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Redefining CRP in tissue injury
and repair: more than an acute
pro-inflammatory mediator
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Most early studies investigating the role of C-reactive protein (CRP) in tissue

damage determined it supported pro-hemostatic and pro-inflammatory

activities. However, these findings were not universal, as other data suggested

CRP inhibited these same processes. A potential explanation for these disparate

observations finally emerged with the recognition that CRP undergoes context-

dependent conformational changes in vivo, and each of its three isoforms –

pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric

CRP (mCRP) – have different effects. In this review, we consider this new

paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair

process. Indeed, a growing body of evidence points toward the involvement of

CRP not just in hemostasis and inflammation, but also in the resolution of

inflammation and in tissue regeneration. Additionally, we briefly discuss the

shortcomings of the currently available diagnostic tests for CRP and highlight

the need for change in how CRP is currently utilized in clinical practice.
KEYWORDS
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Introduction

The tissue repair process begins immediately after tissue damage and lasts for several

weeks (1, 2). During this time, a series of biological processes occur that collectively staunch

the injury (hemostasis) (3), stymie any invading pathogens (inflammation), (4), limit

further damage (inflammation resolution and debris removal), (4, 5), and regenerate the

tissue (angiogenesis, cellular proliferation, and tissue remodeling), (1, 4). While they

overlap in practice, the various phases of the recovery process occur at roughly the

following time frames: hemostasis, the first minutes to hours; inflammation, the first 72

hours; inflammation resolution, from 72 hours to ~1 week; and tissue regeneration and

remodeling, ~1 week to ~1 month (1, 2).
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For many years, C-Reactive Protein (CRP) was considered an

important effector for only the earliest portions of the tissue repair

response. This conclusion was driven by most biochemical and

functional investigations of CRP determining that it potently

supported pro-hemostatic and pro-inflammatory activities (6, 7).

There was also a temporal logic to that argument, as plasma CRP

concentrations increase up to 1000-fold during the pro-

inflammatory phase and begin decreasing in tandem with the

overall switch to inflammation resolution (8, 9). However, not all

data were consistent with that interpretation. Some studies reported

results in which CRP exhibited anti-inflammatory properties

(10–15). Moreover, the 19-hour half-life of CRP means its levels

are elevated above baseline even during the early tissue regeneration

phase – a perplexing observation for something with strong pro-

inflammatory potential (16). For a long time, these findings were

difficult to reconcile and, to some extent, have limited the usefulness

of CRP as a clinical tool and target.

Progress toward resolving these conflicting observations finally

arrived with the recognition that CRP, in serum a very stable homo-

pentameric macromolecule, undergoes conformational changes and

dissociation at sites of inflammation in vivo (17). There had been in

vitro observations to suggest a modified, monomeric version of CRP

(mCRP) was the primary pro-inflammatory form of CRP (18–21),

but evidence for the existence of mCRP in vivo had been difficult to

obtain. The reasons for its delayed identification in vivo were multi-

fold: for example, dissociation in vitro requires non-physiological

amounts of heat, urea, or acidic environments (22–25); the

exceptional insolubility of mCRP means it is only membrane-

associated and/or -embedded in vivo (26–29); and, is

inconsistently detectable on microvesicles in the serum of

individuals without ongoing inflammatory disorders (27, 30–34).

Nevertheless, improvements in techniques and reagents finally led

to observations of pCRP dissociation in vivo in a rat model of

myocardial infarction (17), its presence on circulating microvesicles

in humans with inflammatory disorders (26, 27, 32–37), and its

presence in human myocardial tissue and burn wounds (17, 38). A

transitory intermediate form of CRP called pCRP* (pCRP star; also

known as mCRPm) was identified shortly thereafter in which pCRP

has undergone some conformational changes and exhibits some

pro-inflammatory effector functions but has nevertheless not yet

dissociated (39–42).

In this review, we distinguish between the three CRP isoforms

and re-evaluate each of their potential roles in the tissue repair

process. Specific isoforms of CRP will be described where possible,

though many studies took place at a time where the need to

differentiate the contributions of each isoform was not known or

the ability to differentiate the isoforms was not readily possible. For

these studies, the concentrations of CRP (low [i.e., non-saturating

concentrations], pCRP*/mCRP; high, pCRP) and the time frame

(≥0.5-2 hours, pCRP*/mCRP) in which results were observed

provide potential ways to differentiate whether the reported

effects were due to pCRP or pCRP*/mCRP (11, 39, 43).

Nevertheless, there are inherent limitations to the discussion.

Lastly, we briefly discuss the need for how CRP is used clinically

to evolve in the wake of this new understanding of CRP bioactivity.
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CRP isoforms and their bioavailability

Structure and general functions

Pentameric CRP is a compact, non-glycosylated, homo-

polymeric molecule with a central void and radial symmetry (44).

