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Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST), as

advanced omics technologies, have addressed critical challenges in liver

transplantation (LT), the most effective treatment for end-stage liver disease.

This review aims to summarize the applications and future directions of scRNA-

seq and ST in the context of LT. We highlight their role in uncovering immune cell

heterogeneity and related injury mechanisms post-transplantation. From a

clinician’s perspective, we also outline potential future developments in the

application of advanced omics in LT. Specifically, we focus on key immune

cells involved in LT, with an emphasis on post-transplant immune responses and

ischemia-reperfusion injury (IRI), as revealed by scRNA-seq and ST. Furthermore,

we underscore the importance of multi-omics approaches and dynamic omics

analyses in clinical LT research. With ongoing technological advancements, the

integration of cutting-edge omics technologies and artificial intelligence (AI)

holds great promise for advancing precision medicine in LT. Emphasis should be

placed on the value of single-cell and spatial omics technologies in improving

precision therapy and clinical management for LT patients.
KEYWORDS

liver transplantation, single-cell sequencing, spatial transcriptomics, cell heterogeneity,
precision medicine
1 Introduction

Liver transplantation (LT) is widely regarded as the optimal treatment for end-stage

liver disease and hepatocellular carcinoma (HCC) (1, 2). Compared to traditional surgical

interventions, LT significantly improves both the quality of life and overall survival rates for

patients with end-stage liver disease (3). However, several critical challenges persist in
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clinical practice, including donor liver shortages, ischemia-

reperfusion injury (IRI), rejection, and the establishment of

immune tolerance (4, 5).

Omics technologies—spanning genomics, transcriptomics,

proteomics, and metabolomics—enable a comprehensive

understanding of the molecular mechanisms underlying disease

processes (6–8). Systems biology approach for the mechanisms

underlying chronic liver disease Databases like The Cancer Genome

Atlas (TCGA) released extensive omics data, offering valuable

insights into the mechanisms and identifying potential

translational targets for specific diseases (9). Substantial research

has utilized omics approaches in LT. Our group previously reviewed

the application of multi-omics data in clinical LT (10), identifying

early allograft dysfunction (EAD) as a major focus of these studies.

Macrosteatosis (MaS) exerted adverse effects on LT prognosis (11).

Our prior metabolomics study conducted at our center identified

key factors underlying MaS and graft failure (GF) (12). Subsequent

research elucidated the molecular mechanisms linking MaS to graft

failure, offering critical insights into donor liver quality assessment

(13). These findings suggest that omics technologies provide

powerful tools to investigate the genetic landscape of both donors

and recipients, potentially mitigating graft failure risks and

facilitating the development of therapeutic targets. However,

traditional omics approaches are typically conducted at the

population level, limiting their ability to capture single-cell

heterogeneity or spatial organization.

In recent years, advanced omics technologies, including liquid

biopsy, single-cell RNA sequencing (scRNA-seq), spatial

transcriptomics (ST), single-cell methylome sequencing, single-

cell multiomics, and proteome-related single-cell multimodal

omics, have undergone rapid development (14–16). Among these,

scRNA-seq, single-cell multiomics, and ST have emerged as

particularly prominent technologies (17–19). This review focuses
Abbreviations: AI, artificial intelligence; APCs, antigen-presenting cells; ACR,
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on the progress made in utilizing scRNA-seq and ST in LT. The

rapid advancements in single-cell and spatial omics have

revolutionized our understanding of cellular states and the

inherent heterogeneity within biological systems (20–23). scRNA-

seq provides high-resolution analyses of individual cells, offering

valuable insights into cell heterogeneity and dynamic changes

associated with physiological functions and human diseases (24,

25). By enabling the dissection of immune microenvironments,

elucidation of injury mechanisms, and discovery of therapeutic

targets, scRNA-seq has been widely applied across diverse research

domains (26–28). ST is an emerging biotechnology that provided

diverse insights across multiple fields (29–33). By preserving tissue

architecture, ST enables the mapping of cellular and molecular

distributions, enhancing our understanding of cell-cell

communication, tissue structure-function relationships, and

disease mechanisms (34). Together, these advanced omics

technologies deepen our knowledge of cell heterogeneity, spatial

localization, functionality, and interactions in the context of LT.

Although numerous studies have explored the application of

advanced omics in LT (35–46), a comprehensive summary of their

findings remains lacking. This review aims to synthesize prior

research on advanced omics in LT and, more importantly,

provide a forward-looking perspective on their clinical translation

and potential contributions to the future of precision medicine

in LT.
2 Advanced omics approaches:
scRNA-seq and spatial transcriptomics

In 2009, Tang et al. (47) first reported the scRNA-seq technology,

marking the beginning of rapid advancements in single-cell analysis.

scRNA-seq enables the comprehensive measurement of transcript

expression across large numbers of cells (48, 49) and provides an

unbiased approach for identifying and characterizing distinct cell

populations (50–52). This technique involves isolating and extracting

RNA from individual cells, reverse-transcribing mRNA into cDNA

using reverse transcription, amplifying the entire transcriptome

through methods like PCR, and subsequently performing sequencing

and library construction (23, 53–55). By constructing high-resolution

cellular atlases, researchers can identify various cell types and subtypes,

which is essential for understanding tissue functionality (56–58). In

contrast, traditional next-generation sequencing (NGS), often referred

to as bulk RNA-seq, analyzes RNA extracted from a bulk population of

cells in a tissue, treating them as a single entity. This approach

overlooks the differences between individual cells and limits analyses

to the molecular level (59). scRNA-seq, on the other hand, performs

analysis at the single-cell level, avoiding the homogenization effects

caused by cell mixing in bulk RNA-seq. It authentically reflects cell-to-

cell heterogeneity (20, 60), enabling the detailed dissection of cellular

heterogeneity and providing biological insights unattainable with bulk

analyses (23, 54). Recent advancements in scRNA-seq further enhance

its ability to reveal novel cell types and states without bias or RNA

degradation (61). In clinical LT, the application of scRNA-seq aids in

identifying new cell types and subpopulations, paving the way for
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personalized medicine and precision single-cell therapies in

clinical practice.

Spatial omics refers to methodologies used to decipher the

mechanisms of biological events by identifying the relative spatial

arrangement and expression of tissues, cells, and biomolecules (62).

Unlike traditional omics studies, which focus solely on molecular

composition (e.g., genes, proteins, and metabolites), spatial omics

additionally reveal the spatial distribution and dynamic changes of

these molecules at the cellular or even tissue level. The major

branches of spatial omics include ST, spatial proteomics, and

spatial metabolomics (34). Although spatial omics encompasses

multiple approaches, most current research emphasizes ST (63).

