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Construction of a prognostic
model for endometrial cancer
related to programmed cell
death using WGCNA and
machine learning algorithms
Weicheng Pan1, Jinlian Cheng2, Shanshan Lin2, Qianxi Li 1,
Yuanyuan Liang1, Huiying Li1, Xianxian Nong1*

and Huizhen Nong1*

1Department of Obstetrics and Gynecology, Wuming Hospital of Guangxi Medical University,
Nanning, Guangxi, China, 2Department of Obstetrics and Gynecology, The First Affiliated Hospital of
Guangxi Medical University, Nanning, Guangxi, China
Background: Programmed cell death (PCD) refers to a regulated and active

process of cellular demise, initiated by specific biological signals. PCD plays a

crucial role in the development, progression, and drug resistance of uterine

corpus endometrial carcinoma (UCEC), making the exploration of its relationship

with UCEC prognosis highly clinically relevant.

Methods: Data from UCEC patients and control cohorts were obtained from The

Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs)

were identified and subsequently intersected with a PCD gene set to discern

PCD-related differentially expressed genes (PCD-DEGs). To isolate core

prognostic PCD-DEGs, methods including consistency clustering analysis,

weighted gene co-expression network analysis (WGCNA), univariate Cox

regression analysis, and five machine learning techniques for dimensionality

reduction were utilized. Validation of three core prognostic PCD-DEGs was

conducted using RT-qPCR, and these genes were used to develop a prognostic

model. Additionally, an analysis of drug sensitivity was performed.

Results:Consistencyclusteringanalysis revealedsignificantdifferences inprognosis

and tumor microenvironment among subtypes, strongly associated with various

immune subtypes. The three core prognostic PCD-DEGs identified—SRPX, NT5E,

and ATP6V1C2—were instrumental in constructing the lasso prognostic model and

nomogram. Receiver Operating Characteristic (ROC) curve analysis confirmed the

model’s strong prognostic performance and clinical applicability. The high-risk

group exhibited lower tumor mutation frequencies, a higher propensity for

immune escape, reduced response to immune therapy, and potential benefits

from potent chemotherapy drugs.

Conclusion: This study developed a prognostic model related to PCD for UCEC

using comprehensive bioinformatics analyses. The model demonstrates robust
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predictive performance and holds significant potential for clinical application,

thereby facilitating precise stratification and personalized treatment of

UCEC patients.
KEYWORDS

endometrial cancer, programmed cell death, machine learning, WGCNA,
prognostic model
1 Introduction

UCEC ranks as one of the leading malignant neoplasms in the

female reproductive system, with a rising incidence rate globally (1).

The integration of surgical intervention with radiotherapy and

chemotherapy can enhance prognosis for certain patients;

however, prognostic outcomes show considerable variability

among individuals. This variability is attributed to the inherent

heterogeneity of UCEC and the diverse array of clinical and

pathological characteristics (2, 3). Currently, traditional prognostic

evaluation methods primarily rely on tumor staging, grading, and

clinical pathological parameters. However, these methods are

insufficient in comprehensively reflecting the molecular biological

characteristics of UCEC, thereby limiting their ability to guide

personalized treatment for patients (4). Consequently, the

development of clinical prognostic models based on molecular

biomarkers, which can accurately predict patient survival risks and

provide reliable evidence for individualized treatment plans, is a

current research hotspot (5–7).

PCD constitutes a cellular demise process that is meticulously

regulated by intrinsic mechanisms and includes various forms, such

as apoptosis, pyroptosis, ferroptosis, and autophagic cell death (8, 9).

Within the context of tumorigenesis and progression, PCD plays a

dualistic role. It functions as a tumor suppressor by inhibiting

aberrant cell proliferation; conversely, tumor cells may manipulate

PCD pathways to evade immune surveillance, thereby facilitating

malignant progression (8, 10). Recent studies have shown that genes

associated with PCD exhibit significant diagnostic and prognostic

value in various cancers (11–13). However, in endometrial cancer,

the functions, expression patterns, and clinical significance of PCD-

related genes remain underexplored, and there is a lack of

systematic research.

Thus, thoroughly analyzing the expression patterns and clinical

importance of PCD-related genes in UCEC will aid in understanding

the tumor’s molecular mechanisms and highlight their potential

value in prognosis and diagnosis. Establishing a clinical prognostic

model related to PCD for UCEC provides valuable guidance for

clinical decision-making in UCEC.
02
2 Materials and methods

2.1 Data collection

Figure 1 presents a diagram illustrating the framework of this

study. We obtained the expression and clinical data of UCEC from

The Cancer Genome Atlas (TCGA) database. The clinical dataset for

TCGA-UCEC is organized in Supplementary Table S1. The

compilation of genes related to PCD utilized resources including

the MSigDB, GeneCards, the Kyoto Encyclopedia of Genes and

Genomes (KEGG), and extensive literature reviews (14). In total,

18 types of PCD were identified, which include Immunogenic Cell

Death, Pyroptosis, Paraptosis, Entosis, Cuproptosis, Parthanatos,

NETosis, Lysosome-dependent Cell Death, Ferroptosis, Alkaliptosis,

Apoptosis, Oxeiptosis, Netotic Cell Death, Anoikis, Autophagy,

Methuosis, Entotic Cell Death, and Necroptosis. After removing

duplicate entries, 1,548 genes associated with PCD were cataloged

(Supplementary Table S2).

From the Department of Obstetrics and Gynecology atWuming

Hospital, Guangxi Medical University, 20 samples of UCEC tissue

and 20 samples of control tissue were collected. The staging of

UCEC was assessed according to the 2009 FIGO guidelines, with

evaluations conducted by experienced pathologists. For the control

group, endometrial tissues were selected from patients undergoing

hysterectomies without any underlying endometrial conditions.

Clinical data for the UCEC patients are presented in Table 1.

This research was conducted in accordance with the guidelines of

the Declaration of Helsinki and received ethical approval from the

Ethics Committee of Wuming Hospital, Guangxi Medical

University (approval number: WM-2024(237)). All participants

provided written informed consent prior to undergoing surgery.
2.2 Differential expression analysis and
consensus clustering

The TCGA-UCEC dataset was subjected to differential

expression analysis employing the ‘limma’ package, adhering to a
frontiersin.org
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filtering criterion of an absolute log2 fold change (|log2 fold

change|) of at least 1.5 and an adjusted p-value of less than 0.05.

To identify PCD-DEGs, log2 normalization was applied to the

identified DEGs. Subsequently, an intersection of these genes with

those related to PCD was performed.

