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Identification of key genes in
membranous nephropathy and
non-alcoholic fatty liver
disease by bioinformatics and
machine learning
Jiachen Fan1, Na Li2, Yanfang Lu2* and Huixia Cao2*

1People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China, 2Henan Provincial Key
Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney
Disease, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
Background: Chronic kidney disease (CKD) and non-alcoholic fatty liver disease

(NAFLD) are closely associated. However, membranous nephropathy (MN), one

of the causes of CKD, may contribute to NAFLD through abnormalities in

lipid metabolism.

Methods: 93 patients diagnosed with MN by renal biopsy and admitted to Henan

Provincial People’s Hospital between August 2021 and August 2022 were

enrolled in this study. Patients were divided into two groups based on the

presence or absence of NAFLD. Publicly available datasets related to NAFLD

and MN were obtained from the Gene Expression Omnibus (GEO) database.

Differentially expressed genes (DEGs) were identified, and weighted gene co-

expression network analysis (WGCNA) was conducted to identify module genes.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were performed. A protein-protein interaction (PPI)

network was constructed, and key genes associated with both diseases were

identified using Cytoscape software and machine learning algorithms. The

correlation between immune cell infiltration and the two diseases was

evaluated using the CIBERSORT algorithm. Finally, the key gene expression

was validated using external datasets and immunohistochemistry (IHC).

Results: Compared with the non-NAFLD group, patients in the NAFLD group had

significantly higher body weight, hemoglobin levels, triglycerides, and

complement C3 and C4 levels. Conversely, IgG levels were significantly lower

in the NAFLD group. A total of 211 shared DEGs were identified between MN and

NAFLD, including 175 upregulated and 36 downregulated genes. Enrichment

analysis indicated that these genes were primarily involved in immune and

inflammatory responses. PPI network analysis identified seven hub genes:

CSF1R, FCGR1G, FCGR3A, VAV1, SPI1, HCK, and CCR1. Among them, CSF1R

was identified as the key gene using a machine learning approach.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1564288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1564288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1564288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1564288/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1564288/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1564288&domain=pdf&date_stamp=2025-06-05
mailto:1456883063@qq.com
mailto:huixiacao310@126.com
https://doi.org/10.3389/fimmu.2025.1564288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1564288
https://www.frontiersin.org/journals/immunology


Fan et al. 10.3389/fimmu.2025.1564288

Frontiers in Immunology
Conclusion: This study suggests that CSF1R is a shared molecular of MN and

NAFLD, which may serve as a potential therapeutic target for patients affected by

both diseases.
KEYWORDS

membranous nephropathy, non-alcoholic fatty liver disease, immune, bioinformatics,
machine learning, single-cell RNA-seq
1 Introduction

Membranous nephropathy (MN) is a glomerular disease

characterized by proteinuria and hypoalbuminemia, often

accompanied by hyperlipidemia. The pathology of MN is the

deposition of immune complexes in the glomerular basement

membrane, leading to its thickening (1). MN is the most

common pathological type of nephrotic syndrome (NS) in adults.

Patients with MN not only face an increased risk of progression to

end-stage renal disease (ESRD) compared to healthy individuals but

are also at higher risk for complications such as heart failure,

ischemic stroke, and venous thromboembolism (2, 3).

Non-alcoholic fatty liver disease (NAFLD) is becoming more

commonplace due to social progress and lifestyle changes, with a

current global prevalence rate estimated at 25% (4). NAFLD is

characterized by excessive fat accumulation in the liver, excluding

other causes of hepatic steatosis such as viral hepatitis, autoimmune

hepatitis, and drug-induced liver injury (5). It encompasses a spectrum

of conditions including non-alcoholic fatty liver (NAFL), non-

alcoholic steatohepatitis (NASH), and NASH-related cirrhosis (6, 7).

Disorders of lipid metabolism are considered a key factor linking

MN and NALFD. Due to the damage of the renal filtration barrier, a

large amount of protein is lost from the urine. Hypoalbuminemia

stimulates the liver to synthesize lipoproteins such as VLDL, IDL and

LDL, thereby triggering hyperlipidemia (8). Patients with MN also

have a reduction in both hepatic lipase activity, resulting in an

increase in the level of free fatty acids (FFAs) in the circulation (9).

As a result, the increased uptake of FFA by the liver directly promotes

steatosis (10). In addition, patients with MN often present with

insulin resistance, which is a central cause of NAFLD (11, 12). In the

state of insulin resistance, insulin’s ability to suppress lipolysis in

peripheral adipose tissue is impaired, leading to increased levels of

FFAs in the circulation and excessive accumulation in the liver (13).

MN is a known cause of chronic kidney disease (CKD), and

previous studies have shown that the prevalence of NAFLD

increases with the progression of CKD (2, 14). Although multiple

studies have reported an association between NAFLD and CKD,

direct evidence linking MN to NAFLD is lacking. Furthermore,

after adjusting for common risk factors, NS has been identified as a

risk factor for NAFLD (15). However, the underlying molecular

mechanisms and biological processes that drive this association

remain poorly understood.
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Therefore, this study aims to explore the shared pathogenic

mechanisms between MN and NAFLD using a bioinformatics

approach. Notably, this is the first study to identify common

molecular pathways and genetic signatures associated with both

diseases, which is expected to provide a foundation for improved

clinical management of patients affected by both conditions. The

workflow of the study is illustrated in Figure 1.
2 Materials and methods

2.1 Patients

This study included 93 patients diagnosed with MN who were

admitted to the Department of Nephrology of Henan Provincial

People’s Hospital between August 2021 and August 2022. The

inclusion and exclusion criteria for both MN and NAFLD are

described below.

2.1.1 MN
Inclusion criteria: age ≥ 18 years; pathological diagnosis of MN

confirmed by renal biopsy; availability of complete clinical data.

Exclusion criteria: Presence of other glomerular diseases, such

as IgA nephropathy, diabetic nephropathy, etc.; Secondary MN

caused by malignancies, medications or autoimmune diseases;

pregnancy or lactation; chronic kidney disease (CKD) stage 5 at

the time of first diagnosis, or renal replacement therapy (dialysis or

kidney transplantation).