Developed in 2016 (64), ST has emerged as a major focus in

biotechnology following the rise of scRNA-seq (19). ST integrates

spatial resolution with gene expression analysis, enabling RNA

sequencing directly on tissue sections and simultaneously detecting

cellular locations and gene expression patterns (65). This capability

addresses the limitation of scRNA-seq, which cannot provide

information on cellular spatial distribution. By preserving the

original spatial context of tissues and comprehensively measuring

molecular changes, ST has revolutionized our understanding of

tissue heterogeneity. It offers new avenues to explore how cellular

and tissue heterogeneity contribute to functional diversity (66).

While ST has provided significant insights across various fields,

particularly in investigating tumor microenvironment features

linked to patient prognosis (34), its application in LT clinical

research remains limited.
3 Current application of advanced
omics in LT

We reviewed and categorized the applications of scRNA-seq

and ST in LT. A total of 12 studies reported the use of advanced

omics technologies in LT, including 11 scRNA-seq studies and one

ST study. Among these, scRNA-seq emerged as the most commonly

utilized method. Most researchers favored collecting samples from

graft tissues and peripheral blood. Of the studies reviewed, 8

focused on LT patient cohorts (Table 1), while 4 employed mouse

LT models (Table 2). Across all studies, the 10× Genomics

Chromium platform was the preferred choice. This preference

likely stems from the platform’s cost-effectiveness and time

efficiency compared to other scRNA-seq platforms, such as

Smart-seq2. Additionally, the 10× Genomics Chromium system

can process a large number of cells and even detect rare cell types or

transcripts by integrating one of its advanced methodologies (67).
4 scRNA-seq reveals LT immune cell
heterogeneity

Following LT, the interaction between donor-derived resident

immune cells and recipient immune cells leads to the establishment

of a novel immune microenvironment (68). Immune
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microenvironment is a complex ecosystem comprising various

immune cells, cytokines, and signaling molecules, all of which

interact to modulate the progression and outcome of patients with

chronic liver diseases (69). As the immune microenvironment

evolves, changes occur in the quantity, proportions, phenotypes,

and functions of immune cell populations, ultimately contributing to

graft injury and its progression after LT (70). Additionally, during

IRI in LT, various cell types participate in the injury process through

distinct mechanisms (71, 72). Significant advancements in scRNA-

seq research within the LT field have deepened our understanding

of the liver ecosystem and immune microenvironment. This

has enabled scientists to uncover the complexities and cellular

heterogeneity of the liver during transplantation (23, 73). The

analysis of scRNA-seq data typically involves quality control, batch

effect correction, normalization, data imputation, dimensionality

reduction, subsequent expression analyses, and cell subgroup

identification (74). Using scRNA-seq to analyze intrahepatic

immune cells provides detailed insights into the heterogeneity

of different immune cell populations involved in LT immune

rejection and IRI (75). Below, we summarize the heterogeneity

and changes in T cells, B cells/plasma cells, NK/NKT cells,

dendritic cells (DCs), Kupffer cells, monocytes, and myeloid-

derived suppressor cells (MDSCs) in the context of LT. Specific

subpopulations and their changes are detailed in the corresponding

tables (Tables 3–9).
4.1 T cells

T cells are critical components of the adaptive immune

response. In LT, T cells can be categorized into different subtypes

based on their functions, with specific subtypes directly attacking

“foreign” hepatocytes, ultimately leading to acute rejection (76). All

scRNA-seq studies on LT (35–45) annotated T cells, though the

specific subtypes identified varied across studies. Notably, two

studies (38, 39) highlighted the significance of tissue-resident

memory T cells (TRMs) in LT. Li et al. (38) discovered a dual

phenotypic role of CD4+ TRMs in LT rejection cases, with CD8+

TRMs playing a dominant role during LT. Adra et al. (39) used a

mouse IRI model to study the effects of normothermic ex vivo liver

perfusion (NEVLP) on TRMs. They observed that the proportion of

TRMs among total T cells remained similar across mouse livers

subjected to different mechanical perfusion conditions. However, in

NEVLP-treated livers supplemented with IL-10 and TGF-b, both
the total T cell population and TRMs were significantly reduced.

Additionally, Li et al. (43) were the first to detect CD4+CD8

+FOXP3+ T cells in human LT, providing new insights into T

cell subtypes in the context of transplantation. (Table 3)
4.2 B cells/plasma cells

B cells act as antigen-presenting cells (APCs) in LT, recognizing

and binding foreign antigens through B cell receptors on their cell
frontiersin.org
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TABLE 1 Advanced omics study in human liver transplantation.

Author, Donation Sampling Assays/ Omics Comparison Case number Major findings

st-LT 3 vs. 3 LT changed the immune microenvironment of the donor's liver.

t-LT 1 vs. 4 CD8+ NKG2A+ natural killer T cells are disrupted after liver transplantation
and immunosuppressive therapy.

t-LT 3 vs. 4 1. There was heterogeneity of different T cells in the liver after LT.
2.kupffer cell subsets had different changing trends;
3.LDLR can be used as a new marker to prevent LT rejection;
4. CD4+CD8+FOXP3+ T cell subsets were detected in human LT for the first
time;
5.LDLR+ MDSC and CTLA4+CD8+ T cells interact through the TIGIT-
NECTIN2 signaling pathway

CR 9 VS. 8 1. The proportion of CD8+TRM in rejection increased significantly, with a
unique expression profile;
2. Interactions with TRMS, such as kupffer cells are particularly active
during rejection.

CR 22 vs. 28 1.FLT3+ dendritic cells decreased in peripheral blood and liver tissue of liver
transplantation patients, while regulatory T cells increased;
2.FLT3+ dendritic cells inhibit immune rejection by interacting with
regulatory T cells.

t-LT 6 vs. 5 1. Immune recovery after LT can be divided into four stages;
2. Inflammatory NK cell subsets, CD14+RNASE2+ monocytes and FOS-
expressing monocytes were used as predictors of transplant rejection.

PR 1 vs. 1 vs.1 The expression of TNFAIP3 was significantly up-regulated in Kupffer cell
population after reperfusion, which may have a protective effect on ischemia-
reperfusion injury.

st-LT 30 vs. 30 MDSCs are recruited in liver ischemia-reperfusion injury via CXCL17-GPR35
signaling, inhibiting M1 macrophage polarization and reducing liver damage.

n; PR, post-reperfusion; scRNA-seq, Single-cell sequencing.
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membranes and presenting them to T cells, thereby activating a

specific immune response (77). Three studies (40, 43, 45) analyzed

and annotated B cell/plasma cell populations. However, their

findings appear to differ across studies. Wang et al. (45) reported

that the expression profile of B cell/plasma cell populations

remained largely unchanged after IRI. In contrast, Li et al. (43)

identified two B cell subpopulations that were significantly enriched

in LT patient tissues compared to healthy tissues. Additionally, Yi

et al. (40) found that the proportion of memory B cell

subpopulations in the liver increased significantly after LT, while

the proportion of plasma cells decreased (Table 4).
4.3 NK/NKT cells

NK cells are essential innate immune cells capable of

recognizing and eliminating tumor cells and virally infected cells.

