumor growth

and dissemination, leading to alterations in the tumor microenvironment conducive to

tumor progression (6, 7).

T-cadherin, also known as H-cadherin or cadherin-13, was first identified in 1991 (8).

T-cadherin has a distinct structure compared to classical cadherins, lacking

transmembrane and cytoplasmic domains, but is membrane-bound due to a covalently

attached glycosylphosphatidylinisitol (GPI) anchor (9). Unlike other cadherins, T-cadherin
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does not function primarily as an intercellular adhesion molecule

due to the absence of an intracellular domain. Instead, it is believed

to be involved in particular intracellular signal pathways (10).

Increasing evidence shows that T-cadherin plays an essential role

in regulating not only the proliferation, invasion and metastasis of

the tumor cell but also in tumor angiogenesis across various cancers

including lung, ovarian, esophageal, bladder, cervical and prostate

carcinoma (11, 12). However, there is still controversy surrounding

the specific functions and underlying mechanisms of T-cadherin in

tumor angiogenesis. This review offers a historical overview of T-

cadherin research and highlights its significance in tumor

angiogenesis.
2 Atypical structure of T-cadherin

Human CDH13 (Truncated cadherin, T-cadherin) is located on

chromosome 16q24, adjacent to CDH5 (Vascular endothelial

cadherin, VE-cadherin), CDH1 (Epithelial cadherin, E-cadherin),

CDH3 (Placental cadherin, P-cadherin), CDH8 (Cadherin-8) and

CDH11 (Osteoblast cadherin, OB-cadherin), and it is highly

conserved across other species in evolution (13). CDH13 gene

contains 14 exons, encoding a cDNA sequence of 2142 bps that

can be translated into a protein consisting of 713 amino acids (14).

Classical cadherins contain extracellular cadherin repeats, a

single transmembrane domain, and a cytoplasmic domain with

highly conserved binding sites for downstream catenins, such as

p120−catenin and b−catenin, which in turn bind to a-catenin,
polymerizing actin microfilaments and maintaining the stability of

cytoskeleton. In contrast, T-cadherin lacks transmembrane and

cytoplasmic domains and is inserted to the membrane through
Frontiers in Immunology 02
glycosyl phosphatidylinositol (GPI) attached to the apical aspect

plasma membrane (Figure 1) (15), but lacks key amino acids for the

adhesive functions. Notably, T-cadherin does not have the

canonical strand-exchange dimer and lacks the conserved

HisAlaVal motif responsible for homophilic adhesion. These

differences indicate that the adhesive mechanisms of T-cadherin

may be distinct from classical cadherins (16–18).
3 T-cadherin expression and function
in vascular tissues

3.1 Expression pattern of T-cadherin in
vascular tissues and cells

Early immunohistochemical studies have confirmed that T-

cadherin is highly expressed in all cardiovascular tissues, including

heart, aorta, arteries, post cava and capillaries (19). It is especially

found in endothelial cells (ECs), smooth muscle cells (SMCs) and

pericytes. In pathological conditions like atherosclerosis, restenosis

after balloon angioplasty and tumor angiogenesis, T-cadherin is

upregulated contributing to excessive migration, proliferation, and

phenotypic modulation of vascular cells (20–22).
3.2 Proliferative effects of T-cadherin on
vascular cells

T-cadherin has been shown to promote proliferation in ECs and

SMCs. It activates the PI3K/Akt/mTOR pathway and inhibits the

p38MAPK pathway, protecting ECs from stress-induced apoptosis
FIGURE 1

Structural characteristics of the representative human cadherins (total sizes in amino acid residues are shown).
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(23). T-cadherin also affects cell cycle progression, with an increased

expression during early S-phase and promoting proliferation in both

ECs and SMCs (24). Additionally, T-cadherin influences the

expression of b-catenin and ILK, leading to cell proliferation and

protection against apoptosis (25). However, T-cadherin knockdown

strongly inhibited proliferation of pericytes (26).
3.3 Regulation of T-cadherin in vascular
cell plasticity and motility

Although the stable extracellular structural domain 1 (EC1) is not

favorable for homologous binding, homophilic inhibition by

recombinant T-cadherin protein against the T-cadherin EC1

domain significantly decreased the adhesion of SMCs and HUVECs

(27). At the same time, adenovirus mediated overexpression of T-

cadherin can increase detachment and migration of HUVECs,

suggesting an anti-adhesive role of T-cadherin for vascular cells.