Consensus clustering was conducted on 543 UCEC samples,

utilizing the expression data of PCD-DEGs to delineate potential

molecular subtypes. In this analysis, the maximum number of

clusters was established at nine (maxK = 9). The K-means

algorithm, using Euclidean distance as the metric, was employed.
Frontiers in Immunology 03
The algorithm was iterated 50 times (reps = 50), randomly selecting

80% of the samples (pItem = 0.8) in each iteration for clustering. The

Prediction Average Clustering (PAC) method was used to calculate

the PAC values for different values of K, and the K value with the

minimum PAC value was chosen as the best number of clusters. The

internal consistency index (ICL) was used to evaluate the stability

and consistency of the clustering for different values of K.

PCA was employed in the clustering analysis to assess the

separation of various subtypes according to their expression

patterns. The ‘survival’ and ‘survminer’ packages were used to
FIGURE 1

Main flowchart of study design.
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perform overall survival (OS) and progression-free survival

(PFS) analyses to assess the prognostic differences among

the subtypes. The ‘estimate’ package was used to analyze the

tumor microenvironment of clustered subtypes and explore the

tumor immune characteristics of each subtype. The ‘enrichplot’,

‘clusterProfiler’, and ‘org.Hs.eg.db’ packages were used to conduct

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Gene Set Enrichment Analysis (GSEA), exploring the

functional enrichment status of each clustered subtype. Finally, the

‘ggalluvial’ package was employed to create Sankey diagrams, which

help uncover the link between subtypes and established immune

phenotypes, highlighting the connection between subtypes and the

immune microenvironment.
2.3 Weighted gene co-expression network
analysis

Use the ‘WGCNA’ package to conduct WGCNA analysis on

clustered subtypes, identifying module genes closely associated with

these subtypes. First, rank all genes within the clustered subtypes by

standard deviation, selecting the top 25% most variable genes for

further analysis. The optimal soft threshold was determined by

calculating the topological fit index under different power values.

Second, gene clustering was performed using the Topological

Overlap Matrix (TOM), with the minimum number of module

genes set to 100. Finally, genes most closely associated with the

subtypes were selected based on the criteria of Module Membership

(MM) > 0.8 and Gene Significance (GS) > 0.5.
2.4 Univariate cox regression analysis and
machine learning

The module genes closely related to the clustering subtypes

obtained from WGCNA were intersected with the PCD-DEGs gene

set. The intersected genes underwent a univariate Cox regression
Frontiers in Immunology 04
analysis to assess their prognostic relevance. Subsequently, five

machine learning algorithms were utilized to refine the selection of

prognostic genes. The packages ‘e1071,’ ‘kernlab,’ and ‘caret’ were

used for SVM-RFE. The Random Forest analysis was conducted

using the ‘randomForest’ package. The ‘XGBoost’ package was used

to perform XGBoost analysis. The ‘mclust’ package was employed for

Gaussian Mixture Model (GMM) analysis. Finally, the results from

the five machine learning algorithms were intersected to identify

overlapping genes, which were recognized as core prognostic

PCD-DEGs.
2.5 Development and validation of the risk
assessment model

Using LASSO regression analysis, we identified the optimal

prognostic gene combination to build a Cox proportional hazards

model. We divided the population into risk groups based on risk

scores and conducted prognosis-related analyses. The risk score

calculation formula is: risk score = ∑(Xi * Yi), where X represents

the coefficient and Y indicates the gene expression level.

We calculated the median of the risk scores and divided the

population into high-risk and low-risk groups based on this

median. The clustering subtypes were analyzed in conjunction

with the risk groups to understand the prognostic performance of

the clustering subtypes under different risk statuses. A survival

status plot was created to display the survival and death conditions

of patients across various risk categories. Differences in survival

between these groups were validated through OS analysis. We used

the ‘timeROC’ package to conduct ROC curve analysis, evaluating

the model’s predictive performance for the prognosis of UCEC

patients at various time points.
2.6 Development and verification of the
nomogram

We performed univariate and multivariate Cox regression

analyses on clinical features such as risk score, age, stage, grade,

and body mass index (BMI), using hazard ratios and p-values to

determine the prognostic significance of each clinical feature. We

used the ‘rms’ and ‘regplot’ packages to construct a nomogram. We

assessed the nomogram’s predictive accuracy for OS in UCEC

patients using calibration curves. We plotted cumulative risk

curves to explore long-term survival trends for patients at different

risk levels. We constructed time-dependent ROC curves to assess the

prognostic accuracy of the nomogram for UCEC patient prognosis at

various time points. We built decision curves to observe the clinical

net benefit of the nomogram at different time intervals.
2.7 Tumor mutational burden

Retrieve tumor mutation data for UCEC patients from the TCGA

database using the ‘maftools’ package. Analyze the gene mutation
TABLE 1 The clinical characteristics of the 20 UCEC patients used
for validation.

Clinical parameters N

Age
<60 13

≥60 7

Grade

G1 11

G2 8

G3 1

Stage

IA 18

IB 2

II-IV 0

Lymphovascular
space invasion

Yes 2

No 18
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status among different risk groups and examine the combined impact

of risk score and TMB on patient survival outcomes.
2.8 Tumor immune dysfunction and
exclusion

Access TIDE scores for UCEC patients from http://tide.

dfci.harvard.edu/. Employ a chi-square test to evaluate the

response to immunotherapy across various risk categories among

UCEC patients. Generate ROC curves to determine the model’s

accuracy in predicting the effectiveness of immunotherapy.

Concurrently, utilize the ‘CIBERSORT’ R package for the analysis

of immune infiltration.
2.9 Drug sensitivity analysis

Perform drug sensitivity analysis using the ‘oncoPredict’

package, drawing on data from the GDSC database. Conduct

differential analysis of drug responses by comparing the half-

maximal inhibitory concentration (IC50) values across different

risk score groups, applying a p-value filtering threshold of less than

0.001 to identify potential targets for drug treatment.
2.10 Reverse transcription quantitative
polymerase chain reaction

Isolate total RNA from samples using the Trizol reagent

(RNAiso Plus, TaKaRa Biotechnology, SD1412). Convert 1000 ng

of RNA into cDNA using the PrimeScript RT Reagent Kit (TaKaRa

Biotechnology, RR036A). Perform amplification using SYBR Green

qPCRMaster Mix (TOLOBIO, Shanghai, China, #22204) according

to the manufacturer’s guidelines. Amplification primers were

synthesized by Beijing Tsingke Biotech Co., Ltd. (Beijing, China)

(Table 2). Carry out real-time PCR amplification on a Gentier 96E/

96R Fully Automated PCR System (Xi’an Tian Long Technology,

China). Determine relative gene expression levels using the 2

−DDCT method, with b-actin serving as the reference gene.
Frontiers in Immunology 05
2.11 Statistical analysis

Conduct statistical analysis using R software (version 4.3.3), with

data visualization supported by the ‘ggplot2’ and ‘ggpubr’ packages.