In LT, NK cell activity is closely associated with graft rejection (76).

NKT cells, a hybrid of T cells and NK cells, play a regulatory role in

immune responses. In LT, NKT cells influence the activity of other

immune cells by secreting cytokines, thus playing a critical role in

regulating immune tolerance and anti-rejection mechanisms (78).

Four studies (37, 40, 42, 43) have focused on analyzing different

NK/NKT cell subpopulations. Li et al. (43) found an increased

proportion of FGFBP2+ NK cells in the liver after LT. Yi et al. (40)

reported a sharp increase in CD16+ NKT cells and a decrease in

KLRC+ NKT cells in post-LT liver tissues. In contrast, Wang et al.

(37) observed that the proportion of NK subpopulations decreased

in both acute cellular rejection (ACR) and non-ACR LT patients

post-transplant, though the functional changes of NK

subpopulations varied significantly between these groups.

Notably, two studies reported changes in NK/NKT cell

subpopulations following immunosuppressive therapy in LT

patients. Wang et al. (37) observed a reduction in inflammatory

NK cells after high-dose methylprednisolone (MePDN) treatment

in ACR patients. Fang et al. (42) identified a significant decrease in

CD8+ NKG2A+ NKT cells specifically expressing KLRC1 after

immunosuppressive therapy (Table 5).
4.4 Dendritic cells (DCs)

DCs are critical antigen-presenting cells that activate T cells and

initiate immune responses. DCs associated with LT play a pivotal

role in regulating allogeneic responses, particularly through their

ability to induce diverse phenotypes and functional states that can

either enhance or suppress immune responses (79). In LT, DCs

influence graft outcomes by modulating immune tolerance and

promoting T cell activation. Studies have shown that DC

dysfunction can lead to increased graft rejection, highlighting

their indispensable role in immune regulation (43, 78). Two

studies (36, 44) have specifically analyzed changes in DC

subpopulations in LT. Yang et al. (44) identified a novel DC

subpopulation (XCR1+ DCs) and predicted that these cells could

promote T cell proliferation. Zhang et al. (36) reported a significant
T
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reduction in FLT3+ DCs in both peripheral blood and liver tissues

after LT. Furthermore, they identified a negative correlation

between the proportion of FLT3+ DCs and regulatory T cells

(Tregs) in post-LT liver tissues (Table 6).
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4.5 Kupffer cells

Kupffer cells are macrophages residing in the liver, which can

not only act as APCs but also induce the immune response of T cells

by expressing major histocompatibility complex (MHC) class II

molecules. But also play a key role in regulating inflammatory

response and maintaining immune tolerance (80–83). Five studies

(40, 41, 43–45) have conducted a detailed analysis of the

heterogeneity and changes of kupffer cells in LT. Among them,

three studies (40, 43, 45) emphasized that kupffer cells possess both

pro-inflammatory and anti-inflammatory dual effects in LT. Li et al.

(41) proposed that the differentially expressed genes of kupffer cell

subpopulations could serve as immune response biomarkers for

patients undergoing LT and immunosuppressive therapy. It is

noteworthy that Yang et al. (44) discovered a new pro-

inflammatory kupffer cell subpopulation (CSF3+ kupffer cells)

and suggested that this subpopulation may be a key subset

involved in initiating the pro-inflammatory response during

IRI (Table 7).
4.6 Monocytes

In LT, monocytes can influence the intensity and nature of

rejection through their antigen-presenting function. Studies have

shown that high levels of monocytes may be associated with strong

rejection, while low levels may be associated with immune

tolerance (84). Three studies (37, 40, 41) have focused on the

heterogeneity and changes of monocytes in LT. Yi et al. (40) found

that CD14+ and CD16+ monocytes in donor livers expressed the

activation of multiple pro-inflammatory pathways. Li et al. (41)

discovered that the combination of immunosuppressants and
TABLE 3 Subpopulations and changes in T cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Zhang et al., CHN,
2024 (36)

CD4+ T: Tregs, Th1,
Th2, Th17;
CD8+ T: CTLs, Tmem

Tregs increases

Fang et al., CHN,
2023 (42)

naïve CD8+ T cells,
naïve CD4+ T cells, CD4
+ Tem, gd-T cells, Teff

No

Li et al., CHN, 2022 (43) CD4+T: CCR6+CD4+T,
IL7R+CD4+T, CCR7
+CD4+T, CCR6+CD4
+T;
CD8+T: CTLA4+CD8
+T, MKI67+CD8+T;
CCL3-CD4-CD8-T

CCR6+CD4+T、CTLA4
+CD8+T cells、MKI67
+CD8+T cells increase

Li et al., CHN, 2024 (38) CD8+ T: TRM, Tc,
TEM, TEX, MAIT, DNT

CD8+ TRMs
significantly
increase rejection

Yi et al., CHN,
2023 (40)

CD4+ T: Tem, Naïve T
cells, MAIT, T cycling
cells;
CD8+ T: MAIT, Tem,
Naïve T cells, Temra

CD4+ Tem, CD8+ Tem,
Temra T cells;
MAIT decrease

Wang et al., CHN,
2024 (37)

CD4+T: naïve CD4+ T
cells, central memory
CD4+ T cells, Tregs;
CD8+ T: naïve CD8+ T
cells, anergic CD8+ T
cells, Tmem, CTLs

Stage 1: T cells decrease;
Stage 2-4: T
cells increase

Li et al., CHN, 2023 (41) CD8+ T: Teff, Tex, Th,
Tregs, naïve T cells

Allo+IS:
Teff and Th increase;
Tregs and naïve T cells
decrease
Allo+IS+MSCs:
Tregs increase; Teff and
Th decrease

Yang et al., CHN,
2021 (44)

CXCR3+ CD8+ T cells,
CCR7+ CD8+ T cells,
Mki67+ CD8+ T cells

FDL: CCR7+ CD8+ T
cells increases

D.A. Adra et al., USA,
2024 (39)

TRM, TEM, TCM NEVLP-cyt:
TRM decrease

Wang et al., CHN,
2021 (45)