Moreover, T-cadherin could promote SMCs to dedifferentiate upon

GSK3b inactivation, which is characterized by acquisition of synthetic,
migratory and proliferative properties in response to vascular injury or

the presence of atherosclerosis (28). These observations were then

confirmed in the subsequent study by using 2D-monolayer and 3D-

spheroid migration models (29). The studies collectively demonstrate

the function of T-cadherin in promoting vascular cell migration and

inhibiting adhesion.

Another study reported that homophilic activation of T-

cadherin in HUVECs induced morphological changes toward

promigratory phenotype via RhoA/ROCK and Rac pathways and

changed adhesion and polarization of the ECs (30). In the initial

stage of angiogenesis, the contraction, stretching and remodeling of

ECs has been shown to depend critically on RhoA/ROCK activation

(31). The Rac activation is necessary for VEGF-induced migration,

lamellipodia formation, and recruiting high-affinity integrins to

lamellipodia, inducing formation of dynamic cellular protrusions

and capillary structures at the leading edges of polarized cells during

angiogenesis (32, 33). However, E. V. Semina et al. found that the

expression of T-cadherin can lead to an activation of Rac1 and

Cdc42, but have no effects on the RhoA signaling pathway (10). The

difference in T-cadherin overexpression induced GTPases

activation could possibly be related with different experimental

conditions or the cell adhesion state.
3.4 Degradation of VE-cadherin in
barrier function

T-cadherin overexpression leads to the degradation of VE-

cadherin in lysosomes, disrupting endothelial barrier function and

increasing permeability (34–36). T-cadherin’s involvement in

GTPases-mediated signaling pathways affects actin stress fiber

formation and microtubule polymerization, leading to decreased

permeability of the endothelial monolayer (10, 37). T-cadherin also

plays a significant role in regulating endothelial barrier function in

response to serum and thrombin (38).
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3.5 T-cadherin in capillary initiation

T-cadherin homophilic ligation induced a capillary-like structure

consisting of ECs in a 2Dmodel and stimulated a sprout outgrowth in

an EC spheroid model whereas an overexpressed T-cadherin in ECs

by adenoviral infection increased the sprouting from spheroids (39).

In this study, the effects of vascular endothelial growth factor (VEGF)

on neovascularization were enhanced by T-cadherin participation in

mouse skeletal muscle in vivo (40). However, angiogenesis induced by

T-cadherin was not eliminated by inhibition of the VEGF receptor.

T-cadherin induced sprouting in both the absence and presence of

VEGF, yet it did not trigger neovascularization in the absence of

VEGF, suggesting a complex role of T-cadherin in capillary initiation

that may be independent of VEGF (39). However, another study

investigated the incubation of recombinant N-terminal EC1 domain

of T-cadherin in stroma, which is crucial for intercellular recognition

and adhesion (41), inhibited endothelial capillary growth in vitro and

had no effects on endothelial cell proliferation, adhesion or apoptotic

induction (42). The contrary results of T-cadherin in regulation of

capillary initiation may be attributed to the different tumor cells used

in the above models, or the variable roles of T-cadherin in different

tumor angiogenesis mentioned above. It is worth noting that T-

cadherin, located in the tumor microenvironment, seems to have a

more significant effect on tumor capillary initiation than other

mechanisms. This effect on the tumor microenvironment, in turn,

participates in tumor angiogenesis (Figure 2).
4 The association between T-cadherin
expression and tumor vessels