Assess differences between two groups using the Wilcoxon rank-sum

test, log-rank test, or chi-square test. Apply the Benjamini-Hochberg

method to control the false discovery rate (FDR) in multiple

comparisons. Consider FDR values less than 0.05 as significant for

differential gene expression and gene set enrichment analyses. For

analyses without multiple comparisons (e.g., survival analysis), use a

significance threshold of p < 0.05. Design all analyses to ensure

robustness and reproducibility of results.
3 Results

3.1 Identification of PCD-DEGs and
consensus clustering subtypes

The TCGA-UCEC dataset was subjected to differential

expression analysis, revealing 3,067 DEGs as shown in Figure 2A.

By intersecting these DEGs with a previously compiled list of 1,548

PCD genes, we identified 217 PCD-related DEGs (PCD-DEGs)

(Figure 2B; Supplementary Table S3).

To explore the underlying structure of the data, we performed

consensus clustering using the expression profiles of the PCD-DEGs.

As the number of clusters (K) increased from 2 to 9, the most stable

sample grouping emerged at K=2 (Figures 2C, D), which exhibited

the highest intra-group similarity and the lowest inter-group

similarity (Figures 2E). The cumulative distribution function (CDF)

curve confirmed the minimal relative area at K=2 (Figure 2F),

indicating optimal cluster stability at this division (Figure 2G).

Consequently, 543 UCEC patients were effectively classified into

two subgroups: C1 (n=322) and C2 (n=221). PCA demonstrated a

clear separation between these subgroups (Figure 2H), suggesting

significant differences in their gene expression patterns.
3.2 Biological mechanisms and survival
analysis of C1 and C2 subtypes

Further differential expression analysis between these subtypes

identified 162 genes with distinct expression profiles. GO enrichment

analysis revealed significant enrichment of these genes in biological

processes such as cilium movement, axoneme structure, and

monoatomic ion-gated channel activity (Figure 3A). Moreover,

KEGG pathway analysis showed significant enrichment in

pathways including “Protein Digestion and Absorption”, “Motor

Proteins”, and “Neuroactive Ligand–Receptor Interaction”

(Figure 3B). GSEA indicated a strong association of the C1 subtype

with immune response, metabolic functions, and hematopoietic

system processes (Figure 3C), while the C2 subtype appeared more

closely related to neural system development, myocardial function,

cell proliferation, and regulation of gene expression (Figure 3D).

Survival analysis highlighted significant differences in OS and PFS
TABLE 2 The primers of core prognostic PCD-DEGs and b-actin.

Gene
name

Primer
orientation

Sequences

ATP6V1C2
Forward GAAGCCGCTGCCTCCC

Reverse ATCTGGCCATCTCCTCCCTT

SRPX
Forward AGCTTCCCAGATACCCCGT

Reverse TTGTTGGGTTCTGCAATGCG

NT5E
Forward CTCCTCTCAATCATGCCGCT

Reverse TGGATTCCATTGTTGCGTTCA

b-actin
Forward CCTTCCTGGGCATGGAGTC

Reverse TGATCTTCATTGTGCTGGGTG
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between the C1 and C2 subtypes (p < 0.001), with the C2 subtype

associated with a poorer prognosis (Figures 4A, B).
3.3 Analysis of the tumor
microenvironment and immune subtypes
in C1 and C2 classifications

The analysis of the tumor microenvironment demonstrated that

the C1 subtype exhibited higher ESTIMATE, Immune, and Stromal

Scores compared to the C2 subtype, indicating lower tumor purity

(Figures 4C–F). Further investigation into the relationship between
Frontiers in Immunology 06
clustering subtypes and immune subtypes revealed distinct patterns of

immune subtype distribution between C1 and C2 (Supplementary

Figure S1). Specifically, the C1 subtype was predominantly associated

with a reparative immune response, while the C2 subtype exhibited

characteristics of a more active immune response.
3.4 WGCNA

We conducted a WGCNA using TCGA-UCEC expression data,

focusing on the correlation with subtypes C1 and C2. To establish a

scale-free network, a soft threshold power b=3 (R²=0.90) was selected
FIGURE 2

Consensus clustering was performed for subtyping after intersecting the differentially expressed genes from TCGA-UCEC with PCD-related genes.
(A) TCGA-UCEC differential genes. (B) The intersection of TCGA-UCEC differential genes and PCD genes. (C) Tracking plot for cluster assignments
across different k values. (D) Item-consensus and cluster-consensus plots for different k values. (E) Consensus matrix for k=2. (F) Consensus CDF
curves for evaluating cluster stability across different cluster numbers (k). (G) Relative change in area under CDF curve vs. number of clusters (k).
(H) 3D principal component analysis plot of clusters C1 and C2.
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(Figure 5A). This analysis successfully identified seven distinct gene

modules (Figure 5C). The classification of these modules and the

patterns of gene co-expression were visualized through a

dendrogram and a heatmap (Figure 5B; Supplementary Figure S2).

Notably, 931 genes within the bluemodule (Supplementary Table S4)

demonstrated significant correlations—both negative and positive—

with the C1 and C2 subtypes, respectively. This suggests that the blue

gene module plays a pivotal role in the characteristics of the C2

subtype. A correlation coefficient of 0.94 betweenMM and GS for the

blue gene module underscores a strong positive association

(Figure 5D), warranting further detailed investigation of this module.
3.5 Identification of core prognostic PCD-
DEGs

Through the intersection of 217 PCD-DEGs with the previously

identified blue gene module via WGCNA, we identified 31

overlapping genes (Figure 5E; Supplementary Table S5). Univariate
Frontiers in Immunology 07
Cox regression analysis of these genes revealed that 19 PCD-DEGs

were significantly associated with clinical prognosis (Figure 5F).

To discern key prognostic genes among these 19 PCD-DEGs,

we utilized five sophisticated machine learning algorithms, each

chosen for its unique capabilities in feature selection and

dimensionality reduction to ensure the reliability and robustness

of our findings. The Boruta algorithm, which extends the Random

Forest approach, was employed to ascertain the relevance of each

feature by comparing it to randomly generated shadow features.