CCR7+ CD8+ Tem,
CCL20+ CD8+ MAIT,
IL7R+ CD4+ T, TRBV9
+ CD8+ Teff, TRDV2+
gd T

PR: IL7R+ CD4+ T,
TRBV9+ CD8+ Tef,
CCR7+ CD8+
Tem increases
Tregs, regulatory T cells; CTLs, Cytotoxic T cells; Temra, Terminally differentiated T cells;
Tem, Effector memory T cells; Teff, effector T cells; TRM, Tissue resident memory T cells; Tc,
Cytotoxic T cells;Tex, exhausted T cells; Th, helper T cells; MAIT, Mucosal associated
invariant T cells; DNT, Double negative T cells; Allo, allogenic; IS, immunosuppressant;
MSCs, Mesenchymal stem cells; FDL, Fat donor liver; NEVLP-cyt, NEVLP+ Anti-
inflammatory cytokines; PR: post-reperfusion.
TABLE 4 Subpopulations and changes in B cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Fang et al., CHN,
2023 (42)

pre-B cells, naïve B cells No

Li et al., CHN, 2022 (43) RASSF6+B; ZBTB16+B;
FCRL3+B; IL6+B; IGHG
+B; HRK+B; IL32+B;
IGHA2+B

IL4R+B cells、NEIL1+B
increase;
AIM2+B cells、IGLL5
+B cells decrease

Yi et al., CHN,
2023 (40)

Naive B cells; Memory B
cells; Plasma cells

Memory B cells
increase;
Plasma cells decrease

Li et al., CHN, 2023 (41) Memory B cells,
plasma cells

Allo+IS: B cells increase;
Allo+IS+MSCs: B
cells decrease

Wang et al., CHN,
2021 (45)

TCL1A+ B cell, GPR183
+ B cell, MT2A+ B cell

No
Allo, allogenic; IS, immunosuppressant; MSCs, Mesenchymal stem cells.
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mesenchymal stem cells (MSCs) could significantly reduce the

proportion of classical monocytes while increasing the proportion

of non-classical monocytes. This indicates that the combination of

immunosuppressants and MSCs may affect allogeneic immune

responses in transplantation by acting on classical and non-

classical monocytes. Notably, Wang et al. (37) proposed that the

newly identified CD14+RNASE2+ monocytes and monocyte

subtypes expressing FOS could serve as predictive indicators of

ACR in LT (Table 8).
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4.7 MDSC

MDSC is a heterogeneous population of bone marrow cells with

unique immunosuppressive functions, which were initially studied

in tumors (85). Research has shown that MDSCs can suppress T

lymphocytes and limit innate immune responses in infections,

inflammatory diseases, and ischemic diseases (86–89). Among all

the studies, two studies (35, 43) focused on the heterogeneity and

changes of MDSCs in LT. Li et al. (43) found that the proportion of

LDLR+ MDSCs significantly increased in LT tissues, especially in

rejection tissues. Zhang et al. (35) established a mouse model of liver

IRI and found that peripheral MDSCs were recruited to the liver

after IRI. During liver IRI, MDSCs could enhance the suppression

of intrahepatic inflammation and tissue damage (Table 9).
5 Analysis of LT-related mechanisms
using scRNA-seq

LT rejection reactions mainly include hyperacute rejection,

acute T cell-mediated rejection (TCMR), acute antibody-mediated

rejection (AMR), and chronic rejection (90). TCMR is the most

common form of allograft injury, primarily occurring within the

first 3 months after LT, and most frequently within the first 6 weeks

(91, 92). Severe rejection reactions can lead to transplant failure and

may even necessitate re-transplantation; therefore, timely

identification and management of rejection reactions are crucial

for improving transplant success rates.IRI is a major complication

of various liver surgeries, especially in LT. IRI refers to the damage

caused by the interruption of blood flow (ischemia) and the

subsequent restoration of blood flow (reperfusion) during organ
frontiersin.or
TABLE 5 Subpopulations and changes in NK/NKT cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Fang et al., CHN,
2023 (42)

CD8+ NKT cells (E1,
E2, C5)

CD8+ NKT cells
increase, then decrease

Li et al., CHN, 2022 (43) XCL1+NK; FGFBP2+NK FGFBP2+NK
cells increase

Yi et al., CHN,
2023 (40)

NK cell cycling cells;
KLRC1+ NK cells; CD16
+ KLRC1+ NK; CD16+
NKT cells; CD16+
NK cells

CD16+ NKT cells
increase;
KLRC1+ NK
cells decrease

Wang et al., CHN,
2024 (37)

CD56brightCD16− NK
cells;
CD56dimCD16+
NK cells

Stage 1: NK cells
decrease;
Stage 2-4: NK cells
T cells

Li et al., CHN, 2023 (41) No Allo+IS: NKT cells
increase;
Allo+IS+MSCs: NKT
cells decrease

Wang et al., CHN,
2021 (45)

GNLY+ NK, PTGDS+
NK, XCL2+ NK, XCL1+
NK; STMN1+ T-cycling,
STMN1+ NK-cycling

PR: PTGDS+
NK increase
Allo, allogenic; IS, immunosuppressant; MSCs, Mesenchymal stem cells; PR, post-reperfusion.
TABLE 6 Subpopulations and changes in dendritic cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Zhang et al., CHN,
2024 (36)

pDC, mature DC,
CD209+cDC2, CD1c
+DC, CCL5+cDC,
FLT3+cDC1

FLT3+DCs decreases

Li et al., CHN, 2022 (43) CD1C+DC; SDS+DC;
CADM+DC; CD141+DC

DC cells increase

Yi et al., CHN,
2023 (40)

cDC; pDCs No

Li et al., CHN, 2023 (41) pDCs; cDC1; cDC2 Allo+IS+MSCs:
pDCs increase

Yang et al., CHN,
2021 (44)

XCR1+ DCs FDL: XCR1+
DCs increase
pDCs, Plasmacytoid dendritic cells; cDC, conventional dendritic cells; Allo, allogenic; IS,
immunosuppressant; MSCs, Mesenchymal stem cells; FDL, Fat donor liver.
TABLE 7 Subpopulations and changes in kupffer cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Li et al., CHN, 2022 (43) CD163+Kupffer; APOE
+Kupffer;
GZMA+Kupffer

FOLR3+Kupffer cells
increase;
CD163+Kupffer cells、
GZMA+Kupffer
cells decrease

Yi et al., CHN,
2023 (40)

Classical Kupffer cells;
Inflammatory
Kupffer cells

Inflammatory Kupffer
cells increase;
Classical Kupffer
cells decrease

Li et al., CHN, 2023 (41) No Allo+IS: Kupffer cells
increase;
Allo+IS+MSCs: Kupffer
cells decrease

Yang et al., CHN,
2021 (44)

CSF3+ Kupffer cells FDL: CSF3+ Kupffer
cells increase

Wang et al., CHN,
2021 (45)

C1QC+ Kupffer cells,
IL1B+ Kupffer cells

PR: Kupffer
cells decrease
Allo, allogenic; IS, immunosuppressant; MSCs, Mesenchymal stem cells; FDL, Fat donor liver;
PR, post-reperfusion.
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transplantation. IRI is a progressive process that can ultimately lead

to acute liver dysfunction and even allograft rejection in recipients

(93). During reperfusion, oxidative stress causes hepatocyte death,

followed by the release of damage-associated molecular patterns

that activate hepatic macrophages and trigger innate immune

responses (94, 95), ultimately resulting in dysfunction of the

transplanted liver. Both LT rejection reactions and IRI are

significant barriers to reducing transplant success rates and long-

term survival rates. Therefore, understanding the mechanisms

related to LT rejection reactions and IRI is essential.
5.1 Immune Responses in LT

