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Exhaled breath analysis with the
use of an electronic nose to
predict response to immune
checkpoint inhibitors in
patients with metastatic
melanoma: melaNose trial
Brigit van Dijk1, Ivonne J. H. Schoenaker2,
Astrid A. M. van der Veldt1,3 and Jan Willem B. de Groot2*

1Department of Medical Oncology, Erasmus Medical Center Medical Center (MC),
Rotterdam, Netherlands, 2Isala Oncology Center, Isala, Zwolle, Netherlands, 3Department of
Radiology and Nuclear Medicine, Erasmus Medical Center (MC), Rotterdam, Netherlands
Introduction: Immune checkpoint inhibitors (ICIs) have significantly improved

the overall survival for patients with different solid tumors. However, there is an

urgent need for predictive biomarkers to identify patients with metastatic

melanoma who do not benefit from treatment with ICIs, to prevent

unnecessary immune related adverse events (irAEs). Electronic noses (eNoses)

showed promising results in the detection of cancer as well as the prediction of

response outcome in patients with cancer. In this feasibility study, we aimed to

investigate whether the breath pattern measured using eNose can be used as a

simple biomarker to predict clinical benefit to first-line treatment with ICIs in

patients with metastatic melanoma.

Methods: In this prospective, observational single-center feasibility study,

patients with metastatic melanoma performed a breath test using Aeonose™

before start of first-line treatment with ICIs. The detected exhaled breath pattern

of volatile organic compounds (VOC) was used for machine learning in a training

set to develop a model to identify patients who do not benefit from treatment

with ICIs. Lack of clinical benefit was defined as progressive disease according to

best tumor response using RECIST v1.1. Primary outcome measures were

sensitivity, specificity and accuracy.

Results: The eNose showed a distinct breath pattern between patients with and

without clinical benefit from ICIs. To identify patients who do not benefit from

first-line ICIs treatment, breath pattern analysis using the eNose resulted in a

sensitivity of 88%, specificity of 79%, and accuracy of 85%.

Conclusion: Exhaled breath analysis using eNose can identify patients with

metastatic melanoma who will not benefit from first-line treatment with ICIs

and guide treatment strategies. When validated in an external cohort, eNose

could be a useful tool to select these patients for alternative treatment strategies

in clinical practice.
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Introduction

Immune checkpoint inhibitors (ICIs) have significantly

improved the overall survival for patients with different solid

tumors (1). In patients with metastatic melanoma, the ten-year

overall survival rates improved up to 43% after combination

therapy with anti-programmed death (PD-1) and anti-cytotoxic T

lymphocytes-associated antigen 4 (CTLA-4) directed antibodies (2).

However, a substantial number of patients do not benefit from

treatment with ICIs. Furthermore, ICIs are associated with severe,

irreversible and potentially life-threatening immune related adverse

events (irAEs) (3). Therefore, there is an urgent need for biomarkers

that can early predict outcome after treatment with ICIs.

In patients with metastatic melanoma, predictive biomarkers

could individualize the treatment with ICIs and select patients for

different treatment strategies, including escalation from

monotherapy to combination therapy or switching to targeted

therapy. Predictive biomarkers could be useful to identify patients

who will have clinical benefit from treatment with ICIs and,

consequently, prevent unnecessary irAEs in patients who will

likely not benefit. To date, however, reliable biomarkers to predict

the efficacy of ICIs in patients with metastatic melanoma

are lacking.

In patients with metastatic melanoma who are treated with ICIs,

metabolic processes are activated as a result of tumor response to

ICIs or disease progression. In tissue, metabolic processes produce

volatile products that are released into the blood circulation and,

once these reach the lungs, are passed on to the respiratory tract (4).

Exhaled breath is mainly composed of inorganic compounds, such

as nitrogen, oxygen, carbon dioxide, water vapor and inert gases. In

addition, exhaled breath contains thousands of VOCs, which reflect

pathological processes and generate unique patterns as a result of

inflammation, oxidative stress or carcinogenesis (5).