After 1000 iterations, Boruta highlighted 18 genes of significant

importance (Figures 6A, B). This method is particularly valuable in

handling high-dimensional datasets by eliminating superfluous or

irrelevant variables and preserving the stability of essential features.

Additionally, we applied the XGBoost algorithm, a gradient-

boosting decision tree framework, to evaluate the importance of

features using the Gain metric. Genes with a Gain value above 0.01

were deemed significant. This analysis pinpointed 9 crucial genes

(Figure 6C). Owing to its efficiency in detecting nonlinear
FIGURE 3

(A) Circular plot of GO enrichment analysis. (B) Bar plot of KEGG pathway enrichment analysis. (C, D) GSEA plots of KEGG pathway enrichment.
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relationships and complex interactions, XGBoost is exceptionally

suited for the analysis of gene expression data.

To investigate latent patterns and interactions among multiple

genes, GMMs were employed. We generated a comprehensive set of

524,287 model combinations, selecting those with area under the

curve (AUC) values approaching unity. This method successfully

pinpointed 12 genes of significant importance (Figure 6D). As an
Frontiers in Immunology 08
unsupervised probabilistic model, GMMs are particularly adept at

uncovering hidden structures within data, making them invaluable

for modeling interactions between genes.

The SVM-RFE algorithm was applied to refine feature

selection by systematically excluding features that made minimal

contributions to classification accuracy. Following cross-validation,

SVM-RFE effectively minimized classification errors and delineated
FIGURE 4

Correlation analysis based on consensus clustering subtypes. (A, B) Kaplan-Meier survival curves for OS and PFS between clusters C1 and C2.
(C–F) Comparison of tumor immune microenvironment characteristics between clusters C1 and C2, including the ESTIMATE score (C), tumor purity
(D), stromal score (E), and immune score (F).
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eight critical genes as optimal features for classification (Figures 6E,

F). This technique efficiently eliminates redundant features while

preserving those of utmost relevance.

Subsequently, the Random Forest algorithm was utilized to

assess feature importance based on Mean Decrease Gini scores.

Only genes with importance scores exceeding 1.0 were retained,
Frontiers in Immunology 09
identifying 15 genes of significant importance (Figures 6G, H).

Known for its robustness against noise and its capability to manage

high-dimensional datasets, Random Forest proved to be an effective

tool for feature selection within this study.

By synthesizing the outcomes derived from all employed

algorithms, three genes—NT5E, SRPX, and ATP6V1C2—were
FIGURE 5

WGCNA analysis and identification of key PCD prognostic genes based on consensus clustering subtypes. (A) Scale independence and mean
connectivity analysis for soft threshold selection. (B) Gene dendrogram and module color assignment. (C) Heatmap of module–trait relationships.
(D) Correlation between module membership and gene significance in the blue module. (E) The intersection of PCD-DEGs and blue module genes.
(F) UniCox regression analysis of 19 PCD prognosis-related genes.
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consistently identified as significant across all methodologies. These

genes were thus recognized as core prognostic PCD-DEGs

(Figure 6I; Supplementary Table S6). The adoption of a multi-

algorithm strategy not only enhances the reliability of the gene

selection but also minimizes potential biases inherent in

individual methods. This approach leverages the complementary

strengths of each algorithm, yielding results that are both robust

and interpretable.
Frontiers in Immunology 10
3.6 Evaluation of the prognostic risk score
model’s performance

The TCGA-train cohort consisted of 270 patients, while the

TCGA-test cohort included 269 patients, following a random

division in a 1:1 ratio. Utilizing three core prognostic PCD-DEGs

(NT5E, SRPX, and ATP6V1C2) identified earlier, a risk score model

was constructed based on the TCGA-train cohort. The model
FIGURE 6

Dimensionality reduction and feature selection for 19 PCD-related prognosis genes using machine learning algorithms. (A, B) Feature selection with
the Boruta algorithm: (A) shows importance scores and (B) displays importance trends across classifier runs. (C) Feature ranking with the XGBoost
algorithm, highlighting the most significant genes by importance scores. (D) Feature selection with the GMM algorithm, showing AUC distributions
for logistic regression models. (E, F) Feature selection with the SVM-RFE algorithm: (E) shows RMSE across feature numbers and (F) uses 1-RMSE to
indicate performance. (G, H) Feature selection with the Random Forest algorithm: (G) shows MeanDecreaseGini values and (H) plots error rates
across different tree numbers. (I) The intersection of five machine learning algorithms identified 3 Hub-DEGs.
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demonstrated optimal predictive performance at l = 3, identifying

ATP6V1C2, SRPX, and NT5E as the most effective gene

combination for constructing the model (Figure 7A).

The regression coefficients for ATP6V1C2, SRPX, and NT5E

were -0.06814, 0.27367, and -0.06628, respectively (Figure 7B).
Frontiers in Immunology 11
An integrated analysis that combined clustering subtypes with risk

scores revealed that the risk score associated with the C2 cluster

was significantly higher than that for the C1 cluster (Figure 7C).

The distribution of risk scores and survival status plots indicated

that the model effectively differentiates between patients with varying
FIGURE 7

Construction and validation of the risk score model. (A, B) A prognostic model was constructed in the TCGA-train cohort using LASSO-COX
regression analysis, with (A) showing the selection of the optimal lambda and (B) displaying the coefficient profiles as a function of log (lambda).
(C) Risk score comparison between clusters C1 and C2. (D, G, J) The distribution of risk scores and survival status of each patient in the TCGA-train,
TCGA-test, and all-TCGA cohorts. (E, H, K) Kaplan-Meier survival analysis for high- and low-risk groups in the TCGA-train, TCGA-test, and all-TCGA
cohorts. (F, I, L) Time-dependent ROC curves for predicting 1-, 3-, and 5-year survival in the TCGA-train, TCGA-test, and all-TCGA cohorts.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1564407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2025.1564407
prognostic risks, with the high-risk group displaying a higher mortality

rate (Figures 7D, G, J). In the OS analysis, the survival rate of the high-

risk group decreased more rapidly over time, suggesting poorer

survival outcomes (Figures 7E, H, K). Additionally, the analysis of

the ROC curve confirmed that the model proficiently predicts both

short-term and long-term survival outcomes for patients with UCEC,

although it exhibits slightly weaker performance in predicting mid-

term survival outcomes (Figures 7F, I, L).
3.7 Examination of the nomogram model’s
capabilities