The involvement of immune cells in LT rejection or immune

tolerance is complex. Compared to other solid organ transplants,

immune regulation within liver allografts exhibits distinct

characteristics. As summarized in the review by Muro et al. (96),
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the liver contributes significantly to host defense by synthesizing

various immunomodulatory molecules. Multiple well-characterized

costimulatory molecules and receptors—such as CD28, CD95,

CD95L, CTLA-4, CD80, and CD86 (97–100)—as well as soluble

immunoregulatory factors including sHLA-I, sHLA-G, sCD86,

sCD95, and sCD95L (101, 102), have been shown to play pivotal

roles in shaping LT immune responses, particularly in the induction

and maintenance of immune tolerance (Figure 1). In addition, the

unique immunological microenvironment of the liver allograft further

contributes to these regulatory processes, different immune cells play

distinct roles in the immune response process and contribute

differently to the establishment of immune rejection or tolerance

(103, 104). Researchers have proposed various perspectives on the

immune responses in LT. Fang et al. (42) suggested that CD8

+NKG2A+NKT cells specifically expressing KLRC1 may be

involved in immune rejection reactions, and dynamic monitoring of

these cells may aid in detecting the development of long-term immune

tolerance after LT. Li et al. (43) identified LDLR as a novel marker for

activating MDSCs and proposed that the interaction between LDLR

+MDSCs and CTLA4+CD8+ T cells through the TIGIT-NECTIN2

signaling pathway can suppress LT rejection reactions. In a subsequent

study, Li et al. (38) found that CD8+TRM cells have a significant

advantage in LT rejection reactions and emphasized their potential

involvement in important signaling pathways that maintain and

develop rejection reactions. Zhang et al. (36) reported a negative

correlation between FLT3+ DCs and Tregs in the liver after LT, and

proposed that FLT3+ DCs may regulate immune responses in LT by

mediating Treg dynamics. Li et al. (41) discovered in a mouse LT

model that the functions of LT immune cells can be altered by

immunosuppressants and MSCs, and suggested utilizing the

immunosuppressive effects of MSCs on immune cells to modulate

early inflammatory responses in LT. Wang et al. (37) elucidated the

longitudinal evolution of immune cells during LT recovery under

tacrolimus-based immunosuppressive therapy and provided a four-

stage framework that aids in the clinical management of LT patients.

We have summarized the aforementioned immune response

mechanisms related to LT (Figure 2).
5.2 IRI and organ protection

Systematic and comprehensive analysis of the single-cell

transcriptome of intrahepatic cells during LT can help us gain a

deeper understanding of the mechanisms related to IRI. Excessive

inflammation caused by Kupffer cells is a key mechanism leading to

pathological damage in IRI. After reperfusion, accumulated

endogenous damage-associated molecular patterns and pathogen-

associated molecular patterns are released into the liver, activating

Kupffer cells and inducing the production of reactive oxygen species

(ROS), TNF-a, IL-1b, and other pro-inflammatory cytokines,

forming a positive feedback loop (105, 106). Wang et al. (45)

found that TNFAIP3 interacting protein 3 (TNIP3) is highly

expressed in kupffer cell clusters during IRI and proposed that

TNIP3 may be one of the protective mechanisms for alleviating

graft damage by inhibiting the activation of the NF-kB pathway,
TABLE 8 Subpopulations and changes in monocytes.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Yi et al., CHN,
2023 (40)

CD14+ Monocytes;CD16
+ Monocytes

Monocytes increase

Wang et al., CHN,
2024 (37)

CD14+ monocytes; CD14
+RNASE2+ monocytes,
FOS-
expressing monocytes

Stage 1: CD14+
monocytes, CD14
+RNASE2+ monocytes
increase but then
decrease
Stage 2: CD14+CD16+
monocytes increase

Li et al., CHN, 2023 (41) Classical monocytes;
non-classical monocytes

Allo+IS: Classical
monocytes increase;
Allo+IS+MSCs: non-
classical
monocytes increase

Yang et al., CHN,
2021 (44)

Mono1, Mono2, Mono3 No

Wang et al., CHN,
2021 (45)

VCAN+ TMo, S100A8
+ TMo

PR: monocytes increase

Zhang et al., CHN,
2024 (35)

CD14+ monocytes;
VCAN+ monocytes

CD14+
monocytes increase
Allo, allogenic; IS, immunosuppressant; MSCs, Mesenchymal stem cells; PR, post-reperfusion.
TABLE 9 Subpopulations and changes in myeloid-derived
suppressor cells.

Author, country,
publication year

Subgroup
Identification

Quantitative
Changes
(post-LT)

Li et al.,CHN, 2022 (43) LDLR+MDSC LDLR+MDSC increases

Zhang et al., CHN,
2024 (35)

Mdsc-like cells:
S100A9+ monocytes;
S100A12+granulocyte

S100A9+ monocytes,
S100A12
+granulocyte increase
MDSC, Myeloid suppressor cells.
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FIGURE 2

Related cells and molecules that influence liver transplantation rejection. APOE, Apolipoprotein E; CTL, Cytotoxic T cell; CTLA-4, Cytotoxic T-
lymphocyte-associated protein 4; DC, dendritic cell; IRI, ischemia-reperfusion injury; FLT3, Fms-like tyrosine kinase 3; FOS, Fos Proto-Oncogene,
AP-1 Transcription Factor Subunit; KLRC1, killer cell lectin like receptor C1; LDLR, Low density lipoprotein receptor; MDSC, myeloid-derived
suppressor cell; NK, natural killer; NKT, natural killer; NKG2A, natural killer cell lectin-like receptor subfamily C member 1; NECTIN2, Nectin Cell
Adhesion Molecule 2; RNASE-2,Ribonuclease A Family Member 2; TRM, memory T cell; Treg, regulatory T cell; Teff, effector T cell; TIGIT, T cell
immunoreceptor with Ig and ITIM domains; PD-1, Programmed Death-1; PDL-1, Programmed Cell Death-Ligand 1.
FIGURE 1

Role of various immune molecules in liver transplantation immune tolerance. APC, antigen-presenting cell; CTLA-4, Cytotoxic T-lymphocyte-
associated protein 4; DC, dendritic cell; Fas, Factor associated suicide; FasL, Factor associated suicide ligandHLA-G, Human leukocyte antigen G;
HLA-I, Human leukocyte antigen I.
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with the TNIP3 gene potentially serving as a therapeutic target for

IRI. Fatty livers may be more susceptible to IRI, which is a major

cause of liver injury and is unfavorable for liver regeneration (107,

108). Yang et al. (44) analyzed two groups of rat LT models, normal

donor livers (CDL) and fatty donor livers (FDL), and identified two

new cell subtypes, CSF3+kupffer cells and XCR1+ DCs. They

proposed that CSF3+kupffer cells may be a key subset of kupffer

cells initiating pro-inflammatory responses in fatty donor liver IRI,

and that IL-17 signaling in CSF3+ kupffer cells is a potential

regulatory axis for cellular response to hypoxic IRI. LCN2 is one

of the upregulated genes involved in the IL-17 signaling pathway

and participates in many inflammation-related pathways,

potentially serving as a therapeutic target for preventing fatty

liver graft damage in LT. Some studies have shown that the

ischemic/hypoxic environment in IRI of solid tumors or organs

recruits peripheral MDSCs and exerts immunosuppressive

functions in cancer and inflammation (87, 109–111). Zhang et al.