2.1.2 NAFLD
Inclusion criteria: age ≥ 18 years; liver steatosis diagnosed by

abdominal ultrasonography.

Exclusion criteria: heavy alcohol consumption (>210 g/week for

men and >140 g/week for women); viral hepatitis, liver disease

caused by drugs, autoimmune liver disease or other specific diseases

known to cause fatty liver.
2.2 Inclusion index

Baseline patient data (gender, age, height, weight, blood

pressure, alcohol consumption history), routine blood
frontiersin.org
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examinations (hemoglobin[Hb], white blood cells [WBC], platelets

[PLT]), biochemical indicators (alanine aminotransferase [ALT],

aspartate aminotransferase [AST], albumin [ALB], cholesterol

[CHOL], TG, HDL, LDL, blood uric acid [UA], glucose [GLU],

blood urea nitrogen [BUN], serum creatinine [Scr], cystatin C

[CysC], 24-h urine protein, phospholipase A2 receptor antibody

[PLA2R], complement C3, complement C4, immunoglobulin G

[IgG], immunoglobulin M[IgM], immunoglobulin A[IgA] and D-

Dimer), infectious diseases biomarkers (hepatitis B surface antigen

[HBsAg], hepatitis C antibody [anti-HCV]) were collected at the

time of first diagnosis of MN. This study was approved by the

Medical Ethics Committee of Henan People’s Hospital (approval

number: 2020207), and informed consent was obtained from

all participants.

A post hoc power analysis was conducted to assess the statistical

power of the study based on observed differences in key clinical

variables. The analysis revealed that the sample size of 93 patients

provided sufficient power (>80%) for detecting clinically significant

differences. Specifically, the power exceeded 88% for all major

variables, including body weight (power = 88%), triglyceride

levels (power = 96%), 24-hour urine protein excretion (power =

98%), C3 levels (power = 88%), and C4 levels (power = 99%). These
Frontiers in Immunology 03
results confirm that the current sample size was adequate to detect

the observed differences with a significant level of 0.05.
2.3 Datasets collection and preprocessing

Gene expression profiles of numerous diseases can be found in

the Gene Expression Omnibus (GEO), a publicly available

genomics data repository. Using “Membranous nephropathy” and

“Nonalcoholic fatty liver disease” as keywords, 6 datasets were

downloaded including GSE126848 (16), GSE197307 (17),

GSE89632 (18), GSE104948 (19), GSE185051 (20) and

GSE200828. Among them, GSE126848 and GSE197307 were used

for differential expression analysis, while GSE89632, GSE104948,

GSE185051, and GSE200828 served as validation datasets (Table 1).

Quality control was conducted using the pheatmap package in

R to assess the correlation of gene expression among samples

(Supplementary Figure 1A, D). Samples with low correlation

coefficients were considered outliers and removed. The remaining

samples were further assessed using principal component analysis

(PCA) to evaluate clustering and detect hidden confounding factors

(Supplementary Figure 1B, C, E-F). When a gene mapped to
FIGURE 1

Technology roadmap constructed for this study.
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multiple probe IDs, the mean expression levels of the same symbol

were considered as the final gene-level expression.
2.4 Weighted gene co-expression network
analysis in NAFLD patients

The WGCNA package in R was used to construct gene co-

expression networks and identify gene modules (21). First, the

goodSamplesGenes function was used to filter out low-quality genes

and samples. The soft threshold was determined using the

pickSoftThreshold function, selecting the smallest b where the

scale-free topology fit index exceeded 0.85. Subsequently, the

blockwiseModules function was utilized to identify the gene

module, with minModuleSize set to 30 and MEDissThres set to

0.25. Genes with similar expression profiles were grouped into the

same module. Finally, the module eigengenes (ME) were calculated

by using the moduleEigengenes function. Correlations between

MEs and clinical traits were then evaluated to identify modules

most associated with disease. Genes from these trait-associated

modules were selected for further analysis based on their module

membership (MM) and gene significance (GS).
2.5 Identification of DEGs of MN and
NAFLD

DEGs between disease and control groups were identified using

the DESeq2 package in R (22). The screening thresholds were set as |

log2FoldChange| > 1 and adjusted p-value < 0.05 (Supplementary

Table 2). Genes with log2FC > 1 were considered up-regulated,

whilst those with log2FC < -1 were considered downregulated.

Heatmaps and volcano plots were generated using the pheatmap

and ggplot2 packages, respectively (23). To improve robustness,

only the overlapping DEGs from both GSE126848 and GSE197307

were retained for downstream analysis. Shared genes were defined

as the intersection between DEGs and trait-related module genes

identified by WGCNA, determined using the ggvenn package.
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2.6 Enrichment analysis of shared genes

Functional enrichment of the shared genes was performed using

the clusterProfiler package in R. Both Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses were

conducted, with a significance threshold set at p < 0.05 (24).
2.7 Protein-protein interaction network
establishment and hub-gene identification

Shared genes were submitted to the STRING database (http://

string-db.org/) to construct a high-confidence PPI network

(minimum required interaction score ≥ 0.700). The network was

visualized and analyzed using Cytoscape software (v3.10.2). The

cytoHubba plugin (v0.1) was employed to rank nodes based on four

algorithms: Radiality, Maximum Neighborhood Component

(MNC), Maximal Clique Centrality (MCC), and Degree. Hub

genes that were consistently ranked among the top 10 across

algorithms were retained.