From the exhaled breath, a breath pattern can be analyzed using

an electronic nose (eNose). To analyze gaseous samples, these

devices use pattern recognit ion, whereas tradi t ional

methodologies, including gas chromatography and mass

spectrometry (GC-MS), are used to identify specific molecules in

exhaled breath instead of a unique composite breath signal (6). In

previous studies, eNoses were used to detect different diseases such

as multiple sclerosis, inflammatory bowel disease, chronic kidney

disease and solid tumors (7). eNoses are non-invasive and portable

devices, designed to replicate human olfaction with the aim to

capture a distinctive breath pattern and are promising for disease

detection and even prediction of outcome after treatment. In

oncology, eNoses showed promising results for the detection of

colorectal cancer (8) and lung cancer (9–13), but also the

differentiation between melanomatous lesions and benign skin
02
lesions (14). In addition, a proof of concept study showed that an

eNose can predict patients with advanced non-small-cell lung

cancer (NSCLC) who will have an objective tumor response to

treatment with anti-PD-1 antibodies (15). Since the number of

patients who are treated with ICIs for solid tumors is increasing

(16), the potential broader application of an eNose to predict

outcome of treatment with ICIs seems promising.

In the current feasibility study, we aimed to investigate whether

an eNose can be used as a simple and early biomarker to predict

clinical benefit to first-line treatment with ICIs in patients with

irresectable and metastatic melanoma. Early identification of

patients who do not benefit from ICIs is needed since this could

guide clinicians to start alternative, potentially more effective

treatment strategies and prevent irAEs in patients who will not

benefit from ICIs.
Methods

Study design

In this prospective, observational single-center feasibility study,

we evaluated the predictive performance of the eNose in patients

with advanced melanoma who were treated with first-line ICIs,

either anti-PD1 monotherapy (nivolumab or pembrolizumab) or

combination of anti-CTLA4 (ipilimumab) plus nivolumab. The

study was performed in the Isala Oncology Center, Zwolle, the

Netherlands. The Medical Ethics Review Committee (METC) of

Isala has declared that the study protocol is not considered subject

to the Medical Research Involving Human Subjects Act (WMO) in

compliance with Dutch regulations. Informed consent was obtained

from all participants before inclusion in the study.
Study population

Patients were eligible when they were over the age of 18 years and

planned to start with first-line treatment with anti-PD1 based

treatment (nivolumab, pembrolizumab or ipilimumab plus

nivolumab) for irresectable stage IIIC or stage IV cutaneousmelanoma.

Previous systemic treatment was only allowed in the (neo)

adjuvant setting. All included patients were treatment naïve for

the treatment of advanced melanoma and received first-line

systemic treatment with ICIs after the breath test.

Patients with secondary malignancies were excluded, except for

completely resected basal cell and squamous cell skin cancers, any

completely resected carcinoma in situ and malignancies that had

been treated with curative intent at least two years before inclusion.
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Patients who were deemed physically incapable of performing the

breath analysis were not included.
Clinical data collection

Each patient was assigned an anonymous study number.

Clinical characteristics were collected and included patient

characteristics (age, gender, performance status), disease

characteristics (primary melanoma, metastatic sites, lactate

dehydrogenase (LDH) at baseline and treatment characteristics

(administered ICIs, treatment duration and total number of

cycles). In addition, potential exogenous and endogenous patient-

related factors that could influence the VOC composition were

collected. Exogenous factors included smoking, medication,

alcohol, specific diet or fasting time, use of vitamins or herbal

supplements (17). Endogenous factors included body mass index

(BMI) and specific comorbidities, such as hypertension, diabetes

mellitus, myocardial infarction, heart failure, asthma, chronic

obstructive pulmonary disease (COPD), kidney failure, thyroid

dysfunction, dementia, Parkinson’s disease, cerebrovascular

accident (CVA) or infections (17).