Each of the five monomers contains 206 amino acids and a single

intramolecular disulfide bond, whereas the intermolecular

interactions holding the pentamer together are non-covalent

(44, 45). All monomers are oriented in the same direction,

allowing pCRP to be conceptualized as two-sided (46). On one

side is the binding face (or B-face), whose primary role is to bind

phosphocholine (PC) (46–48). Though ubiquitously present, PC is

normally buried within membranes and inaccessible to CRP.

However, changes in membrane architecture due to lipid

modification by enzymes (e.g., phospholipase A2) or reactive

oxygen species (ROS) causes PC to ‘pop up’ and expose itself for

CRP recognition (49–51). Upon exposure, it becomes a damage-

associated molecular pattern (DAMP), an endogenous molecule

containing a conserved motif the immune system utilizes to

recognize abnormal situations and initiate an inflammatory

response (52). Phosphocholine may also be found on Gram-

positive bacterial cell walls (53), making it both a DAMP and

pathogen-associated molecular pattern (PAMP; i.e., a conserved

motif present on non-self organisms) (52). Interactions between

CRP and PC are calcium-dependent and rely on CRP residues Phe-

66 and Glu-81 (46). Notably, other DAMPs (e.g., oxidized low-

density lipoprotein, histones, and fibronectin) and PAMPs (e.g.,

phosphoethanolamine [found on Gram-negative bacteria]) have

also been identified as ligands for the CRP binding face (54–58).

On the reverse side of pCRP is the effector face, (also called the

activating face or A-face), (46, 59). The most well-recognized binding

partners for this half are the globular head of complement protein

C1q and various Fc receptors (e.g., FcgRI [CD64], FcgRIIa [CD32a],
FcgRIII [CD16], FcaRI [CD89]), (60, 61). Several other receptor

binding partners have been suggested, including toll-like receptor 4

(TLR4), GPIba, GPIIb/IIIa, CD31, CD36, integrin avb3, lectin-like
oxidized low-density lipoprotein receptor-1 (LOX-1), and receptor

activator of NF-kB ligand (62–70).While the binding site for C1q and

the Fc receptors all overlap, the individual amino acids in CRP that

facilitate binding to each ligand are distinct, even among the Fcg
receptors (FcgRs) (71). Importantly, three-dimensional models of the

interaction between CRP and C1q suggest part of the interaction

domain is inaccessible in the pentameric conformation (amino acids

199-206) (59). This implies pCRP is not inherently pro-

inflammatory, instead requiring a conformational change into an

alternative isoform for those activities to manifest. This is supported

by the results of a clinical trial in which pCRP injected into healthy

individuals did not elicit an inflammatory response (72). By

extension, these results suggest environmental cues associated with

ongoing inflammation are necessary to trigger conformational

changes in pCRP, and the pro-inflammatory versions of CRP are

amplifiers of inflammation rather than instigators. Unmodified pCRP

may even have regulatory or anti-inflammatory activities, given in

vitro observations of inhibitory effects on platelet, neutrophil,
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macrophage, dendritic cell (DC), and fibroblast activities in a dose-

dependent manner (10–14, 73–78).

The pCRP* isoform is presumed to be an intermediate step

between pCRP and its dissociation into mCRP (6, 39). Structurally,

the pentameric assembly remains, but it has ‘relaxed’ sufficiently

that the pro-inflammatory neoepitope (the aforementioned residues

199-206) is fully exposed (40, 41). At present, circumstances in vivo

in which pCRP converts to pCRP* include ligand binding at regions

of high membrane curvature and mildly acidic microenvironments

such as those present at sites of inflammation (40, 79–82). Curved

surfaces make PC more available, make hydrophobic regions of

membrane lipids accessible, and expose binding sites on

membrane-anchored proteins (81–83). Ultimately, the

intermolecular interactions that hold pCRP subunits together

undergo rearrangement resulting in exposure of the neoepitope

(41). Alternatively (or additionally), acidic conditions can cause the

protonation of histidine residues nearby the disulfide bonds within

each CRP molecule (84). This alters the intramolecular hydrogen

bonding network, causing structural changes in pCRP that again

result in the exposure of the neoepitope.