To further explore the diagnostic potential of these hub genes, a

random forest (RF) model was constructed using gene expression

data from the NAFLD datasets. The number of trees (ntree) was

tuned to achieve the best performance, and the mtry parameter was

set to the square root of input features. The final model was used to

identify key diagnostic genes with maximum specificity and

sensitivity. Model performance was assessed using the area under

the receiver operating characteristic (ROC) curve in the training

sets and subsequently validated on the test datasets.
2.8 Validation of the key gene

The expression level of the identified key gene was evaluated

across four independent validation datasets (GSE89632,

GSE104948, GSE185051 and GSE200828). Differences between

disease and control samples were visualized using box plots.
2.9 Immune infiltration analysis

To assess the immune microenvironment in both MN and

NAFLD, immune cell proportions were estimated using the

CIBERSORT algorithm, which deconvolutes bulk expression data

into 22 immune cell types. The results were visualized using the

ggplot2 package. Pearson correlation analysis was performed to

examine the association between the key gene and immune cell

infiltration levels, and results were displayed as heatmaps.
2.10 Human biopsy specimens and
immunostaining procedures

All patients with MN were confirmed through pathological

examination. Healthy kidney tissues adjacent to malignant lesions
TABLE 1 Datasets used for this study.

Datasets Platforms Disease Samples Group

GSE126848 GPL18573 NAFLD 15 patients and
14 controls

Discovery

GSE197307 GPL18573 MN 62 patients and
8 controls

Discovery

GSE89632 GPL14951 NAFLD 19 patients and
24 controls

Validation

GSE185051 GPL24676 NAFLD 52 patients and
5 controls

Validation

GSE200828 GPL19983 MN 51 patients and
6 controls

Validation

GSE104948 GPL24120,
GPL22945

MN 21 patients and
21 controls

Validation
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were obtained during nephrectomy for kidney cancer. Liver tissues

were collected from patients undergoing hepatic surgery for

conditions such as hepatic hemangiomas or liver cysts. The

experimental procedures conducted in this study received

approval from the Henan People’s Hospital Ethics Committee

(approval number: 2020207). Paraffin-embedded kidney and liver

tissues were cut into 5-µm-thick slices. The deparaffinized slices

were subjected to antigen retrieval and endogenous peroxidase

inactivation. The slides were then blocked with 3% bovine serum

albumin (BSA) at room temperature for 30 minutes. According to

the manufacturer’s instructions, sections were incubated overnight

at 4°C with anti-CSF1R antibodies (Proteintech, Cat# 25949-1-AP,

RRID: AB_2880306). After incubation, slices were washed thrice

with phosphate-buffered saline (PBS), incubated with the

appropriate secondary antibodies (HRP- labeled goat anti-rabbit

IgG) (ServiceBio Cat# GB23303, RRID: AB_2811189) at 37 °C for

50 mins. The slides were then washed again with PBS. Color

development was performed using 3,3′-diaminobenzidine (DAB)

and examined under a light microscope. Then use Lignin to stain

for 3 mins.

Tissue sections were deparaffinized and antigen retrieval. After

cooling, slides were washed with PBS, and non-specific binding was

blocked using 3% BSA for 30 minutes at room temperature.

Sections were incubated with anti-CSF1R antibodies (Proteintech,

Cat# 25949-1-AP, RRID: AB_2880306) overnight at 4 °C in a

humidified chamber, followed by PBS washes and incubation

with fluorescent secondary antibodies (ServiceBio Cat# GB21303,

RRID: AB_2861435) for 50 minutes at room temperature in the

dark. Nuclei were counterstained with DAPI, and autofluorescence

was quenched before mounting with anti-fade medium.

Fluorescence was visualized using a fluorescence microscope with

the following filters: DAPI (Ex 330–380 nm/Em 420 nm, blue) and

CY3 (Ex 510–560 nm/Em 590 nm, red).

Quantitative analysis was carried out using ImageJ software by

comparing the experimental groups to the control group.
2.11 Single cell sequencing

Due to the absence of human single-cell RNA sequencing

(scRNA-seq) data for NAFLD, the mouse dataset GSE129516 was

selected for validation. Two human MN datasets, GSE241302 and

GSE131685, were also obtained for analysis. All datasets were

downloaded from the GEO database and processed using the

Seurat R package (25). Cells expressing less than 200 genes and

genes expressed in fewer than 3 cells were filtered out. Doublet cells

were identified and excluded from all samples. Ambient RNA

contamination was estimated and removed. Raw gene expression

counts were normalized using the LogNormalize method, scaling

each cell’s expression by a factor of 10,000. Subsequently, variance

stabilization transformation (VST) was applied to identify the top

2,000 highly variable genes per sample. These genes were then

scaled using the ScaleData function. Dimensionality reduction was

performed using principal component analysis (PCA) via the

RunPCA function. All samples were integrated using the
Frontiers in Immunology 05
Harmony algorithm to correct for batch effects. For MN datasets

(26), the top 11 principal components (PCs) were selected for cell

clustering using the FindNeighbors and FindClusters functions. For

the NAFLD dataset, the top 10 PCs were used. Uniform Manifold

Approximation and Projection (UMAP) was applied for

visualization using the RunUMAP function. Cluster-specific

marker genes were identified using the FindAllMarkers function,

based on the Wilcoxon rank-sum test.
2.12 Statistical analysis

Statistical analyses were performed using SPSS software

(version 27.0) and R software (version 4.4.1). For continuous

variables, the t-test was used to compare normally distributed

data, while the Mann–Whitney U test was applied for non-

normally distributed data. Categorical variables were expressed as

percentages and compared using Pearson’s Chi-square test or

Fisher’s exact test, as appropriate. A two-sided P value of <0.05

was considered statistically significant.
3 Results

3.1 Baseline data

From August 2021 to August 2022, a total of 93 patients

diagnosed with MN were enrolled in this study. These patients

were divided into two groups based on the presence or absence of

NAFLD. A comparison of baseline characteristics between the

NAFLD and non-NAFLD groups is presented in Supplementary

Table 1. Patients in the NAFLD group had significantly higher body

weight (75.02 vs. 66.69 kg, P < 0.001), triglyceride (TG) levels (2.68

vs. 1.95 mmol/L, P = 0.001), and 24-hour urinary protein excretion

(6.94 vs. 3.78 g/L, P = 0.002) compared to those in the non-NAFLD

group. Complement levels were also significantly elevated in the

NAFLD group, with higher C3 (1.32 vs. 1.17 g/L, P < 0.001) and C4

(0.36 vs. 0.29 g/L, P = 0.003). No significant differences were

observed between the two groups in terms of sex, age, height,

systolic blood pressure (SBP), diastolic blood pressure (DBP), white

blood cell count (WBC), hemoglobin (Hb), platelet count (PLT),

AST, ALT, albumin (ALB), cholesterol (CHOL), HDL, LDL, blood

urea nitrogen (BUN), serum creatinine (Scr), uric acid (UA),

glucose (GLU), cystatin C (CysC), anti-PLA2R, IgA, IgM and D-

dimer levels.
3.2 Selection of module genes by WGCNA

A weighted gene co-expression network was constructed using

the expression data of 17,249 genes from 26 NAFLD patients and 9

healthy controls. A soft-thresholding power of b = 5 was selected to

achieve a scale-free topology (Figure 2A). A total of 33 distinct gene

modules were identified. Among them, the yellow, brown, red, and

salmon modules exhibited the strongest correlations with NAFLD
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(Figures 2B–C). The relationships between module membership