In contrast to normal vascular structures, the vascular network of

malignant tumors exhibits a disorganized and non-hierarchical

arrangement, lacking the typical progression from arterioles to

capillaries to venules. Malignant tumor vessels possess uneven

distribution of the basal membrane, large differences in vessel caliber

size, partially dissociated pericytes and SMCs from ECs and basal

membrane (43, 44). Current studies have highlighted that a low or

insufficient level of T-cadherin expression in a variety of tumor cells is

often closely correlated with the malignant features, as observed in

breast cancer, colorectal cancer, endometrial cancer, bladder cancer,

melanoma, and squamous cell cancer (45–50). In contrast, high levels

of T-cadherin expression have been detected in osteosarcoma, basal cell

carcinoma and hepatocellular carcinoma (14, 51, 52). These contrasting

findings strongly suggest a correlation between T-cadherin and tumor

growth, indicating that the effects of T-cadherin on cell behavior can

vary significantly across different cancer types (14, 53).
4.1 Lung caner

Overexpression of T-cadherin in tumor vessel endothelial cells

was first observed in a Lewis lung carcinoma lung metastasis model

(22). Increased expression of T-cadherin was observed in tumor

penetrating vessels, while little or no T-cadherin was detected in
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tumor cells. Another study showed that T-cadherin was absent in 43%

of 35 NSCLC tumors but present in all adjacent nonmalignant lung

tissue (54). Aberrant promoter methylation may be an important

mechanism underlying the low expression or inactivation of T-

cadherin in lung cancer. However, there was no significant

correlation between hypermethylation of T-cadherin promoter and

clinicopathological features, smoking status, clinical stages, or EGFR

(epidermal growth factor receptor) mutation status (55, 56). In
Frontiers in Immunology 04
addition, poorly differentiated NSCLC (non-small cell lung cancer)

shows higher levels of T-cadherin promoter hypermethylation than

moderately or highly differentiated NSCLC. furthermore, NSCLC

patients without T-cadherin hypermethylation have longer overall

survival than those with T-cadherin hypermethylation (56).

Thus, T-cadherin may act as a tumor suppressor in lung cancer,

and its inactivation could contribute to tumor progression and

poor prognosis.
FIGURE 2

The role of T-cadherin in vascular cell detachment, migration and proliferation during capillary initiation.
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4.2 Breast cancer

Early studies indicated that CDH13 gene is frequently methylated

in breast cancer, leading to downregulation of T-cadherin expression

(57, 58). Consistent with clinical findings in lung cancer, negative

expression of T-cadherin was significantly associated with poor

prognosis in patients with axillary lymph node-positive breast

cancer or triple-negative breast cancer (59–61). In addition, DNA

polymerase b (Pol b) upregulated T-cadherin expression by

promoting T-cadherin promoter DNA demethylation, which in

turn inhibited tumor migration and invasion, further validating the

suppressor role of T-cadherin in breast cancer (62). However,

T-cadherin may not be a monofunctional tumor suppressor. Using

a transgenic mouse model, researchers found that deletion of

T-cadherin limited tumor formation, restrains neovascularization,

causes hypoxia, and increases metastases to the lungs (63).

Importantly, T-cadherin-deficient tumors exhibit reduced vascular

density, enhanced apoptosis, and enlarged hypoxic and necrotic

regions. When compared with that in wild-type tumors, poorly

differentiated tumors were more prone to be observed in the

T-cadherin-deficient condition, suggesting a crucial role of

T-cadherin in supporting tumor growth. Considering the

significant role of T-cadherin in vascularization, it appears that the

contradictory conclusions may be attributed to the complex

mechanisms underlying tumor angiogenesis or to the possibility

that T-cadherin plays different roles at different stages of

tumor angiogenesis.
4.3 Melanoma

CDH13 gene methylation is also prevalent in melanoma and

has been investigated more extensively. A prior investigation

evaluated the expression levels of T-cadherin in 40 human

melanoma cell lines using RT-PCR (49). The study revealed that

T-cadherin expression was significantly reduced or absent in 28

(70%) melanoma cell lines. However, the hypermethylation of CpG

islands in the promoter region of the CDH13 gene is not the only

mechanism responsible for the loss of T-cadherin. DNA

demethylation and inhibition of histone deacetylase do not result

in the re-expression of T-cadherin in melanoma cell lines.