Tumor response to treatment with ICIs was prospectively

evaluated using a diagnostic computed tomography (CT) and in

case of brain metastasis, MRI was also required for response

evaluation. A low-dose CT of an acquired 18FDG-PET/CT was

allowed if sufficient target lesions were measurable for response

evaluation according to Response Evaluation Criteria In Solid

Tumors version 1.1 (RECIST v.1.1) (18).
Aeonose™ measurements

Prior to the first administration of ICIs, a breathing test was

performed. A disposable mouthpiece with carbon filters was used to

prevent contamination with environmental VOCs. Patients needed

to wear a nose clip during their five minutes of breathing into the

device. In order to avoid a confounding factor related to the device,

all breath tests were performed on the same device. All breath tests

were executed by healthcare practitioners with experience in

performing breathing tests. During the test, patients were asked

to report the extent of experienced discomfort (fear, pain and/or

dyspnea) between 0 and 10.

Exhaled breath was analyzed using the CE-certified Aeonose™

device from the eNose Company, Zutphen, the Netherlands. The

Aeonose™ is an eNose device incorporating three metal-oxide

sensors and records VOC patterns in exhaled breath. The VOCs

in the exhaled breath provoke oxidation or reduction, called redox

reaction, on the surface of three sensors that subsequently change

the measured conductivity due to temperature profiles. The

Aeonose™ uses thermal cycling, which generates specific and

unique VOC pattern by recording the passing of this thermal

cycle with each sensor. The Aeonose™ is equipped with a pump

with two inlets. One inlet is connected to an active carbon filter to

provide a baseline measurement free from environmental influence,
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while the second inlet is attached to the breathing tube. These inlets

are controlled by a solenoid switching between the two different

inlets, facilitating an active airflow across the sensors. The metal-

oxide sensors are periodically heated in cycles of 20 seconds in

64 steps.

The records of the Aeonose™ measurements were transferred

to a secure server by means of an iOS device using the

AeonoseDatacollector app afterwards.
Endpoints

Clinical benefit was the primary outcome measure and was

determined according to best tumor response using RECIST v1.1

(18). Results of patients with complete response (CR), partial

response (PR) and stable disease (SD) as best tumor response

were classified as positive (clinical benefit from ICIs), whereas the

results of patients with progressive disease (PD) were classified as

negative (without clinical benefit). For the performance of eNose to

predict best tumor response, sensitivity, specificity, accuracy and

positive and negative predicted value were determined.
Data analysis

Aeonose™ data processing and analyses have been described

previously in detail (19). In summary, the procedure included

preprocessing, data compression, model selection and cross

validation. Preprocessing was done by normalizing the data to

correct for aging of the sensors over time. The obtained data of

the exhaled breath were analyzed using the Aethena software

package (19). During an exhaled-breath measurement (Figure 1),

64 x 36 data points were recorded for each of the three sensors. For

every measurement, the generated data consisted of a matrix with

thousands of records. To avoid overfitting and remove redundant

information and noise, the acquired data were compressed using

singular value decomposition (SVD). Thereafter, since the records

were too large for classification, the generated vectors were used to

train a Random Forest classifier.

Machine learning was used to develop a model to identify

patients with and without clinical benefit after treatment with ICIs

according to the exhaled VOC patterns. The model was developed

using a training set. A train-test split ratio of 80–20% was applied.

To train the developed machine-learning model, 10-fold cross-

validation was used where the model used 90% of the data for

training and the remaining 10% of the data for prediction. The

cross-validation was repeated with another 90% of the data, until

the model had predicted all patients once. Using this technique

ensures the data is not based on coincidences or overfitting data, but

on actual differences between patients. Analyses yielded values

between –1 and 1 per subject, where a value of +1 represents a

perfect prediction, 0 no better than random prediction and -1

indicates total disagreement between prediction and observation.