(MM) and gene significance (GS) for these key modules are

illustrated in Figures 2D–G.
3.3 Identification of DEGs in MN and
NAFLD

In the GSE197307 dataset, a total of 3,252 differentially

expressed genes (DEGs) were identified, including 1,580

upregulated and 1,672 downregulated genes. In the NAFLD

dataset, 934 genes were significantly upregulated, while 552 genes

were significantly downregulated. Volcano plots display the

distribution of DEGs using different colors (Figures 3B, D), and

the top 50 upregulated and downregulated genes are visualized in

heatmaps (Figures 3A, C). Genes with consistent expression trends

across both MN and NAFLD datasets were identified, and their

intersection is illustrated in Figure 3E.
3.4 Functional enrichment analysis

To explore the biological functions of the upregulated and

downregulated genes, GO and KEGG enrichment analyses were

performed. GO analysis categorized gene functions into three

domains: biological process (BP), cellular component (CC), and

molecular function (MF). The most significantly enriched BP terms

included positive regulation of cytokine production, leukocyte

activation involved in immune response, cell activation involved

in mononuclear cell differentiation, lymphocyte differentiation, and

positive regulation of cell activation (Figure 4A). For CC, genes were

primarily enriched on the external side of the plasma membrane,

tertiary granule, and tertiary granule membrane (Figure 4B). In the

MF category, enriched terms included immune receptor activity,

inhibitory MHC class I receptor activity, sialic acid binding, and

cytokine binding (Figure 4C). KEGG pathway analysis indicated

that the shared DEGs were mainly involved in immune-related

pathways, such as the B cell receptor signaling pathway,

chemokine signaling pathway, and natural killer cell-mediated

cytotoxicity (Figure 4D).
3.5 Establishment of PPI network

To further explore the potential interactions among proteins

encoded by the shared DEGs, a protein-protein interaction (PPI)

network was constructed using the STRING database, with Homo

sapiens set as the species. The resulting network, consisting of 210

nodes and 106 edges (interaction score > 0.7), was visualized using

Cytoscape software (Figure 5D). To identify key hub genes, the

cytoHubba plugin was employed (27). The top 20 genes from each

method were intersected to identify common hub genes (Figure 5B).

This analysis yielded seven hub genes: VAV1, CSF1R, FCER1G,

FCGR3A, CCR1, HCK, and SPI1. The biological functions of these

genes are summarized in Table 2.
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3.6 Further selection of key genes

To further identify the gene most closely associated with both MN

and NAFLD, a random forest (RF) algorithm was applied to the seven

hub genes. In this model, gene expression levels served as independent

variables, while disease status was used as the dependent variable.

Genes were ranked based on the MeanDecreaseGini index to

determine their relative importance. The number of trees (ntree)

was initially set to 500; as the number of trees increased, the model

error stabilized. The optimal parameter was identified as ntree = 2,

corresponding to the lowest model error (Figure 5C). The model

exhibited strong discriminatory power, with area under the curve

(AUC) values exceeding 0.9 in both the training and validation

datasets, indicating excellent predictive performance (Supplementary

Figure 2). Among the variables evaluated by the RF model, CSF1R

demonstrated the highest MeanDecreaseGini value and was therefore

identified as the most important gene (Figure 5D). To validate the

expression of CSF1R, immunohistochemical staining was performed

on liver and kidney biopsy tissues obtained from healthy controls,

NAFLD patients, and MN patients (Figure 6). Results showed that

CSF1R expression was minimal in healthy individuals, but moderately

elevated in the renal vascular endothelium of MN patients and in

hepatocytes of NAFLD patients. Similarly, compared with the control

group, the disease groups showed an increase in CSF1R fluorescence

intensity (Supplementary Figure 3). These findings suggest that

immune dysregulation, particularly the upregulation of CSF1R, may

underlie the pathophysiological link between MN and NAFLD.
3.7 Infiltration of Immune cells in NAFLD
and MN

Based on the findings from enrichment analyses and machine

learning, immune dysregulation may serve as a potential link between

MN and NAFLD. To further explore this hypothesis, the CIBERSORT

algorithm was employed to assess immune cell infiltration in both

diseases. The proportions of 22 immune cell subtypes in MN and

NAFLD samples are depicted in bar plots (Figure 7B, E). Compared to

healthy controls, both disease groups exhibited a significant increase in

monocyte infiltration (Figure 7A, D), accompanied by a marked

decrease in resting memory CD4+ T cells. To assess the relationship

between immune cell composition and CSF1R expression, Pearson

correlation analysis was conducted. In MN samples, CSF1R

expression showed a strong positive correlation with M2

macrophages and monocytes, and a negative correlation with gd T

cells, plasma cells, and resting dendritic cells (Figure 7C). Similarly, in

NAFLD, CSF1R expression was positively associated with gd T cells,

monocytes, and eosinophils, while inversely correlated with resting

memory CD4+ T cells and naive B cells (Figure 7F).
3.8 Single cell sequencing analysis

In addition to transcriptomics analysis, single cell RNA

sequencing was conducted to further validate our findings. After

quality control, a total of 40864 integrated kidney cells were divided
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into 18 clusters. Based on marker genes documented in the

literature, these clusters were annotated into 11 cell types,

including proximal tubule cells, natural killer T cell (NK/T) cells,

parietal epithelial cells, loop of Henle cells, intercalated cells, distal

tubule cells, monocytes, distal tubule-immune cells, B cells,

endothelial cells and principal cells. As Figure 8A, D showed,

UMAP was utilized to visualize the cell cluster. Similarly, 30632

liver cells were divided into 16 clusters, which were further classified

into 10 types. Marker genes for each cell type are illustrated in

Figure 8C, F.