Following the Cox regression analysis, risk score, stage, and age

were identified as independent predictors of patient prognosis
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(Figures 8A, B). These factors were subsequently utilized to

construct a nomogram. To enhance the clinical utility of the

nomogram, BMI and tumor grade were also included in the model

(Figure 8C). Calibration curves demonstrated that the predicted

values from the nomogram closely aligned with the actual observed

values at each time point, affirming the model’s accuracy in

forecasting survival rates at 1, 3, and 5 years (Figure 8D). The

cumulative risk curve illustrated that the high-risk group exhibited

elevated cumulative risk values, accumulating more rapidly over time

(Figure 8E). The ROC curve analysis displayed AUC values for the

nomogram model of 0.708 at 1 year, 0.702 at 3 years, and 0.737 at 5

years, highlighting the model’s strong discriminative ability

(Figure 8F). The DCA indicated that the nomogram effectively

integrates multiple variables, offering superior predictive power and

clinical utility compared to models based on a single variable. The
FIGURE 8

(A, B) Univariate and multivariate analyses showing the prognostic value of clinical variables and risk score. (C) A nomogram integrating clinical
features and risk score to predict 1-, 3-, and 5-year overall survival probabilities. (D) Calibration plot assessing the accuracy of the nomogram in
predicting 1-, 3-, and 5-year overall survival. (E) Comparison of cumulative hazard between high- and low-risk groups defined by nomogram-
derived risk stratification. (F) Time-dependent ROC curves showing the predictive performance of the nomogram for 1-, 3-, and 5-year overall
survival. (G–I) Decision curve analysis for 1-, 3-, and 5-year survival.
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nomogram achieves the optimal clinical net benefit within the

moderate-risk threshold range (Figures 8G–I).
3.8 The association between TMB, risk
score, and patient outcomes

The waterfall plot depicting gene mutation characteristics

effectively illustrates the distribution and frequency of mutations

within the high- and low-risk groups. Predominantly, missense

mutations are observed in both groups. Within the high-risk

group, TP53, PTEN, and PIK3CA are identified as the genes with

the highest mutation frequencies, which likely act as principal drivers

of tumor progression and deterioration (Figure 9A). Conversely, in

the low-risk group, PIK3CA, PTEN, and ARID1A exhibit the highest

mutation frequencies, suggesting a correlation with the initial stages

of tumor development (Figure 9B). Notably, patients classified as

high-risk demonstrate lower TMB levels (Figure 9C) and

significantly reduced survival rates (Figure 9D). A detailed

subgroup analysis was conducted to further delineate the

relationship among TMB levels, risk scores, and patient prognosis.

This analysis indicated that patients with elevated TMB levels

coupled with low-risk scores manifest the highest survival rates,

whereas those with reduced TMB levels and high-risk scores

experience the lowest survival rates (Figure 9E). These findings

underscore the critical role of TMB and risk scores in prognostic

assessments and support their potential utility as clinical

prognostic biomarkers.
3.9 Immune evasion and
immunoinfiltration

The cohort classified as high-risk is characterized by an increased

TIDE score, indicative of an enhanced ability for immune evasion

(Figure 10A). Analysis of immunotherapy responses shows that

responders have significantly lower TIDE scores compared to non-

responders (p < 0.001). Within the low-risk group, it is projected that

52% might benefit from immunotherapy, in stark contrast to only

22% in the high-risk group (Figure 10B). This disparity suggests a

diminished immunotherapeutic response in the high-risk group. The

ROC curve analysis confirms that the model is capable of effectively

predicting immunotherapy responses and immune evasion in UCEC

patients (Supplementary Figure S3).

In the immune cell differential analysis (Figure 10C),

macrophages M2 are significantly more prevalent in the high-risk

group, potentially facilitating tumor growth by secreting

immunosuppressive cytokines, such as IL-10 and TGF-b, which
inhibit T cell activity. Moreover, both resting and activated mast cells

are found in greater abundance in the high-risk group, with activated

mast cells possibly altering the tumor microenvironment and

promoting immune evasion through the release of pro-

inflammatory factors. In the immune-related functional analysis

(Figure 10D), the high-risk group exhibits elevated scores for

activated dendritic cells and Type I interferon response, suggesting
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increased inflammation and antiviral immunity, potentially

accompanied by immune dysregulation. Conversely, the low-risk

group displays elevated scores for HLA-related gene expression and

T cell co-stimulation, indicating superior antigen-presentation

capability and T cell activation, which contribute to a more robust

anti-tumor immune response. These observations highlight a trend

towards immunosuppression and inflammation in the high-risk

group’s immune microenvironment, whereas the low-risk group

demonstrates more effective anti-tumor immune characteristics.
3.10 Screening potential anticancer drugs

We conducted a comparative analysis of IC50 concentrations

for various anticancer agents among patient cohorts stratified by

risk levels. The findings indicated that the IC50 values for

Dactolisib, Luminespib, Camptothecin, and Gemcitabine were

significantly lower in the high-risk group (p < 0.001), suggesting

enhanced drug sensitivity in patients with elevated risk scores

(Figures 11A–D). In contrast, the IC50 values for WEHI-539,

Dasatinib, BI-2536, and Sepantronium bromide demonstrated

significant reductions in the low-risk group (p < 0.001),

indicating higher efficacy in these patients (Figures 11E–H).

These observations suggest that patients classified within high-

and low-risk categories of UCEC might realize substantial clinical

benefits from these targeted therapies.
3.11 Expression validation of core
prognostic PCD-DEGs

To substantiate the mRNA expression of pivotal genes, biopsy

samples were collected from 20 UCEC patients and 20 control

subjects. RT-qPCR analysis revealed that the mRNA levels of SRPX

were decreased in the UCEC samples relative to the controls,

whereas the levels of ATP6V1C2 and NT5E were elevated

(Figures 12A–C). Further validation of these expression trends

within our model involved examining GEO datasets pertinent to

endometrial cancer (e.g., GSE17025). The analysis confirmed

significant differential expression of SRPX and NT5E between

normal and cancerous tissues, although ATP6V1C2 did not

exhibit notable differences (Supplementary Figure S4).
4 Discussion

Recent research has suggested that PCD is critical in developing,

advancing, and managing UCEC. To be specific, some studies have

reported that the dysregulated expression of apoptosis-related genes,

including BAX and BCL2, is significantly linked to immune evasion

and aberrant proliferation in UCEC (15, 16). The excessive

expression of the ferroptosis regulator GPX4 is crucial in the

advancement of UCEC and resistance to chemotherapy (17, 18).