Additionally, certain transcriptional repressors, such as BRN2 in

melanoma cells and ZEB1 in gallbladder cancer cells, inhibit the

transcriptional activity of the CDH13 promoter (64). Specifically, in

melanoma cells, the transcriptional repression of CDH13 promoter

activity by BRN2 enhances their migratory and invasive

capabilities (65).

Multiple studies found that T-cadherin expression in B16F10

melanoma cells remarkably reduced cell proliferation and invasion

and promoted apoptosis, which may be associated with

antagonizing the AKT/CREB/AP-1/FoxO3a signaling pathway. In

mouse tumor models, smaller tumor masses and significantly

decreased vascularization were observed in T-cadherin

overexpressed group (66–68). In addition, melanoma cells with
Frontiers in Immunology 05
positive expression of T-cadherin were more sensitive to garcinol (a

chemically synthesized polyisoprenylated benzophenone), which

also demonstrated the inhibitory effect of T-cadherin on

melanoma (69). However, the inconsistent influence of T-

cadherin on tumor angiogenesis has been noted in other studies.

First, expression of T-cadherin leads to increased invasive potential

due to the upregulation of pro-oncogenic integrins, chemokines,

adhesion molecules and extracellular matrix components.

Furthermore, the overexpression of T-cadherin in HMEC-1 cells

leads to the formation of a vascular network within melanoma in a

3D multicellular tumor spheroid model. The authors propose an

intriguing hypothesis that T-cadherin, expressed by endothelial

cells, may facilitate tumor angiogenesis exclusively within a

pro-angiogenic microenvironment (70). Therefore, the role of

T-cadherin in melanoma functions beyond the regulation of

tumor cells, being closely associated with the mechanisms

underlying tumor angiogenesis.
4.4 Squamous cell carcinoma

Early studies found that T-cadherin was specifically localized at

the basal layer of normal epidermis but was downregulated in

cutaneous squamous cell carcinoma (71, 72). In squamous cell

carcinoma HSC-1 cells, overexpression of T-cadherin increased

surface b1 integrin expression, inhibited b1 integrin internalization,

and promoted b1 integrin-mediated cell-matrix adhesion, which was

possibly associated with reduced phosphorylation at Tyr845 of EGFR.

This suggests that T-cadherin acts as a negative regulator of epidermal

tumorigenesis (73). However, in another study, the overexpression of

T-cadherin in cutaneous squamous cell carcinoma A431 cells

inhibited the adhesion between tumor cells and vascular ECs,

whereas T-cadherin deficiency induced adhesion between A431

cells and ECs (74). It is possible that the expression or functional

alterations of other intercellular adhesion molecules are due to T-

cadherin loss. Moreover, more blood vessels were observed in T-

cadherin overexpressed tumors than those in T-cadherin silenced

tumors in cutaneous squamous cell carcinoma xenografts.