Box plots (Figure 9) showed that significantly elevated

expression of CSF1R in disease groups compared to healthy

controls in external validation datasets. Additionally, CSF1R

expression was elevated in both MN and NAFLD at the single

cell level (Figure 8B, E). Notably, CSF1R was predominantly

enriched in the mononuclear phagocyte system, aligning with

findings from the immune infiltration analysis. These results

suggest that monocytes may play a pivotal role in the

pathogenesis of both NAFLD and MN.
4 Discussion

It is well established that NAFLD and CKD are closely linked,

yet the specific CKD subtypes associated with NAFLD remain
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unclear. NS, particularly MN, is characterized by significant lipid

metabolism disorders, which may contribute to NAFLD

development (15, 28). In this study, we explored the clinical

features and molecular mechanisms of MN patients with NAFLD

through the synergistic integration of bioinformatics analysis and

machine learning approaches.

Nearly 40% of MN patients in our cohort had NAFLD. These

patients exhibited more severe proteinuria, suggesting a worse renal

prognosis (29). They also had lower IgG levels, consistent with prior

reports (30). However, some studies showed high IgG levels may

promote NAFLD development and increase the risk of hepatic

decompensation (31, 32). Additionally, we observed altered

complement activity, including elevated serum C3 levels, which

supports previous findings of complement activation in NAFLD

(33, 34). In conclusion, we hypothesized that the occurrence of

NAFLD in MN patients may be associated with immune disorders

and exacerbate pre-existing diseases.

In addition, lipid metabolism may represent a mechanistic link

between MN and NAFLD. Elevated levels of FFAs promote

mitochondrial b-oxidation, leading to the overproduction of reactive

oxygen species (ROS) and hepatocyte apoptosis (35). Similarly, FFAs

impair mitochondrial membrane integrity, releasing ROS and

mitochondrial DNA, which trigger pro-inflammatory cytokines such

as IL-18 and IL-1b, thereby promoting kidney cellular damage (36).

Moreover, the NLRP3 inflammasome has been identified as a lipid-
FIGURE 2

Weighted gene co-expression network analysis. (A) Selection of the best soft threshold value. The optimal soft threshold is when the scale-free fit
index first approaches the red line (represents 0.85). (B) Similar genes are clustered together in the Cluster dendrogram, with the top of the image
representing the clustering dendrogram and the bottom representing the color corresponding to each gene. (C) Heatmap of relationships between
module genes and clinical traits. Red, blue and salmon module genes had a high positive correlation with NAFLD. Brown module genes were
negatively and strongly correlated with NAFLD. (D–G) Module significance and gene significance of red, blue, salmon and brown module genes
were positively correlated.
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induced inflammatory mechanism. NLRP3 activation facilitates

cytokines release and liver inflammation, and similar activation in

renal tissues promotes immune responses (36, 37). Transcriptional

regulators, particularly SREBP-1c and PPARa/g, also play crucial roles
in both diseases. SREBP-1c, a master regulator of lipogenesis, is

persistently activated to promote hepatic lipid accumulation (38).

Similarly, SREBP-1c activation leads to podocyte lipid deposition (39).

In contrast, PPARa and PPARg, which facilitate lipid clearance and

exert anti-inflammatory effects, are typically downregulated in both

diseases (40–43).
Frontiers in Immunology 08
From transcriptomic analyses, we obtained 211 genes

commonly associated with MN and NAFLD. Enrichment analysis

indicated these genes were related to immune cells and cytokines

activation. Hub gene screening revealed CSF1R as a key molecule

through the random forest algorithm. In addition, immune

infiltration revealed that CSF1R was correlated positively with

monocytes in both diseases . Final ly , scRNA-seq and

immunohistochemistry were performed to validate our conclusions.

CSF1R is a receptor for both CSF-1 and IL-34, expressed primarily

in macrophages, monocyte, microglia, osteoblasts, and myeloid
FIGURE 3

Identification of DEGs of MN and NAFLD. (A) Heatmap showing the top 100 DEGs in the MN dataset according to the padj value. (B) Volcano plot of
DEGs of MN, including 1580 upregulated genes and 1672 downregulated genes. (C) Heatmap showing the top 100 DEGs in the NAFLD dataset
according to the padj value. (D) Volcano plot of DEGs of NAFLD, containing 934 upregulated genes and 552 downregulated genes. (E) Venn plot of
common genes. DEGs, differentially expressed genes; MN, membranous nephropathy; NAFLD, non-alcoholic fatty liver disease; padj: adjusted
P value.
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FIGURE 4

Functional enrichment analysis of shared genes. (A-C) GO enrichment analysis of shared genes, including biological process (A), cellular component
(B) and molecular function (C). (D) KEGG enrichment of shared genes. FoldEnrichment revealed differences between the pathway’s proportions in
this dataset and the entire genome. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
FIGURE 5

Gene selection by the PPI network and machine learning. (A) The PPI network of common genes. Different colors represent the connectivity of the
gene. The darker the color, the more core the gene is in the network. (B) Venn diagram of the top 20 genes with the highest scores for 4
algorithms. (C) Relationship between the overall error rate and the number of trees. (D) Relative importance of each gene in the Random Forest
model. CSF1R had the highest MeanDecreaseGini. PPI, protein-protein interaction.
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dendritic cells (44, 45). It plays a key pro-inflammatory role and has

been implicated in several kidney diseases, including acute kidney

injury (AKI), lupus nephritis (LN), and focal segmental

glomerulosclerosis (FSGS) (46–49). A study demonstrated that

CSF1R is genetically increased in MN and promotes the expression

of various cytokines (50). Multiple cytokines promote mesangial cell

proliferation and alter hemodynamics leading to renal injury (51).