After bootstrapping the performance of each model, the optimal

model was chosen (Figure 1). A cut-off value for the probability of
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clinical benefit to ICI was determined for the training set to obtain

the optimal discrimination performance, as deemed relevant for

clinical practice.
Statistical analysis

Demographic data and baseline characteristics were

summarized using means and standard deviations for normally

distributed continuous data, or median and interquartile ranges for

non-normally distributed data. Characteristics of patients with and

without clinical benefit were compared using the independent-

sample t-test for continuous variables and the Fisher’s Exact Test

for dichotomous variables. The potential factors that might have an

influence on the VOC composition were compared between the

true positive and false positive predicted outcomes (clinical benefit

versus without clinical benefit) using the Fisher’s Exact Test.

Primary parameters of diagnostic relevance included sensitivity,

specificity, accuracy, positive predictive value (PPV), negative

predictive value (NPV), and the area under the curve (AUC),

calculated with 95% CIs, of the receiver operating characteristics

curve (ROC-curve).

Although a sufficient sample size is required for correct

classification in a machine learning study, the exact sample size
Frontiers in Immunology 04
calculation is not reliable for such a pilot study. In a previous proof-

of-concept study with an eNose, 25 patients were required in each

study group (20–25). We determined the minimal sample size of

patients with (n=25) and without (n=25) clinical benefit from ICIs.

However, as the number of included patients increases, a more

stable and robust model can be developed. Given that the expected

response rate of combination therapy with ipilimumab plus

nivolumab is higher compared to monotherapy pembrolizumab

or nivolumab (58% versus 33-44%, respectively) (26–29), the final

sample size was set at 75 patients to ensure a sufficient number of

patients with and without clinical benefit from treatment with ICIs.

IBM SPSS Statistics version 24.0 was used to preform statistical

analysis. Baseline differences were considered statistically significant

with a p value < 0.05.
Results

Study population

Between December 2020 and March 2024, 73 patients were

included. The target number of 75 patients was not achieved,

because the trial had to be closed prematurely. The eNose

Company ceased their operations because of financial reasons in
FIGURE 1

Electronic nose (Aeonose™) technology and model development.
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the Netherlands. Eleven (15%) of 73 patients had to be excluded

from the analyses (Figure 2). Reasons for excluding patients from

the analyses were premature discontinuation of the breathing test

due to shortness of breath (n=5), non-melanoma related death

before response evaluation (n=2), temporarily device defect (n=2),

withdrawal of informed consent (n=1), and concurrent treatment

with BRAF/MEK inhibitors before the first response evaluation

(n=1). The five patients that were not able to complete the test were

nonsmokers; four patients experienced shortness of breath and were

not able to exhale for several seconds, one of them had very

impressive lung metastasis and one patient experienced anxiety.

Finally, a total of 62 patients could be included in the analyses.
Frontiers in Immunology 05
Baseline characteristics

The total included patients were divided into two groups:

patients with clinical benefit (n=43) or patients without clinical

benefit (n=19). Patient characteristics are described in Table 1.

Anti-PD1 monotherapy was prescribed in 45.2% of the included

patients and 54.8% received combination therapy with ICIs.

Pembrol izumab was the only anti-PD1 monotherapy

administered. According to RECIST v1.1, five (8%) patients had

CR, 21 (34%) patients PR, 17 (27%) patients SD and 19 (31%)

patients PD, resulting in 43 (69%) patients with clinical benefit and

19 (31%) patients without clinical benefit from treatment with ICIs.
FIGURE 2

Procedure of included patients.
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The median age of patients was 72.5 years (IQR 62.8-81.0) and

was not different between patients with and without clinical benefit.