The unusual expression of PCD-associated genes significantly

affects the apoptosis, proliferation, and drug resistance properties
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of tumor cells. Thus, incorporating PCD-related genes into clinical

prognostic models for UCEC provides insights into the tumor’s

biological mechanisms and plays a crucial role in identifying novel

therapeutic targets.

UCEC patients were classified into two cluster subtypes, C1 and

C2, in accordance with the expression profile of PCD-DEGs. The

C2 subtype exhibited higher tumor purity and immune
Frontiers in Immunology 14
suppression, suggesting that genes associated with the C2 subtype

may be associated with an immunosuppressive microenvironment.

Moreover, tumor cells in the C2 subtype may possess greater

invasiveness. Using WGCNA, the module genes most strongly

associated with the C2 subtype were identified for subsequent

analyses. This approach helps elucidate the immunosuppressive

mechanisms and poor prognostic characteristics of the C2 subtype.
FIGURE 9

(A, B) Comparison of mutation frequencies and types between high- and low-risk groups based on risk scores. (C) Comparison of tumor
mutationburden (log2-transformed) between low-risk and high-risk groups.(D, E) Kaplan-Meier survival curves stratified by tumor mutation burde
and risk groups.
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Furthermore, it is crucial in optimizing clinical prediction models

and identifying novel therapeutic targets.

As high-throughput sequencing technologies continue to

develop, the generation of large-scale biological data has provided

abundant resources for cancer research. Notably, traditional

bioinformatics methods have certain limitations when dealing

with complex multidimensional data. Machine learning (ML)

techniques exhibit exceptional capabilities in pattern recognition

and dimensionality reduction. Thus, these techniques can offer new
Frontiers in Immunology 15
pathways for uncovering cancer biology characteristics. ML has

shown significant potential, particularly in elucidating tumor

molecular mechanisms, identifying prognostic biomarkers, and

enabling personalized treatment strategies (19, 20). In recent

years, ML techniques have been widely applied in breast cancer,

lung cancer, and gastric cancer for gene feature selection and multi-

omics data integration, effectively improving the accuracy of disease

prediction models (21–23). Therefore, applying ML to the screening

and dimensionality reduction of endometrial cancer-related genes
FIGURE 10

(A) Comparing TlDE scores between high- and low-risk groups. (B) The proportion of responders and non-responders in high- and low-risk groups
based on TIDE scores. (C) Differential analysis of immune cells. (D) Functional analysis of immune cells. *, ** , and *** , means p-values less than
0.05, 0.01, and 0.001, respectively.
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can enhance the efficiency of core gene identification. Furthermore,

it can also provide important molecular targets for clinical practice.

This study utilized five advanced machine learning techniques

that were employed to screen and reduce the dimensionality of

PCD-related prognostic genes, aiming to identify core prognostic

genes. Among these methods, the Boruta Algorithm is a feature

selection method that relies on the random forest algorithm. It

identifies features that significantly affect model performance by

evaluating gene importance scores (24). The XGBoost algorithm is

an efficient gradient-boosting decision tree method. It excels at

handling nonlinear data and complex feature interactions. Thus,

it is suitable for high-dimensional datasets (25). The Random

Forest algorithm constructs multiple decision trees and uses a

voting mechanism, providing robust feature selection capabilities

(26). The SVM-RFE algorithm is an iterative feature reduction

method that effectively removes redundant genes, improving model

simplicity (27). The GMM algorithm is an unsupervised
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probabilistic model that identifies key features by uncovering

latent distribution patterns within the data (28). Through cross-

validation using these five algorithms, three core prognostic PCD-

DEGs—SRPX, NT5E, and ATP6V1C2—were ultimately identified.

SRPX, also referred to as SRPX1 (29), ETX1 (30), and DRS (31),

functions as a tumor suppressor gene and was initially recognized for

its role as an inhibitor of v-src transformation. SRPX interacts with

the apoptosis-inducing protein ASY/Nogo-B/RTN-xS in the

endoplasmic reticulum, promoting apoptosis through endoplasmic

reticulum (ER) stress-mediated signaling pathways. This process

includes the sequential activation of caspase-12, caspase-9, and

caspase-3 (31). Previous research has established that SRPX

expression is significantly downregulated in various cancers,

including those of the lung, prostate, colon, and ovary, likely due to

epigenetic modifications such as DNA methylation, or the activation

of oncogenes like ras and src (32–34). In cases of UCEC, dysregulated

apoptosis is a characteristic feature, with tumor cells circumventing
FIGURE 11

Identification of sensitivity drugs for high- and low-risk groups through differential analysis of IC50. (A) Dactolisib. (B) Gemcitabine. (C) Camptothecin.
(D) Luminespib. (E) Sepantronium bromide. (F) Dasatinib. (G) BI-2536. (H)WEHI-539.
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ER stress and suppressing pro-apoptotic signals to gain survival

advantages. ER stress markers, including GRP78 and CHOP, are

aberrantly expressed in UCEC, further impairing apoptotic signaling

and facilitating tumor progression (35–37). Given the pivotal role of

SRPX in regulating ER stress, its downregulation in UCEC likely

plays a significant role in inhibiting these pro-apoptotic pathways,

thereby contributing to tumor development and progression. Future

research should aim to elucidate the molecular mechanisms

underlying SRPX’s function in UCEC, particularly its interactions

with ER stress markers, and assess its potential as a diagnostic

biomarker and therapeutic target.

ATP6V1C2, a critical subunit of the V-ATPase complex, has

increasingly been recognized for its potential role in tumorigenesis

and progression. The V-ATPase complex is pivotal in regulating

both intracellular and extracellular pH balance by facilitating

transmembrane proton transport, thereby promoting the

acidification of the TME. This acidification enhances tumor cell

invasiveness and increases their metastatic potential (38). In colorectal

adenocarcinoma, elevated expression of ATP6V1C2 correlates with a

poor prognosis, potentially via the activation of the Wnt signaling

pathway and the facilitation of epithelial-mesenchymal transition

(39). Similarly, in ovarian cancer, ATP6V1B1 has been implicated

in modulating tumor progression and chemotherapy resistance

through the mTOR/autophagy pathway (40). In esophageal

squamous cell carcinoma, an increased ATP6V1C1 to ATP6V1C2

ratio, reflecting the upregulation of ATP6V1C1 and downregulation

of ATP6V1C2, has been identified as a distinctive molecular

characteristic of the disease (41). Notably, the C2a isoform of

ATP6V1C2 possesses unique protein-binding sites that may

regulate V-ATPase activity via post-translational modifications

and interactions with the cytoskeleton and signaling pathways

(41). Moreover, other V-ATPase subunits, such as ATP6V0C,

have been found to influence tumor invasiveness by modulating

the activation of matrix metalloproteinases (42). Current studies

suggest that ATP6V1C2 may regulate the functions of the V-

ATPase complex and indirectly participate in critical biological

processes such as TME acidification, the Wnt signaling pathway,

and the mTOR/autophagy pathway. These pathways are vital in

influencing tumor cell proliferation, invasion, and resistance to

drugs. However, direct evidence linking ATP6V1C2 to these effects

in UCEC has not yet been established, necessitating further
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investigative and experimental validation of its biological functions

and molecular mechanisms.