Furthermore, the number of circulating monocytes has been shown to
Frontiers in Immunology 10
correlate with the severity of MN (52). Infiltrating monocytes in the

kidney can differentiate into macrophages, which not only participate

in tissue repair but also contribute to renal fibrosis (52–54).

Monocytes may exert their damaging effects on the kidney through

their surface receptor CSF1R. Our findings are consistent with

previous studies. Therefore, we hypothesize that aberrant expression

or functional dysregulation of CSF1R may initiate or exacerbate

immune dysfunction in MN.
TABLE 2 Proteins encoded by hub genes and their functions.

Gene Protein Function

VAV1 Vav guanine nucleotide
exchange factor 1

A signaling molecules is involved in activating the Rho GTPase family, T cell receptor signaling (including Calcium flux, EARK
signaling pathway, and Dynamin2) and regulating the cytoskeleton (61)

CSF1R Colony stimulating factor
1 receptor

A cell-surface receptor playing an important role in the survival, proliferation and differentiation of macrophages and
monocytes (62)

HCK HCK proto-oncogene A tyrosine-protein kinase which is involved in extracellular signals transmission, cell migration, cell differentiation and cell
proliferation (63)

FCER1G Fc epsilon receptor Ig A component of the Fc portion of immunoglobulin E receptor playing an important role in mediating allergic inflammatory
signaling in mast cells (64)

FCGR3A Fc gamma receptor IIIa A component of the Fc portion of immunoglobulin G receptor, which is involved in antibody-dependent cell-mediated
cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) (65)

SPI1 Spi-1 Proto-Oncogene A member of the transcription factor family Ets, which is involved in myeloid and B cells differentiation (66)

CCR1 CC chemokine receptor 1 A chemokine receptor that plays a critical role in the recruitment and activation of macrophages and monocytes at sites of
inflammation (67)
FIGURE 6

Histopathology of tissues from patients with MN, patients with MN and healthy individuals. (A) Kidney biopsies of MN patients and healthy controls.
(B) Liver biopsies of NAFLD patients and healthy controls. Scalebars, 100mm. Data were presented as mean ± SEM. MN, membranous nephropathy;
NAFLD, non-alcoholic fatty liver disease; AOD, average optical density, *P < 0.05.
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FIGURE 7

Immune infiltration analysis of MN and NAFLD. (A) Comparison of renal immune infiltration between healthy control and NAFLD patients. (B) P
NAFLD. (C) Correlation between CSF1R expression and immune cells in the NAFLD dataset. (D) Comparison of renal immune infiltration betwe
of immune cells in each sample of MN. (F) Correlation between CSF1R expression and immune cells in the MN dataset. MN, membranous nep
0.01; ***P < 0.001; ****P<0.0001.

https://doi.org/10.3389/fimmu.2025.1564288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


P visualization of CSF1R expression in healthy individuals and
ted and visualized using UMAP. (E) UMAP visualization of Csf1r
branous nephropathy; NAFLD, non-alcoholic fatty liver

Fan
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.15

6
4
2
8
8

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

12
FIGURE 8

Single cell sequencing analysis for validation. (A) All samples from GSE241302 and GSE131685 were integrated and visualized using UMAP. (B) UMA
MN patients. (C) Heatmap showed the expression of representative marker genes for each cell type. (D) All samples from GSE129516 were integra
expression in healthy individuals and NAFLD mice. (F) Heatmap showed the expression of representative marker genes for each cell type. MN, mem
disease; UMAP, Uniform Manifold Approximation and Projection.
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Our study also found an increase in CSF1R expression among

patients with NAFLD. The biological functions of CSF1R are highly

dependent on the activation of the CSF1/IL34–CSF1R signaling

axis. In the context of NAFLD, this pathway appears to be

upregulated, as indicated by elevated serum IL-34 levels and

increased expression of the CSF1 gene (55, 56). Moreover, an

increased expression of CSF1R was directly observed in the

NAFLD animal model (57). CSF1R directly promotes lipid

accumulation in hepatocytes via the glycolytic pathway (58). On

the other hand, the CSF1/IL34–CSF1R signaling axis activates

hepatic macrophages and produces pro-inflammatory cytokines,

thereby promoting hepatic fibrosis (59, 60). Overall, CSF1R is a key

molecule in the development and progression of NAFLD.

Our study has limitations. Due to its single-center design and

relatively small sample size, a multi-center investigation is needed to

further validate our findings. The cross-sectional study design made
Frontiers in Immunology 13
it difficult to infer a causal relationship between MN and NAFLD.

Furthermore, animal experiments are needed to explore signaling

pathways of CSF1R in both NAFLD and MN in greater detail.

Patients with both diseases should be selected for validation, but

such datasets are currently unavailable and should be carried out in

the future.
5 Conclusion

In conclusion, we identify CSF1R as a shared molecular marker

linking MN and NAFLD, implicating dysregulation of the

monocytes in their co‐pathogenesis. Clinically, these findings

suggest that regular monitoring of hepatic steatosis in MN

patients may enable earlier detection of comorbidity. This study

proposes a novel perspective that Chinese patients with MN are at
FIGURE 9

Boxplots of CSF1R expression in external datasets for validation. (A) Comparison of CSF1R expression between healthy individuals and MN patients in
GSE104948. (B) Comparison of CSF1R expression between healthy individuals and MN patients in GSE200828. (C) Comparison of CSF1R expression
between healthy individuals and NAFLD patients in GSE GSE89632. (D) Comparison of CSF1R expression between healthy individuals and NAFLD
patients in GSE185051. Data were presented as mean ± SEM. MN, membranous nephropathy; NAFLD, non-alcoholic fatty liver disease; **, P < 0.01;
***, P < 0.001; ****, P <0.0001.
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increased risk of developing NAFLD, which may in turn exacerbate

the progression of MN. Our results suggest that quantifying CSF1R

expression may serve as a biomarker for the early and accurate

diagnosis of patients with coexisting MN and NAFLD. In the future,

targeting CSF1R signaling may represent a promising therapeutic

strategy for mitigating both renal and hepatic injury.
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SUPPLEMENTARY FIGURE 1