As compared to patients with clinical benefit, patients without

clinical benefit had more frequently a significant poorer

performance status (p=0.009), an elevated LDH level [> upper

limit of normal (ULN), >250 U/L; p=0.042], and were more

frequently treated with the combination of ipilimumab plus

nivolumab (p=0.002).
Frontiers in Immunology 06
Tolerability of the test-procedure

After the breathing test using the eNose, patients who

completed the test were asked to indicate the extent of discomfort

(fear, pain and/or dyspnea) between 0 and 10 (0 indicating no

discomfort and 10 indicating maximal discomfort) they

experienced during the test. The median score was 2 (IQR 0-3).

Despite the fact that they were deemed capable of performing the

breathing test beforehand, five patients could not complete the test

due to shortness of breath and had to be excluded from the analysis.
Characteristics of potential factors that
may affect VOC composition

The endogenous and exogenous patient-related factors that

could potentially affect VOC composition are reported in Table 2.

The smoking status, use of supplements, diet, comorbidities and use

of specific medication that could potentially affect VOC

composition are reported in more detail in Figure 3.
Model performance

The scatter plot of the individual predictive values of the breath

test are shown in Figure 4. Using machine learning, the threshold

was set on -0.24. All breath tests with a predictive value of ≥-0.24

were classified as positive (clinical benefit), and those with a

predictive value of <-0.24 were classified as negative (without

clinical benefit).

In 38 of 43 (88.4%) patients with clinical benefit, the results of

the eNose were true positive, whereas the results of the eNose were

true negative in 15 of 19 (79%) patients without clinical benefit from
TABLE 2 Characteristics of potential influencing factors of
VOC composition.

Characteristics Total (n=62)

Endogenous factors

BMI, mean ± SD, kg/m2 26.02 ± 3.90

Specific comorbiditiesa 30 (48)

Infection 3 (5)

Exogenous factors

Smokinga 4 (7)

Alcohol use in generala 30 (49)

Alcohol use within last 24hrsa 16 (26)

Specific dieta 6 (10)

Last meal <3hrs 34 (55)

Use of supplementsa 27 (44)

Specific medicationb,c 25 (32)
BMI, Body Mass Index.
ahypertension, diabetes mellitus, myocardial infarction, heart failure, asthma, chronic
obstructive pulmonary disease (COPD), kidney failure, thyroid dysfunction, dementia,
Parkinson’s disease, cerebrovascular accident (CVA) or infections.
bmetformin, PPI, opioids, NSAID, inhalation steroids, antibiotics, dexamethasone, other.
cOne subject with missing data.
TABLE 1 Clinical characteristics of included patients.

Characteristics (n=62) Clinical benefit (n=43) Without clinical benefit (n=19) P value

Age, median in years (IQR) 72.5 (62.8-81.0) 70.0 (62.0-80.0) 73.0 (63.0-83.0) 0.745

Male, n (%) 32 (51.6) 25 (58.1) 7 (36.8) 0.434

WHO status, n (%) 0.009*

0 42 (67.7) 30 (69.8) 12 (63.2)

1 18 (29.0) 13 (30.2) 5 (26.3)

2 2 (3.2) 0 (0.0) 2 (10.5)

Increased LDHa, n (%) 21 (33.9) 12 (27.9) 9 (47.4) 0.042*

Brain metastasisb, n (%) 18 (29.0) 13 (30.2) 5 (26.3) 0.902

ICI treatment, n (%) 0.002*

Pembrolizumab 28 (45.2) 23 (82.1) 5 (17.9)