NT5E, commonly known as CD73, primarily mediates the

regulation of the adenosine signaling pathway through the

conversion of AMP into adenosine (43). In most solid tumors,

CD73 catalyzes this conversion, activating A2A and A2B receptors,

which suppress the functions of T cells and NK cells, thereby

facilitating immune evasion (44, 45). Contrarily, in endometrial

cancer, an absence of CD73 is closely associated with increased

tumor invasiveness and a poorer prognosis (46). CD73 helps

anchor b-catenin to the cell membrane via the A1 adenosine

receptor signaling pathway, limiting its nuclear translocation and

transcriptional activity, thus inhibiting tumor-related gene

expression. Conversely, the loss of CD73 leads to b-catenin nuclear

translocation, activation of TCF/LEF transcription factors, and

enhanced tumor progression (47). The absence of CD73 also

induces alterations in the expression of zinc finger proteins and

non-coding RNAs, exacerbating tumor invasiveness (47).

Furthermore, CD73 maintains epithelial cell adhesion integrity

through interactions with TGF-b1; however, its loss transforms

TGF-b1 from a tumor suppressor into a tumor promoter,

augmenting tumor cell proliferation and migration (46). Clinically,

CD73 is considered a potential therapeutic target across various

cancers, with the combination of CD73 inhibitors and immune

checkpoint inhibitors significantly boosting antitumor efficacy (48,

49). Although CD73 has been validated as an effective prognostic

biomarker in numerous cancers, its specific role in endometrial

cancer remains to be elucidated, particularly its molecular

mechanisms in tumor immune regulation and metastasis, and its

potential for personalized therapeutic approaches.

This study represents the first to develop a comprehensive multi-

gene prognostic model utilizing PCD-related genes—SRPX,

ATP6V1C2, and NT5E. This model significantly enhances our

understanding of the molecular mechanisms implicated in UCEC.

The prognostic model, based on these genes, exhibits superior

predictive accuracy and clinical utility, as evidenced by the ROC

curve and survival analyses of high- and low-risk groups. The

integration of the model’s risk score with clustering subtypes

underscores its robust stratification capability, highlighting the

pivotal roles of SRPX, ATP6V1C2, and NT5E in the molecular

subtyping and prognostic forecasting of UCEC. Furthermore, the
FIGURE 12

The mRNA expression validation between control and UCEC tissues by RT-qPCR. (A) ATP6V1C2. (B) NT5E. (C) SRPX.
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addition of the risk score to clinical variables in constructing the

nomogram has enhanced the model’s interpretability and

applicability in clinical settings.

The analysis of TMB and immune escape indicates that

individuals in the high-risk category exhibit a reduced frequency of

gene mutations, fewer types of mutations, lower TMB levels, and

elevated TIDE scores, which correlate with less effective immune

treatment responses. These characteristics suggest that the tumor

biology of the high-risk group is relatively homogeneous, lacking

diversity and adaptability. We hypothesize that low TMBmay lead to

insufficient antigen stimulation by the immune system, which in turn

gives the tumor an advantage in immune evasion and growth,

leading to a reduced response to immune therapy and ultimately

affecting patient survival, consistent with existing studies (50, 51).

Besides, the increased TIDE score further supports this notion,

suggesting a stronger immunosuppressive microenvironment in the

high-risk group. The above-mentioned findings emphasize the

importance of the risk score model as a predictive indicator for

immune therapy response, aiding in the identification of patients

who may benefit from immunotherapy. By optimizing treatment

strategies, the risk score provides scientific evidence for regulating the

tumor immune microenvironment. Moreover, it guides clinical

practice to improve patient treatment outcomes. In conclusion, our

research provides fresh perspectives on how tumor mutation traits

relate to immune therapy responses, laying a foundation for

future personalized treatment strategies. Immune infiltration

analysis indicates that the immune microenvironment in the high-

risk group tends toward immunosuppression and an inflammatory

state, while the low-risk group exhibits more effective anti-tumor

immune characteristics. Subsequent research should investigate these

findings through single-cell sequencing and functional experiments.

We performed a drug sensitivity analysis to improve the

model’s applicability in clinical settings. Drugs selected from the

high-risk group, including Dactolisib, Gemcitabine, Camptothecin,

and Luminespib, exhibited strong inhibitory effects on tumor cells.

Dactolisib, a PI3K/mTOR inhibitor, significantly suppressed

tumor cell proliferation (52). Gemcitabine, a broad-spectrum

chemotherapy agent, inhibits DNA synthesis and effectively kills

rapidly proliferating tumor cells (53). Camptothecin inhibits

topoisomerase I, directly causing DNA damage, and demonstrates

potent anti-tumor activity (54). Luminespib inhibits HSP90

function, thereby affecting the stability of various tumor-related

proteins and exhibiting strong anti-tumor activity (55). Drugs

selected from the low-risk group, such as Dasatinib, Sepantronium

bromide, BI-2536, and WEHI-539, are considered relatively mild.

Compared to broad-spectrum chemotherapy drugs, these agents

generally exhibit lower toxicity and side effects, and demonstrate

good tolerance in clinical applications (56–59). For instance,

Dasatinib primarily targets specific tumor markers, with relatively

mild side effects, making it suitable for patients with a lower tumor

burden (57). These characteristics render them a more appropriate

treatment option for the low-risk patient cohort. The analysis of

drug sensitivity revealed notable variations in the responses of high-

risk and low-risk groups to chemotherapy agents. This finding not
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only validates the clinical applicability of the ATP6V1C2, SRPX, and

NT5E gene model but also reinforces its importance as a theoretical

foundation for advancing precision medicine. Developing

personalized chemotherapy regimens for high-risk and low-risk

patients, combined with targeted or immune therapies, may

further enhance treatment efficacy and improve patient prognosis.

This study established a prognostic model for UCEC based on

ATP6V1C2, SRPX, and NT5E. It exhibited robust predictive

performance and potential for clinical implementation. The

expression levels of these core genes can be determined using RT-

qPCR or RNA-seq technology, which facilitates the calculation of

risk scores to categorize patients into high- or low-risk groups.