Sample quality assessment to remove outlier samples. (A) Pearson correlation

analysis was performed to calculate the correlation of gene expression
between each sample of GSE197307. Samples with low correlation were

removed as anomalous samples. (B) Visualization of pre-QC samples of

GSE197307 using the PCA algorithm showed samples were clustered with
each other. (C) Visualization of post-QC samples of GSE197307 using the PCA

algorithm showed samples from different groups were separated. (D) Pearson
correlation analysis was performed to calculate the correlation of gene

expression between each sample of GSE126848. Samples with low
correlation were removed as anomalous samples. (E) Visualization of pre-

QC samples of GSE126848 using the PCA algorithm showed samples were

clustered with each other. (F) Visualization of post-QC samples of
GSE126848 using the PCA algorithm showed samples from different groups

were separated.

SUPPLEMENTARY FIGURE 2

Performance evaluation of the model. (A) Confusion matrix of the RF model

in the training set. Accuracy: 0.97, precision: 1.00, recall: 0.96, F1 score: 0.98.

(B) ROC curve for the training set. The AUC was 0.94 (95% CI: 0.82–1.00).
(C) Confusion matrix of the RF model in the test set. Accuracy: 0.92,

precision: 0.86, recall: 1.00, F1 score: 0.92. (D) ROC curve for the test set.
The AUC was 0.93 (95% CI: 0.79–1.00). RF, Random Forest; ROC, receiver

operating characteristic; AUC, area under the curve.

SUPPLEMENTARY FIGURE 3

Representative immunofluorescence images of CSF1R (red) of renal and liver
biopsies from HC, MN and NAFLD patients. Cell nuclei were counterstained

with DAPI (blue). Scalebars, 100mm; MN, membranous nephropathy; NAFLD,
non-alcoholic fatty liver disease.
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et al. Colony stimulating factor-1 receptor drives glomerular parietal epithelial cell
activation in focal segmental glomerulosclerosis. Kidney Int. (2024) 106:67–84.
doi: 10.1016/j.kint.2024.02.010
frontiersin.org

https://doi.org/10.1038/s41572-021-00303-z
https://doi.org/10.1681/asn.2020111583
https://doi.org/10.1097/ede.0000000000001576
https://doi.org/10.1097/ede.0000000000001576
https://doi.org/10.1016/j.jhep.2018.10.033
https://doi.org/10.3350/cmh.2022.0424
https://doi.org/10.1016/S0140-6736(20)32511-3
https://doi.org/10.1038/s41577-021-00639-3
https://doi.org/10.1038/nrneph.2017.155
https://doi.org/10.1038/nrneph.2017.155
https://doi.org/10.1007/s00018-018-2860-6
https://doi.org/10.1186/s12882-025-04022-5
https://doi.org/10.1186/s12882-025-04022-5
https://doi.org/10.3390/jcm11133649
https://doi.org/10.3390/metabo11030155
https://doi.org/10.3390/metabo11030155
https://doi.org/10.1093/ndt/gfab046
https://doi.org/10.4254/wjh.v15.i2.265
https://doi.org/10.4254/wjh.v15.i2.265
https://doi.org/10.1152/ajpgi.00358.2018
https://doi.org/10.1681/asn.2021060784
https://doi.org/10.1002/hep.27695
https://doi.org/10.1136/annrheumdis-2017-212935
https://doi.org/10.1002/hep4.1940
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1111/j.1467-985X.2010.00676_9.x
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41587-023-01767-y
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1016/S0270-9295(03)00058-5
https://doi.org/10.1111/j.1523-1755.2004.00518.x
https://doi.org/10.1111/j.1523-1755.2004.00518.x
https://doi.org/10.1111/1751-2980.12646
https://doi.org/10.3748/wjg.v27.i43.7563
https://doi.org/10.51821/87.2.12205
https://doi.org/10.1038/srep23279
https://doi.org/10.1002/hep.23228
https://doi.org/10.1002/hep.26226
https://doi.org/10.1016/j.metabol.2023.155718
https://doi.org/10.1002/hep.26592
https://doi.org/10.1038/s41419-020-2472-6
https://doi.org/10.1016/j.bbrc.2007.10.038
https://doi.org/10.1016/j.jhep.2014.10.039
https://doi.org/10.1016/j.pharmthera.2023.108391
https://doi.org/10.3389/fphar.2022.832732
https://doi.org/10.1016/j.crphys.2024.100133
https://doi.org/10.1016/j.ejmech.2022.114884
https://doi.org/10.1016/j.ejmech.2022.114884
https://doi.org/10.1021/acs.jmedchem.7b00873
https://doi.org/10.7150/thno.50683
https://doi.org/10.1038/ki.2015.295
https://doi.org/10.1016/j.clim.2016.08.019
https://doi.org/10.1016/j.kint.2024.02.010
https://doi.org/10.3389/fimmu.2025.1564288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2025.1564288
50. Zhang P, Geng Y, Tang J, Cao Z, Xiang X, Yang K, et al. Identification of
biomarkers related to immune and inflammation in membranous nephropathy:
comprehensive bioinformatic analysis and validation. Front Immunol. (2023)
14:1252347. doi: 10.3389/fimmu.2023.1252347

51. Vianna HR, Soares CM, Tavares MS, Teixeira MM, Silva AC. Inflammation in
chronic kidney disease: the role of cytokines. J Bras Nefrol. (2011) 33:351–64.
doi: 10.1590/s0101-28002011000300012

52. Hou J, Zhang M, Ding Y, Wang X, Li T, Gao P, et al. Circulating cd14(+)Cd163(+)
Cd206(+)M2monocytes are increased in patients with early stage of idiopathicmembranous
nephropathy. Mediators Inflammation. (2018) 2018:5270657. doi: 10.1155/2018/5270657

53. Alexopoulos E, Seron D, Hartley RB, Nolasco F, Cameron JS. Immune
mechanisms in idiopathic membranous nephropathy: the role of the interstitial
infiltrates. Am J Kidney Dis. (1989) 13:404–12. doi: 10.1016/s0272-6386(89)80024-1