Ipilimumab plus nivolumab 34 (54.8) 20 (58.8) 14 (41.2)
LDH, lactate dehydrogenase.
a>ULN, >250 U/L.
bTwo subjects with missing data.
*significant.
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treatment with ICIs. A total of four patients had a false positive test

result and five patients had a false negative test result, ensuing in a

positive predictive value of 0.90 (0.76-0.97) and a negative

predictive value of 0.75 (0.51-0.90), respectively. To predict

clinical benefit to ICIs, the eNose had a sensitivity of 88%,

specificity of 79%, and accuracy of 85%. The Matthews

Correlation Coefficient was 0.66 and the area under the curve

(AUC) was 0.93 with the threshold of -0.24 (Figure 5).
Frontiers in Immunology 07
To compare the erroneously predicted (n=9) and correctly

predicted test results (n=53), we simplified all potential factors

that might affect the VOC composition into deviant or not deviant

(e.g. use of any specific medication). Both groups showed a median

of two potential factors that might affect the VOC composition and

there were no significant differences between both groups (p value =

0.650). No clear explanation was found for the falsely predicted

test results.
FIGURE 3

Pie charts of potential factors that may affect VOC composition, such as smoking status, supplements, diet, comorbidity and use of
specific medication.
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FIGURE 4

Scatterplot of the individual predictive values of the breath test with clinical benefit (green) and no clinical benefit from ICI (red) test results. The
threshold was set on -0.24 (dotted line). All breath tests with a predictive value of ≥-0.24 were classified as positive.
FIGURE 5

Receiver operating characteristic (ROC)-curve, representing the diagnostic value of the eNose to discriminate between breath samples from patients
with and without clinical benefit from treatment with ICIs for metastatic melanoma.
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Discussion

In this prospective feasibility study, eNose was used to assess the

breath pattern of exhaled breath in patients with irresectable and

metastatic melanoma prior to the start of ICIs. The eNose showed a

distinct breath pattern between patients with and without clinical

benefit from ICIs. To predict patients who do not benefit from first-

line treatment with ICIs, breath pattern analysis using the eNose

resulted in a sensitivity of 88%, specificity of 79%, and accuracy of 85%.

Although lifestyle factors are known to affect fecal VOCs, as

measured by an eNose (17), the effects of lifestyle factors in breath

VOCs have not been investigated. Therefore, in the current study, a

number of endogenous and exogenous patient-related factors were

collected. Most patients had some of these factors present, but the

presence of specific patient-related factors did not explain the false

positive and false negative test results. These findings are confirmed

by another study which showed that breath patterns that are

associated with tumor response are not influenced by baseline

characteristics and lifestyle of patients (15). Besides, the patient

population in this study is a good representation of the real-world

population and increases external validity.

Different eNoses have been developed and investigated to detect

and evaluate treatment in several solid tumors. However, only two

studies investigated eNoses in patients who were treated with ICIs.

Another eNose (SpiroNose) was investigated in a prospective trial to

identify patients with advanced NSCLC who had a tumor response to

anti-PD-1 monotherapy after 6 weeks of follow up (15). Their study

showed that the most sensitive sensor to methane and natural gas

consistently had the largest contribution to the predictive

performance of the developed model in patients who were treated

with ICIs. To the best of our knowledge, the current study is the first

to investigate an eNose for the prediction of clinical benefit from

treatment with ICIs in patients with metastatic melanoma.

In patients with cancer, more than 130 studies reported changes

of the VOCs, which were most frequently analyzed in exhaled

breath (30). In most studies investigating exhaled breath, several

compounds were detected, including alcohols, ketones, aldehydes

and hydrocarbons. Analyses of exhaled breath using eNoses (e.g.

Aeonose™, SpiroNose) are based on the analyses of patterns of the

exhaled breath which generates signals from several sensors. Since

these eNose techniques use pattern recognition, VOCs cannot be

identified on a molecular level. Therefore, further research is needed

to determine which specific VOCs contribute to discriminate

between responders and non-responders to learn about specific

metabolic pathways that are associated with response.