(35) proposed that MDSCs also have immunosuppressive functions

within the liver. During liver IRI, the YAP/TEAD1 signaling

pathway upregulates CXCL17, which recruits MDSCs.

Subsequently, MDSCs upregulate the STAT3 signaling pathway,

enhancing their immunosuppressive functions and thereby

alleviating graft IRI. NEVLP is a transplant liver preservation

strategy with advantages over static cold storage (SCS) (112, 113).

Adra et al. (39) found that in mouse livers subjected to NEVLP with

the addition of anti-inflammatory factors (IL-10 and TGF-b), both
total T cells and tissue-resident memory T cells (TRM) were

significantly reduced. The addition of anti-inflammatory factors

during mechanical perfusion and preservation of donor livers may
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potentially reduce IRI-induced liver damage. We have also

summarized the important cellular and molecular mechanisms

related to IRI in LT, as mentioned above (Figure 3).
6 Application of ST in LT

The liver has a complex structure with distinct functional

zoning, based on the liver lobule as the fundamental unit, which

is divided into different oxygen-supplied regions, each with specific

functions. There have already been some studies on ST in the liver

or liver diseases. For example, some studies have shown that liver

injury patterns are region-dependent (114–118). Other research has

used ST to analyze the regional-specific gene expression patterns of

the liver under homeostasis, identifying differentially expressed

genes between regions such as zone 1 and zone 3 of the liver

lobule to understand the metabolic functions and cell type

distribution in each region (119). Scholars have also proposed

that ST analysis can identify specific gene expression patterns

related to liver diseases, which may help clinicians determine

whether donor livers are suitable for transplantation (120). Recent

spatial transcriptomics studies have demonstrated the ability to

dissect intrahepatic immune and transcriptional heterogeneity in

complex clinical settings. For instance, NanoString GeoMx digital

spatial profiling was used to analyze liver biopsies from patients

with chronic HBV and HDV or HIV co-infection, revealing

infection-specific immune pathways, disrupted hepatocyte

metabolism, and spatially distinct cellular patterns (121).

However, the application of ST in clinical LT is currently limited.
FIGURE 3

Related cells and molecules affecting hepatic ischemia-reperfusion injury. CXCL, C-X-C motif chemokine ligand; CCR7,CC-chemokine receptor 7;
CXCR4, C-X-C chemokine receptor type 4; CSF3, colony stimulating factor 3; DC, dendritic cell; IRI, ischemia-reperfusion injury; HMGB-1, High
Mobility Group protein B1; LCN2, Lipocalin-2; MRC1, Mannose Receptor C-type 1; MDSC, myeloid-derived suppressor cell; PTPRC,Protein Tyrosine
Phosphatase, Receptor Type, C; ROS, reactive oxygen species; TRM, memory T cell; Treg, regulatory T cell; TNIP3, TNFAIP3 interacting protein 3;
TLR4, Toll-like receptor 4; TIM-3, T-cell immunoglobulin and mucin domain 3.
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We only reviewed one study on ST in LT (46). In this study,

researchers constructed a 70% hepatic ischemia-reperfusion model

in mice and combined it with ST analysis to find that the central

area of the liver lobule (zone 3) is the most sensitive to IRI. ST

analysis showed significant differences in gene expression between

different liver regions under homeostasis, with zone 3-specific

differentially expressed genes enriched in metabolic pathways.

After IRI, the related genes changed markedly in both injury and

metabolic pathways. At the same time, IRI led to a decrease in the

number and proportion of hepatocytes, while macrophages

gathered in the severely damaged zone 3, with an increase in M1

type and a decrease in M2 type. Further experimental verification

found that celastrol pretreatment could alleviate IRI in mice.

Mechanistic studies suggested that celastrol may exert its effects

by activating the HIF1a signaling pathway, thereby producing an

ischemic preconditioning-like protective effect (Figure 3).
7 Current limitations in LT

Overall, the current single-cell omics technologies involved in LT

are mainly focused on scRNA-seq, with a lack of further validation

from other advanced omics. The vast majority of LT studies have

employed case-control designs, and some have only established

animal models of LT in mice. scRNA-seq has primarily been used

for analyzing cellular heterogeneity in liver tissues and peripheral

blood samples from LT recipients. Due to its high cell capture

efficiency, the 10x Genomics platform is the most commonly used

tool for scRNA-seq data analysis. Moreover, because of their

relatively low cost and easy-to-follow workflows, flow cytometry

and histological staining analyses are the most frequently used

methods for validating research findings. In future omics studies

related to LT, there is a need for more analytical methods involving

multi-omics studies with mutual validation in longitudinal research.

The application of ST in LT is relatively scarce, possibly due to the

high complexity of data processing and analysis, as well as the high

cost of ST technology, which thus limits its research and application

in various fields (122). Furthermore, integrating multiple advanced

omics such as scRNA-seq and spatial transcriptomics can link

phenotypic information, cellular states, and spatial locations. In

future omics research on LT, such integrative analyses can be

further realized to provide more comprehensive insights.
8 Future directions in LT

The recent studies on scRNA-seq and ST in the field of LT have

been outlined in the preceding text. Researchers have utilized

scRNA-seq technology to analyze the heterogeneity of immune

cell subpopulations after LT and have further identified specific cell

subpopulations and injury mechanisms related to immune

responses and IRI in LT. These findings provide potential

molecular targets for the treatment of rejection reactions and IRI

in liver transplantation, as well as new strategies for monitoring the

immune function of recipients to enhance graft tolerance and
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improve transplant outcomes. While progress has been made in

the field of LT, there are still limitations and gaps in the literature on

LT research. Specifically, these limitations include the following

points: 1) Insufficient patient sample sizes in clinical LT studies; 2)