54. Zhang AH, Dai GX, Zhang QD, Huang HD, Liu WH. The value of peripheral
blood cell ratios in primary membranous nephropathy: A single center retrospective
study. J Inflammation Res. (2023) 16:1017–25. doi: 10.2147/jir.S404591

55. Shoji H, Yoshio S, Mano Y, Kumagai E, Sugiyama M, Korenaga M, et al.
Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-
alcoholic fatty liver disease. Sci Rep. (2016) 6:28814. doi: 10.1038/srep28814

56. Cayón A, Crespo J, Guerra AR, Pons-Romero F. Gene expression in obese
patients with non-alcoholic steatohepatitis. Rev Esp Enferm Dig. (2008) 100:212–8.
doi: 10.4321/s1130-01082008000400004

57. Hong W, Zhang T, Yan J, Yu J, He B, Wu L, et al. Bioinformatics analysis of an
animal model of diet-induced nonalcoholic fatty liver disease with rapid progression.
Exp Biol Med (Maywood). (2022) 247:263–75. doi: 10.1177/15353702211055099

58. Fu Y, Li X, Zeng Y, Zhang A, Qiu S. Arctiin attenuated nash by inhibiting
glycolysis and inflammation via fgfr2/csf1r signaling. Eur J Pharmacol. (2025)
996:177424. doi: 10.1016/j.ejphar.2025.177424
Frontiers in Immunology 16
59. Tian Y, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Targeting hepatic macrophages
for non-alcoholic fatty liver disease therapy. Front Cell Dev Biol. (2024) 12:1444198.
doi: 10.3389/fcell.2024.1444198

60. Alabdulaali B, Al-Rashed F, Al-Onaizi M, Kandari A, Razafiarison J, Tonui D,
et al. Macrophages and the development and progression of non-alcoholic fatty liver
disease. Front Immunol. (2023) 14:1195699. doi: 10.3389/fimmu.2023.1195699

61. Tybulewicz VLJ. Vav-family proteins in T-cell signalling. Curr Opin Immunol.
(2005) 17:267–74. doi: 10.1016/j.coi.2005.04.003

62. Buechler MB, Fu W, Turley SJ. Fibroblast-macrophage reciprocal interactions in
health, fibrosis, and cancer. Immunity. (2021) 54:903–15. doi: 10.1016/j.immuni.
2021.04.021

63. Ernst M, Inglese M, Scholz GM, Harder KW, Clay FJ, Bozinovski S, et al.
Constitutive activation of the src family kinase hck results in spontaneous pulmonary
inflammation and an enhanced innate immune response. J Exp Med. (2002) 196:589–
604. doi: 10.1084/jem.20020873

64. Zhang X, Cai J, Song F, Yang Z. Prognostic and immunological role of fcer1g in
pan-cancer. Pathol - Res Pract. (2022) 240:154174. doi: 10.1016/j.prp.2022.154174

65. Li L, Huang Z, Du K, Liu X, Li C, Wang D, et al. Integrative pan-cancer analysis
confirmed that fcgr3a is a candidate biomarker associated with tumor immunity. Front
Pharmacol. (2022) 13:900699. doi: 10.3389/fphar.2022.900699

66. Deng G, Wang P, Su R, Sun X, Wu Z, Huang Z, et al. Spi1(+)Cd68(+)
macrophages as a biomarker for gastric cancer metastasis: A rationale for combined
antiangiogenic and immunotherapy strategies. J Immunother Cancer. (2024) 12:
e009983. doi: 10.1136/jitc-2024-009983

67. Li G, Lu Z, Chen Z. Identification of common signature genes and pathways
underlying the pathogenesis association between nonalcoholic fatty liver disease
and heart failure. Front Immunol. (2024) 15:1424308. doi: 10.3389/fimmu.
2024.1424308
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1252347
https://doi.org/10.1590/s0101-28002011000300012
https://doi.org/10.1155/2018/5270657
https://doi.org/10.1016/s0272-6386(89)80024-1
https://doi.org/10.2147/jir.S404591
https://doi.org/10.1038/srep28814
https://doi.org/10.4321/s1130-01082008000400004
https://doi.org/10.1177/15353702211055099
https://doi.org/10.1016/j.ejphar.2025.177424
https://doi.org/10.3389/fcell.2024.1444198
https://doi.org/10.3389/fimmu.2023.1195699
https://doi.org/10.1016/j.coi.2005.04.003
https://doi.org/10.1016/j.immuni.2021.04.021
https://doi.org/10.1016/j.immuni.2021.04.021
https://doi.org/10.1084/jem.20020873
https://doi.org/10.1016/j.prp.2022.154174
https://doi.org/10.3389/fphar.2022.900699
https://doi.org/10.1136/jitc-2024-009983
https://doi.org/10.3389/fimmu.2024.1424308
https://doi.org/10.3389/fimmu.2024.1424308
https://doi.org/10.3389/fimmu.2025.1564288
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Identification of key genes in membranous nephropathy and non-alcoholic fatty liver disease by bioinformatics and machine learning
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.1.1 MN
	2.1.2 NAFLD

	2.2 Inclusion index
	2.3 Datasets collection and preprocessing
	2.4 Weighted gene co-expression network analysis in NAFLD patients
	2.5 Identification of DEGs of MN and NAFLD
	2.6 Enrichment analysis of shared genes
	2.7 Protein-protein interaction network establishment and hub-gene identification
	2.8 Validation of the key gene
	2.9 Immune infiltration analysis
	2.10 Human biopsy specimens and immunostaining procedures
	2.11 Single cell sequencing
	2.12 Statistical analysis

	3 Results
	3.1 Baseline data
	3.2 Selection of module genes by WGCNA
	3.3 Identification of DEGs in MN and NAFLD
	3.4 Functional enrichment analysis
	3.5 Establishment of PPI network
	3.6 Further selection of key genes
	3.7 Infiltration of Immune cells in NAFLD and MN
	3.8 Single cell sequencing analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