Patients classified as high-risk are recommended for chemotherapy

(e.g., Dactolisib, Gemcitabine) or combined targeted therapy,

whereas low-risk patients may benefit from targeted drugs with

fewer side effects (e.g., Dasatinib or BI-2536) to optimize therapeutic

outcomes. RT-qPCR is advantageous due to its low cost and rapid

processing, making it suitable for clinical applications, whereas

RNA-seq offers a comprehensive molecular profile, beneficial for

complex cases. Despite its clinical utility, the model faces challenges

in standardizing detection methods, ensuring sample quality,

conducting multicenter validations, and managing costs. To

address these challenges, it is imperative to establish standardized

protocols, optimize sample processing, and perform multicenter

validations to enhance the model’s clinical applicability. Moreover,

patient compliance and the dynamic nature of gene expression

require further exploration. Future research should concentrate on

elucidating the molecular mechanisms underlying the core genes

and refining the model to better meet clinical needs, thereby

supporting precision medicine for UCEC patients.

In recent investigations concerning PCD and UCEC, Meng et al.

identified a dozen PCD-related genes across 14 distinct PCD

patterns, subsequently developing a prognostic model to examine

the impact of PCD scores on patient outcomes (60). Similarly, Xiong

et al. employed the LASSO machine learning technique on a dataset

of 200 PCD-related genes, selecting 11 significant genes to

construct a prognostic model for UCEC. Their analysis extended

to exploring the correlations among PCD genes, immune

infiltration, and drug sensitivity (61). Compared to these studies,

our research demonstrates several key innovations and advantages.

First, we integrated 18 PCD patterns encompassing 1,548 PCD-

related genes, representing a nearly eightfold increase compared to

existing studies. This expansion offers a more comprehensive

understanding of the molecular landscape of PCD in UCEC.

Second, we introduced five advanced machine learning algorithms

and employed cross-validation to select core genes, effectively

mitigating biases associated with reliance on a single algorithm

and ensuring robust and reliable results. Third, we identified novel

core genes—NT5E, SRPX, and ATP6V1C2—that have rarely been

reported in UCEC research. This marks the first recognition of

these genes as potential prognostic biomarkers, highlighting their

significant clinical research value. Fourth, we extended our analysis

beyond prognostic modeling to investigate TMB and immune

escape mechanisms. This provides insights into immunotherapy
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responsiveness and lays a theoretical foundation for personalized

treatment strategies. Finally, addressing the lack of experimental

validation in previous studies, we validated the expression levels of

core genes using RT-qPCR experiments on clinical samples,

significantly enhancing the credibility and translational potential

of our findings. Collectively, these innovations not only underscore

the strengths of our study but also provide a more comprehensive

and clinically relevant framework for understanding PCD in UCEC.

Future investigations could further explore the underlying

mechanisms of these core genes to facilitate their application in

precision medicine for UCEC.

In the RT-qPCR experimental validation, we observed a

divergence in the expression trend of NT5E when compared to

the results obtained from the TCGA-UCEC dataset. Specifically,

while NT5E was found to be downregulated in the TCGA-UCEC

dataset, it appeared upregulated in our RT-qPCR validation. To

elucidate this inconsistency, it is pertinent to note that previous

research has indicated that the expression of NT5E may vary

depending on the stage of the disease. In early-stage endometrial

cancer, TGF-b1 has been shown to upregulate NT5E expression,

which contributes to the maintenance of epithelial cell integrity and

thus inhibits tumor progression. Conversely, as the tumor becomes

more invasive, there is a marked reduction in NT5E expression in

cases exhibiting deep invasion at stage I or in more advanced stages

of endometrial cancer (46). In our study, the majority of patients in

the TCGA-UCEC dataset were classified at stage IB or higher,

whereas the samples used for the RT-qPCR experiments

predominantly consisted of stage IA patients. This disparity in

staging likely accounts for the observed discrepancies in NT5E

expression results. Although a stratified analysis of the TCGA-

UCEC data has not yet been conducted in this study, based on the

existing literature and data, we postulate that NT5E expression may

undergo dynamic changes correlating with the progression of

UCEC: higher levels of expression are likely in early-stage tumors

(e.g., stage IA) but tend to decrease as the disease progresses to more

invasive stages (e.g., stage IB or higher). Consequently, the

predominance of late-stage patients in the TCGA dataset might

lead to an overall trend of NT5E downregulation, whereas the RT-

qPCR validation, focusing on early-stage patients, may detect an

upregulation of NT5E expression. This underscores the importance

of considering tumor stage when evaluating NT5E expression. In

future research, we aim to stratify the TCGA-UCEC data to examine

NT5E expression across different stages and subtypes, and to expand

RT-qPCR experiments to encompass a broader range of UCEC

patients at varying stages. Additionally, we plan to investigate NT5E

expression in specific cell types within the tumor microenvironment

to enhance our understanding of its role in UCEC progression.

These endeavors will elucidate the dynamic expression patterns of

NT5E and fortify its potential as a prognostic biomarker.

In the external validation set, ATP6V1C2 did not exhibit

significant differences in expression between the normal and

cancer groups. This inconsistency could be ascribed to variations

in sample origin, the technical platforms employed, or tumor

heterogeneity within the dataset. Nonetheless, ATP6V1C2
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demonstrated significant differential expression in the TCGA

dataset and was further validated through RT-qPCR experiments,

reinforcing its role as a core gene in the model. Although results

from a single dataset may have limitations, the overall integrity of

this study remains robust. Future research will concentrate on

multicenter validation to enhance the generalizability of the model.

In conclusion, the prognostic model based on ATP6V1C2,

SRPX, and NT5E demonstrates substantial predictive ability and

potential for clinical application. By integrating molecular, immune,

clinical features, and drug sensitivity, this model provides a

scientific foundation for precise stratification management and

personalized treatment for patients. However, the model requires

further refinement, particularly in elucidating the underlying

biological mechanisms of ATP6V1C2, SRPX, and NT5E to better

comprehend their roles in tumor progression and patient prognosis.

Multi-center and multi-platform validations are crucial to verify the

robustness and generalizability of the model, ensuring its

applicability across diverse populations and clinical settings.

Additionally, future research should focus on assessing the

model’s utility in clinical decision-making through prospective

clinical trials and dynamic monitoring of tumor biology.

Addressing these aspects will enhance the model’s reliability and

pave the way for its practical application in precision oncology.
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