Interestingly, the promoting effects of T-cadherin on tumor

angiogenesis in this study appeared to be a direct contribution of T-

cadherin towards creation of a proangiogenic microenvironment (75,

76). Although overexpression of T-cadherin in A431 cells did not

affect the tumor cell proliferation in vitro and in vivo, the culture

supernatant of T-cadherin overexpressed A431 cells still promoted the

sprout outgrowth (75). Therefore, T-cadherin expression in the tumor

microenvironment promotes angiogenesis rather than that expressed

in tumor cells, aligning with the concept that T-cadherin regulates cell

proliferation and morphological changes in vascular cells.
4.5 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is generally believed to be a

hypervascular tumor. Similar to the expression pattern of T-cadherin
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in other tumors, T-cadherin was underexpressed in hepatocellular

carcinoma cells (26.5%, 13/49 cases) but was frequently (77.6%, 38/49

cases) overexpressed in tumor endothelial cells (77). Overexpression

of T-cadherin induced G2/M cell cycle arrest, decreased cell

proliferation, inhibited adherence-independent growth, and

increased the sensitivity of HCC cells to TNFa-mediated apoptosis.

They also found that T-cadherin significantly inhibited the activity of

c-Jun, a key oncogene that is constitutively activated in hepatocellular

carcinoma cells. T-cadherin was selectively expressed in intratumoral

capillary endothelial cells, and the expression levels of T-cadherin was

also positively correlated with tumor malignant progression (78).

Specifically, the higher expression of T-cadherin was more likely

detected in poorly differentiated tumor regions than in regions where

the tumor cells were well differentiated, indicating that T-cadherin in

sinusoidal vascular endothelial cells might be increasingly induced

during the tumor progression (79).
4.6 Other tumor types

Decreased expression of T-cadherin was associated with the

larger tumor size, surrounding tissue infiltration, lymph node

metastasis and poor differentiation in gastric cancer (80, 81).

Moreover, PI3K/AKT/mTOR signaling pathway, an important

role in regulating angiogenesis both in normal tissues and in

cancers, was reported to be involved in T-cadherin related

tumorigenesis of human gastric cancer and cervical cancer, since

sustained activation of AKT1 in endothelial cells has been shown to

induce the formation of abnormal blood vessels, which was similar

to the aberrations of tumor vessels (82–84).
5 T-cadherin as a receptor for LDL
and adiponectin on
vascular endothelium

Another important role of T-cadherin is to function as the receptor

of low-density lipoproteins (LDL) and adiponectin. In the early 1990s,

T-cadherin was purified and identified from human and rat aorta, as

well as cultured SMCs, as a receptor of LDL (85). However, the

mechanism underlying the specificity interaction of T-cadherin and

LDL in tumor angiogenesis has not been studied in detail.

Adiponectin is an adipose tissue-derived homeostatic factor that

is mainly secreted by white adipocytes, but can also be produced by

skeletal muscles, cardiac myocytes and ECs (86, 87). In plasma,

Adiponectin exists in a variety of complexes, including trimers

(LMW, low molecular weight), hexamers (MMW) and high

molecular weight multimers (HMW), exerting protective functions

in insulin−sensitizing, anti−inflammation, anti−proliferation, anti

−atherosclerotic action and tumor suppression of various tissues

(87). It is believed that the HMW adiponectin is the metabolically

active form of adiponectin (88). However, the function of adiponectin

in blood vessel remains controversial, both protective and promotive

effects on blood vessel growth are reported (63, 89, 90).
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Except AdipoRs (adiponectin receptors), T-cadherin seems to be