Functionally, pCRP* stimulates the immune response by

activating the classical complement pathway (39, 41). Interactions

between CRP and C1q are primarily electrostatic in nature and

demonstrate high avidity, making pCRP* the most potent CRP

isoform at activating complement (41, 85). Of note, CRP-induced

activation of the complement cascade biases it toward opsonization/

phagocytosis as opposed to activation of the membrane attack

complex (MAC)/cellular lysis (86, 87), thereby preventing

excessive inflammation (87). Investigation of pCRP* activities

beyond complement activation are limited due to its recent

identification and the current limitations in experimentally

distinguishing it from other isoforms. However, microvesicle-

associated pCRP* can increase adhesion molecule expression on

endothelial cells (41), and the overlap of the complement and FcgR
binding sites implies pCRP* likely also stimulates FcgRs (71).

The terminal form of CRP is its monomeric form, mCRP.

Dissolution of the pentamer occurs after newly exposed

hydrophobic residues in pCRP* form interactions with the

hydrophobic tails of lipids in membranes or with insoluble

extracellular plaques in tissues (17, 22, 88). Thus, mCRP is found in

vivo embedded within cellular membranes, associated with circulating

microvesicles, or sequestered with insoluble components of the

extracellular matrix (ECM) (17, 26–28, 38, 88, 89). The amino acids

key to membrane-entry (residues 35-47, VCLHFYTELSSTR)

preferentially interact with cholesterol, biasing mCRP membrane

localization to lipid raft domains (28). Exposure of the cholesterol

binding site is supported by reactive oxygen species (ROS) generated at

sites of inflammation, presumably because the oxidative modifications

to pCRP/pCRP* loosen its pentameric structure (79, 90). However,

optimal exposure requires reduction of the intrachain disulfide bond,

something it is primed to do in acidic conditions (79, 84, 89–91).

Pro-inflammatory activities have been described for mCRP in

numerous settings and are discussed in detail in several recent

reviews (6, 7, 92–99). In brief, mCRP promotes cellular chemotaxis

and adhesion (14, 17, 18, 21, 68, 89, 100–105), augments platelet

activation and aggregation (65, 70, 90, 106–108), and stimulates
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cytokine, ROS, and nitric oxide (NO) production (28, 38, 73, 79, 89,

102, 109–112). These effects are partially mediated through

interactions with FcgRs, but not completely, as blockade of FcgRs
does not completely abrogate the effects of mCRP (19–21, 113).

Notably, mCRP potency is greater when the intramolecular

disulfide bond in mCRP has been reduced (110). Monomeric

CRP also retains the ability to interact with C1q and additionally

interacts with negative regulators of complement activity (Factor H

and C4-binding protein) (61, 114).

In summary, the long-appreciated role of CRP as an immune

stimulant is now known to be attributable to pCRP* and mCRP,

whereas pCRP is non- or anti-inflammatory. However, the

bioactivities of CRP are not limited to impacting the

inflammatory response. As we will shortly discuss, evidence has

been accumulating to suggest CRP augments each additional phase

of the tissue repair response: hemostasis, immune resolution, and

tissue regeneration (Figure 1; Table 1).
CRP bioavailability

In the absence of ongoing inflammation, the steady-state

concentration of pCRP in blood is <1 to 3 mg/L (115–117).

Circulating pCRP is produced by hepatocytes, though

extrahepatic macrophages, lymphocytes, endothelial cells,

adipocytes, and smooth muscle cells can express CRP (98, 118). It

is unknown if non-hepatic CRP is secreted as pCRP or acts as an

autocrine factor. Information on the steady-state levels of pCRP*

and mCRP in the blood is limited. The pro-inflammatory CRP

isoforms have been detected on microvesicles, but most efforts to

quantify pCRP*/mCRP concentrations in the serum of individuals

without inflammatory disorders place its concentration from

undetectable (<1) to 25 ng/mL (26, 27, 33–36, 119–123). Outside

of the blood, immunohistochemical staining finds pCRP*/mCRP to

be present in arterial plaques and areas surrounding recently

damaged vascular tissue (89, 99, 103, 124–126).

During the early stages of an inflammatory response,

hepatocytes respond to elevated levels of interleukin (IL-6) and

IL-1b by releasing pre-existing stores of pCRP and dramatically

increasing production of new pCRP (127–129). Serum

concentrations of pCRP can rise to over 500 mg/L within the first

72 hours of the response (9, 130). Similarly, microvesicle-associated

CRP levels significantly increase during acute inflammatory events

(34, 120, 123). Both pCRP and mCRP levels remain elevated in

chronic conditions (27, 31–33, 35–37, 119, 121), with multiple

reports finding a direct correlation between mCRP levels and

disease severity (31, 32, 35–37, 131). This was in contrast to

pCRP concentrations, which were not consistently predictive.

Relatedly, there is disagreement about whether a correlation exists

between mCRP and pCRP concentrations. Among 12 studies

reporting correlations included in this review, nine found a lack

of significant correlation (27, 30–34, 36, 37, 120–122, 131, 132).