Lack of validation cohort studies; 3) Insufficient integration of

multi-omics research; 4) Absence of time-series and longitudinal

omics dynamic studies for long-term monitoring of LT-related cells

and molecules; 5) The participation of advanced omics technologies

such as single-cell assay for translocase accessible chromatin

sequencing (scATAC-seq), single cell spatial transcriptomics and

artificial intelligence (AI) technologies is insufficient; 6) The

influence of genetic heterogeneity between donors and recipients

on LT results was not fully considered. These limitations may affect

the reference value of advanced omics in LT research. Rejection

reactions remain one of the significant causes of LT failure, and IRI

in LT can ultimately lead to acute liver dysfunction and even

allograft rejection in recipients (93). There is an urgent need for

advanced omics research to guide clinical LT to minimize graft

damage to the greatest extent possible.
8.1 Increase the importance of sample size
and validation

In all the clinical LT studies we reviewed, a common issue faced is

the small sample size. Some studies (37, 40, 42, 43, 45) only included a

few or even a single LT patient as the study cohort. However, studies

with small sample sizes may produce significant biases due to the

randomness of the samples and individual differences. Increasing the

sample size can reduce such randomness, making the study results

more representative and reliable. A larger sample size can enhance

statistical power, enabling the study to more accurately detect

significant differences and correlations (123). This is particularly

important for the discovery of new biomarkers and therapeutic

targets. Moreover, only four studies (35–38) validated the results of

their study cohorts, with only one study (37) conducting validation

experiments in LT patients, while the remaining three studies

performed experimental validations in mouse LT models.

Preliminary studies may have certain uncertainties in their

conclusions due to factors such as small sample sizes and less

rigorous study designs (123). In disease research, validation studies

conducted at different times and places and on different sample

populations can reduce the impact of these random errors on the

study results, making the conclusions more reliable (124).

Furthermore, all the clinical LT studies were single-center studies,

and the clinical data obtained may have potential biases. In the future,

multi-center studies may be needed to further validate the

study results.
8.2 Integrated Multi-Omics Systematic
Analysis of LT

Integrated multi-omics approaches have demonstrated great

promise in LT research, especially in elucidating graft injury
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mechanisms and immune responses in preclinical models. Notably,

our recent study highlighted how rodent LT models, combined with

single-cell and spatial omics technologies, can uncover critical

molecular pathways of ischemia-reperfusion injury and graft

dysfunction, providing a foundation for translational validation

and therapeutic discovery (125). Integrated multi-omics analysis

combines data from various high-throughput technologies,

providing a more comprehensive and in-depth understanding of

cellular biology in both healthy and disease states. It enhances the

quantity and accuracy of detected transcripts, offering valuable

methods for better understanding molecular mechanisms and

constructing predictive models (126–131). Two studies (38, 43)

downloaded transcriptomic data from NCBI’s Gene Expression

Omnibus (GEO) database and further statistically analyzed the

obtained transcriptomic data through bulk RNA-seq, thereby

validating the results obtained from scRNA-seq analysis. Another

study (37) obtained transcriptomic data from peripheral blood

samples of another independent cohort in the study and applied

weighted gene co-expression network analysis (WGCNA) to bulk

RNA-seq, yielding gene expression results consistent with scRNA-

seq data. scRNA-seq provides high-resolution gene expression data

at the single-cell level, revealing cellular heterogeneity and

subpopulation characteristics. Bulk RNA-seq not only offers an

overall gene expression profile of tissues but also further validates

the research findings obtained from scRNA-seq analysis, providing

an overall trend to ensure the comprehensiveness and reliability of

the results. The combination of both allows for a comprehensive

understanding of the immune microenvironment changes in LT

from different levels. In further LT research, the joint application of

technologies such as scRNA-seq and bulk RNA-seq for

simultaneous transcriptomic data analysis of liver tissues and

peripheral blood samples may help to obtain more comprehensive

and reliable conclusions.
8.3 The necessity of dynamic and
longitudinal omics studies in LT

Many clinical events, such as drug responses, may manifest

differently at various stages throughout the disease progression.

Dynamic omics studies may help uncover the causes and

mechanisms underlying this developmental process (132, 133). In

LT research, dynamic and longitudinal omics studies can capture

certain biological changes in patients over time after

transplantation. For example, in one of the studies we reviewed,

Wang et al. (37) obtained different peripheral blood samples from a

dynamic temporal and longitudinal study cohort and, through

single-cell multi-omics analysis, discovered the longitudinal

evolution of immune cells during LT recovery under

immunosuppressive therapy. They also provided a four-stage

framework for clinical LT, which aids in the clinical management

of LT patients. Dynamic and longitudinal omics studies provide

strong support for personalized medicine. By analyzing omics data

from individuals at different time points, researchers can better

understand an individual’s biological characteristics and their
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response to treatment. This, in turn, helps physicians develop

more effective treatment plans or identify reliable drug targets,

thereby improving treatment outcomes (134, 135). Longitudinal

studies can frequently collect rich omics data from large cohorts,

enabling researchers to capture the dynamic fluctuations of healthy

states and conduct long-term monitoring. This is beneficial for

identifying potential health risks and the disease progression

process, thus providing a basis for early intervention (136).

Overall, dynamic and longitudinal omics studies are necessary

and valuable when long-term monitoring of certain drugs, cells,

or molecules is required, as they can offer new insights into precise

medical care and personalized management in clinical LT.
8.4 The prospects of advanced
technologies in LT

scRNA-seq is primarily used to analyze gene expression profiles

at the individual cell level; however, it does not provide information

on gene regulatory elements, such as promoter or enhancer activities.

In contrast, a single-cell assay for transposase-accessible chromatin

using sequencing (scATAC-seq) enables the exploration of

chromatin accessibility and gene regulatory dynamics at single-cell

resolution. This technique employs Tn5 transposase to label genomic

DNA in individual cells, specifically targeting open chromatin regions

—those DNA regions not tightly wrapped by nucleosomes. The

fragmented DNA is then sequenced to reveal chromatin

accessibility landscapes (137). A study (138) utilized scATAC-seq

to conduct a detailed analysis of ten human hematopoietic cell types,

uncovering significant heterogeneity within common myeloid

progenitors (CMPs) and granulocyte-monocyte progenitors

(GMPs). Integration with scRNA-seq data further demonstrated

that the activities of various transcription factors change

dynamically across different stages of hematopoietic differentiation,

with chromatin accessibility adjustments regulating the expression of

key genes. This study provided new insights into the direct

relationships between regulatory elements and their target genes,

offering a novel perspective on the molecular mechanisms underlying

hematopoietic lineage transitions. In another study (139), researchers

combined scRNA-seq and scATAC-seq to investigate cellular states

and functional changes in human pancreatic islets from patients with

type 1 diabetes (T1D). Their findings elucidated the gene expression

and regulatory mechanisms driving islet cell dysfunction in T1D,

laying the groundwork for the development of potential therapeutic

strategies. To date, scATAC-seq has not yet been applied in LT

research. Future LT studies could attempt to integrate scRNA-seq

and scATAC-seq as a multi-omics approach, enabling

comprehensive analyses of the functional states of critical cell

populations involved in the LT process. Such integration would

allow for a more precise and thorough elucidation of immune cell

activation mechanisms, as well as regulatory network dynamics and

mechanisms underlying immune rejection and IRI.