The biology of melanoma produces specific VOCs that may

contribute to identify the breath pattern in patients with metastatic

melanoma. Here, we discuss two potential sources of specific VOCs

production, i.e. an increased lactate production and melanoma

specific VOCs. First, in metastatic melanoma, a high tumor load

and poor risk disease are associated with elevated levels of LDH

(31). Patients with high serum LDH levels also have elevated levels

of LDH isoenzymes, which drive pyruvate conversion to lactate

(32). Therefore, it is conceivable that patients with elevated LDH

levels produce lactate accompanies by a change in VOCs. Another
Frontiers in Immunology 09
contribution to an increased production of lactate is the most

common change of metabolism in cancer cells, called the

Warburg effect or ‘aerobic glycolysis’ (33). This change in

metabolism (in normal atmospheric oxygen conditions), causes

glucose to be largely fermentative with an increased production of

lactate, as a potential source of the changed breath pattern.

Second, specific VOCs of melanoma have been identified in

cultured human melanocyte cells and in tissue of primary melanoma

(34). In vitro, a relative abundance of 3-methylbutyric acid (isovaleric

acid) in cultured human melanoma cells was measured as compared

to normal melanocytes (34). In addition, a differential expression of

three VOCs (4-methyl decane, dodecane and undecane) was detected

in both fresh and frozen melanoma (35).

The main limitation of this study is the small sample size since

the target number of 75 included patients was not achieved due to

unforeseen circumstances regarding the activities of the involved

The eNose Company in the Netherlands. In addition, the number of

patients with clinical benefit from ICIs was relatively high, resulting

in relatively underrepresentation of non-responders in this study.

However, patients from a real-world population were included in

this study, which increases external validity of eNose. With

chronobiology getting more attention these days, it would be

interesting to know if different time schedules during the day

could lead to different outcomes. Previous research showed that

the breath pattern has a circadian pattern with particularly changes

in lower-airway resistance across the night (36), but to the best of

our knowledge the impact of chronobiology on the exhaled breath

pattern of volatile organic compounds has not (yet) been

investigated. In the current study, the breath test was performed

during day time, prior to the first administration of the ICIs. We

cannot exclude that preforming the exhaled breath test at different

times of the day could have affected the results, potentially leading

to false positives and/or false negatives results.

The current practice in the Netherlands is that patients with

unfavorable prognostic factors, such as the presence of brain

metastases and elevated LDH levels, are mainly treated with

combination therapy of ipilimumab plus nivolumab, whereas

patients without these unfavorable prognostic factors are treated

with anti-PD1 monotherapy (26). The clinical benefit rate of

patients who were treated with anti-PD1 monotherapy in this

study was noticeably high (82%) as compared to the literature,

where a clinical benefit rate of 54.1% was reported in patients who

were treated with nivolumab in a randomized clinical trial (2). On

the other hand, our clinical benefit rate was lower in patients who

were treated with ipilimumab plus nivolumab compared to the best

overall response rate in the literature (58.8% versus 70.4%) (2). This

is probably explained by an effective selection of patients for

treatment with anti-PD1 monotherapy. Another limitation was

the absence of an external validation cohort, but this was

addressed using cross-validation.

This feasibility study showed differences in the exhaled VOC

patterns in patients with metastatic melanoma with and without

clinical benefit from treatment with ICIs. The eNose is a non-

invasive, easy-to-use, fast, portable and a relatively inexpensive tool,

that has been studied in several contexts with promising results (7).
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The results of the current study are encouraging for future clinical

trials, but external validation is required with a preferably enlarged

cohort. If further research confirms this performance for the

prediction of clinical benefit from first-line treatment with ICIs in

patients with metastatic melanoma, it can prevent unnecessary irAEs

and reduce healthcare costs in the patients without clinical benefit. In

addition, it could guide clinicians to start alternative treatment

strategies in an early setting, such as targeted or adoptive cell therapy.
Conclusion

The eNose seems to be able to identify the patients with

metastatic melanoma who do not benefit from anti-PD1 based

treatment strategies with ICIs. If further research validates its

performance, an eNose can be used to early identify patients who

need alternative, potentially more effective treatment strategies to

improve their survival and prevent unnecessary irAEs.
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