another major receptor for native adiponectin in serum with still

largely unknown role in intracellular signaling. T-cadherin was co-

localized with adiponectin in vascular endothelium, pericytes, and

skeletal muscles (91). Early studies have demonstrated that binding

of eukaryotic-expressed adiponectin to cell-surface T-cadherin is

dependent on the hexameric and HMW form (92). Subsequent

research by Kita et al. demonstrated that native adiponectin

selectively binds to cells expressing T-cadherin, while no binding

was observed in cells expressing AdipoR1. Furthermore, the

knockdown of T-cadherin led to a marked reduction in

adiponectin binding to these cells (93). Additionally,

cardiovascular tissues lacking T-cadherin appear to be insensitive

to adiponectin, despite with the consistently expressed AdipoR1/

AdipoR2 (94). Adiponectin induces EC differentiation into capillary-

like structures and stimulates blood vessel growth by promoting

cross-talk between AMPK and Akt signaling, which may be the same

as the function of T-cadherin on ECs (95). Furthermore, T-cadherin

expressed by tumor endothelial cells inhibits cell apoptosis during

tumor angiogenesis by activating NF-kB upon binding to hexamer

and/or HMW adiponectin (79). Contrarily, another study found that

adiponectin can significantly inhibit proliferation and migration of

ECs via the activation of the caspase-mediated ECs apoptosis, and

recombinant adiponectin potently impaired primary tumor growth

that is associated with decreased neovascularization in mice (89).

Using an ischemia-induced revascularization model, the impaired

revascularization phenotype could be rescued by overexpression of

adiponectin in APN-KO (adiponectin knockout) mice but not in

mice that were lacking T-cadherin, suggesting an essential role of T-

cadherin in mediating the proangiogenic activity of adiponectin.

Supportively, the study also found that knockdown of T-cadherin

prevented adiponectin induced migration and proliferation of

cultured ECs (96). Similarly, in MMTV-PyV-mT mice, T-cadherin

was able to sequester adiponectin to the vasculature in a T-cadherin-

dependent manner while the plasma adiponectin level was

dramatically increased in T-cadherin-deficient mice (63).

Moreover, in the absence of T-cadherin, adiponectin appears to

lose its location in the vasculature, suggesting that T-cadherin plays a

crucial role in the regulatory mechanisms of vascular function

involving adiponectin in both normal tissues and malignant breast

cancer. In the light of these findings, although the interaction of

adiponectin and T-cadherin has been well established, the role of this

binding on tumor angiogenesis is still not clear. In addition, T-

cadherin seems to be a membrane binding protein for adiponectin

rather than a receptor that needs to be confirmed by further studies

in the future.
6 Conclusion and perspective

T-cadherin plays a crucial role in tumor angiogenesis by influencing

blood vessel development in endothelial cells (ECs), smoothmuscle cells

(SMCs), and pericytes. Its function in angiogenesis relies on homophilic

interactions or signal transductions as a membrane-binding protein

(Figure 3). However, the specific effects of T-cadherin on vascular cell
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proliferation, detachment and migration have shown conflicting results

in different studies. These contradictions may arise from the diverse

nature of tumor types and limited expression of T-cadherin in tumor

cells. While T-cadherin is not the primary initiator of angiogenesis, it

acts as a modulator that requires initial vessel destabilization through

angiogenic factors to facilitate phenotype conversion, proliferation, and

survival of vascular cells (39, 97). T-cadherin’s presence in rapidly

growing vessels suggests its role in guiding and directing tumor

angiogenesis (98). Future research should focus on understanding the

molecular mechanisms underlying T-cadherin’s effects on both normal

and tumor blood vessels, particularly the intercellular signaling between

tumor cells and vascular cells.
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FIGURE 3

Characteristic T-cadherin-mediated intercellular signaling events and biological activities. T-cadherin lacks transmembrane and cytoplasmic domains
and localizes in membrane lipid rafts through a glycosyl phosphatidylinositol (GPI). T-cadherin is thought to be a regulator of endothelial cell
survival, proliferation, plasticity and motility, all of which are key processes in angiogenesis. By interactions with GRP78 or integrin-b3, T-cadherin
stimulates cell proliferation and protects endothelial cells from apoptosis by activation of the PI3K/Akt pathway. T-cadherin also inhibits integrin-b1
internalization in squamous cell carcinoma cells. Homophilic activation of T-cadherin induced morphological changes toward promigratory
phenotype via RhoA/ROCK and Rac pathways. T-cadherin is able to induce the degradation of VE-cadherin in lysosomes, resulting in the disruption
of endothelial barrier function. This figure is drawn by Figdraw.
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