Single-cell spatial transcriptomics combines the advantages of

scRNA-seq and ST. Traditional transcriptomics can only provide the

average gene expression levels of mixed-cell populations, while single-
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cell technologies can reveal cellular heterogeneity and the gene

expression patterns of specific cell types. ST further provides the

exact location of cells within tissues, thus enabling the study of cell-

to-cell interactions and their functions in specific microenvironments

(140, 141). During the process of collecting liver tissue samples for

scRNA-seq analysis, the digestive nature of the liver requires washing

the liver with heated collagenase solution, which may lead to the loss

of gene expression of liver-resident immune cells or the removal of

certain cell populations that may exist in the natural liver

environment. Single-cell spatial transcriptomics can detect the

complete immune cell expression of liver tissue regions without the

liver digestion process, thus solving this problem (39). In some

COVID-19 studies, researchers have generated single-cell/spatial

organ maps from various types of patient samples by integrating

scRNA-seq and ST data (142–145), with one study even identifying

hepatocytes positive for SARS-CoV-2 RNA (145). In future LT

research, the use of single-cell spatial transcriptomics can

simultaneously understand heterogeneity at both the cellular and

tissue levels, helping to discover certain important cells and molecular

mechanisms in specific microenvironments. This provides more

accurate cellular and molecular localization for the future discovery

of potential therapeutic targets, and such specific targeted

modifications will aid in more precise research and treatment.

With the continuous development of AI, it has been widely

applied in many disciplines. Machine learning (ML) trains and

learns from data through mathematical functions or rule sets and

provides classification and predictive outputs with high accuracy

(146). In the field of LT, there have been numerous studies on ML

technologies (147). ML and deep learning (DL) models have been

able to assess transplant candidacy and donor liver quality (148,

149), predict short-term and long-term survival rates of LT patients

(150, 151), and can also be used to identify transplant rejection

reactions and predict graft failure (152–156), among other

applications. Studies have shown (157) that ML techniques can

align scRNA-seq data with spatial data (such as spatial

transcriptomics) to reconstruct genomic spatial patterns at the

single-cell level. If ML technologies can be further combined with

omics technologies and applied to clinical LT, it could greatly

advance the progress of LT medicine.
8.5 Genetic heterogeneity and integration
with single-cell omics

Genetic heterogeneity between donors and recipients is a critical

factor influencing the success of LT. This heterogeneity not only

involves well-known immune-related genes such as those within the

major histocompatibility complex (MHC) but also encompasses

numerous other genes that affect cellular function and immune

responses. Ultimately, donor-recipient genetic differences can lead to

varying LT outcomes, including immune rejection, IRI, differences

in drug metabolism, and even disease recurrence (158, 159). By

leveraging transcriptomic technologies, integrating genetic variation

with single-cell transcriptomic maps offers a deeper understanding
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of the personalized mechanisms underlying LT success or failure.

Early analytical approaches, such as LDSC-SEG, RolyPoly, and

MAGMA, demonstrated that trait-associated signals could be

enriched within specific cell or tissue types using bulk or single-

cell datasets. However, these methods often fail to resolve intra-

cellular heterogeneity and are not optimized for single-cell-level

inference. In contrast, recently developed computational frameworks

have significantly advanced the integration of genome-wide

association studies (GWAS) with scRNA-seq and spatial

transcriptomics data. Newer tools such as scPagwas, scBPS, scDRS,

and gsMAP (specifically for spatial transcriptomics) enable higher-

resolution insights by identifying genetically influenced cell

subpopulations or spatial loci (160–163). These approaches

facilitate a more precise dissection of the molecular mechanisms

underlying liver transplant outcomes. For example, scPagwas allows

researchers to prioritize key genes and pathways within genetically

regulated subpopulations, potentially accelerating the development

of targeted therapies (163). Furthermore, several studies have

demonstrated the practicality of combining GWAS data with

scRNA-seq to identify disease-associated cell types and states. For

instance, Xiang et al. (164) integrated GWAS data with scRNA-seq

to uncover hepatocyte subpopulations linked to primary biliary

cholangitis. Another study (165) published in Genome Medicine

utilized the integration of immune cell scRNA-seq and GWAS to

identify critical immune cell types associated with severe COVID-19.

In the context of LT, only through the joint analysis of genetic

diversity and single-cell heterogeneity can researchers gain a deeper

understanding of how genetic differences influence transplant

outcomes. This integrated approach holds promise for harnessing

genetic information to optimize transplant procedures, reduce the

incidence of rejection, and ultimately improve long-term

graft survival.
9 Summary

In summary, we have reviewed and summarized the research

progress of some advanced omics technologies in LT in recent years,

and assessed their value in clinical mechanism research and clinical

translation. Advanced omics technologies, particularly scRNA-seq

and ST, have significantly advanced our understanding of immune

heterogeneity, injury mechanisms, and microenvironmental

remodeling in LT. We have analyzed the current limitations and

gaps in the application of advanced omics in LT research. These

approaches have revealed dynamic changes in various immune cell

populations and identified potential therapeutic targets, paving the

way for precision medicine in the field of LT. Furthermore, the

integration of multi-omics data, artificial intelligence (AI)

algorithms, and dynamic longitudinal analyses is anticipated to

deepen our insights into the complex biological processes

underlying transplant outcomes. Finally, we have predicted the

future directions of advanced omics technologies in clinical LT

research, where specific targeted modifications will aid in more

precise research and treatment.
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10 Limitations

While this review provides a comprehensive overview of the

current applications and future directions of advanced omics

technologies in LT, several limitations must be acknowledged.

First, although we have summarized key studies utilizing scRNA-

seq and ST, the available research in LT remains constrained by

relatively small cohort sizes, predominantly single-center designs, and

limited clinical validation. Second, most studies have focused on

scRNA-seq, with insufficient exploration of other advanced omics

technologies, such as scATAC-seq and single-cell spatial

transcriptomics. Third, the integration of multi-omics data and

dynamic longitudinal monitoring is still lacking, thereby restricting

a comprehensive understanding of immune cell dynamics and

microenvironmental changes over time after LT. Fourth, the

incorporation of AI technologies, including machine learning and

deep learning, remains limited in current LT-related omics research.

Fifth, the genetic heterogeneity between donors and recipients—

which significantly impacts transplant outcomes such as rejection,

IRI, drug metabolism, and disease recurrence—has not been

systematically addressed or integrated with single-cell omics analyses.

Addressing these limitations through larger, multi-center,

longitudinal studies, combined with multi-omics integration and

advanced computational methods, will be essential for promoting

the clinical translation of omics technologies and advancing

precision medicine in LT.
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