Once secreted, the half-life of pCRP is ~19 hours (16, 117). Its

rate of disappearance is independent of its plasma concentration

(16), making the measured pCRP concentrations a reflection of

recent synthesis rates and not changes in consumption/excretion.
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Due to the large amount produced and its relatively slow half-life, it

is common to see elevated concentrations of circulating pCRP for

more than a week after an inciting inflammatory event (133). The

rate at which pCRP converts to pCRP* in vivo and the length of

time before pCRP* dissociates into mCRP are unknown. In vitro

observations found the neoepitope could be detected 30 minutes

after treating cells with pCRP and that evidence of pentamer

dissociation appeared approximately 90 minutes later (39). This

timeframe roughly agrees with a second study that reported the

appearance of mCRP at approximately 2 hours post application of

pCRP (43). Information on the half-life of mCRP in humans is

unavailable, both in the circulation and in tissues. However, data

from mouse models revealed mCRP could be detected in tissues for

three times longer than pCRP in the blood (134).
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Hemostasis

When bleeding occurs, multiple intertwined processes are

initiated to close the wounded blood vessel (3, 135, 136). One

process begins when platelets adhere to collagen in the exposed

ECM. Binding activates the platelets, which recruit additional

platelets that together coalesce into a primary plug. Secretions

from activated platelets also provide a means for the activation a

second clotting process, the intrinsic coagulation cascade. Platelet-

derived polyphosphates provide a binding surface for coagulation

Factor XII. Binding activates Factor XII and, after several additional

steps, culminates in the activation of Factor X. In a third process, the
FIGURE 1

Reported and putative roles for the CRP isoforms on activities associated with (A) hemostasis, (B) inflammation, (C) the resolution of inflammation,
and (D) tissue repair and regeneration. CRP, C-reactive protein; DAMPs, damage-associated molecular patterns ECM, extracellular matrix; eNOS,
endothelial nitric oxide synthase; ICAM, intercellular adhesion molecule; IL-6, interleukin-6; MCP-1, monocyte chemoattractant protein-1; mCRP,
monomeric CRP; MV, microvesicle; NET, neutrophil extracellular trap; pCRP, pentameric CRP; pCRP*, pCRP star; ROS, reactive oxygen species; TF,
tissue factor; TNF-a; tumor necrosis-factor-alpha; VCAM, vascular cell adhesion molecule; VEGFR2, vascular endothelial growth factor receptor 2.
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extrinsic coagulation pathway, circulating coagulation Factor VII

complexes with Tissue Factor (TF) expressed on the surface of

smooth muscle cells and fibroblasts and this complex also activates

Factor X. Activated Factor X combines with and activates Factor V,

forming prothrombinase; prothrombinase converts prothrombin
Frontiers in Immunology 05
into thrombin; thrombin converts fibrinogen into fibrin; and Factor

XIII, also activated by thrombin, covalently crosslinks fibrin

molecules together. This fibrin mesh combines with the platelet

plug to form a stable patch over the wound and prevent further

blood loss (3, 135).
TABLE 1 Reported pro-inflammatory and pro-resolution activities of CRP by cell type.

Cell Type Reported effects of CRP

Platelets

Pro-inflammatory • Promotes adhesion and aggregation (65, 70, 90, 112, 138)
• Enhances signaling through major platelet adhesion receptor GPIIb/IIIa and boosts responsiveness to other stimuli (65, 106)
• Stimulates release of Factor V, vWF, Fibronectin, and high mobility group box 1 (65, 107, 108)

Pro-resolution • Stimulates release of VEGF and PDGF (65, 108)
• Inhibits aggregation (78)

Endothelial cells

Pro-inflammatory • Upregulates VCAM-1 and ICAM-1 expression (21, 28, 101, 105, 108, 141, 142, 152)
• Promotes IL-6, CXCL8, and MCP-1 production and release (21, 28, 156, 159)
• Increases surface expression of Tissue Factor (43, 145–148)
• Inhibits endothelial nitric oxide synthase (143, 144)
• Disrupts endothelial barrier integrity (105, 182, 193)

Pro-resolution • Induces proliferation and tube formation (124, 145, 183, 194)
• Upregulates VEGF receptor 2 and Notch3 expression (183, 187)
• Regulates VE-cadherin and N-cadherin expression (187)
• Upregulates thrombomodulin and downregulates vWF (142)

Smooth muscle cells

Pro-inflammatory • Increases surface expression of Tissue Factor (145, 149)
• Stimulates expression of IL-6, MCP-1, and TNF-a (63, 167, 195)
• Upregulates matrix metalloproteinase expression (196, 197)

Pro-resolution • Promotes migration and proliferation (145, 198)

Neutrophils

Pro-inflammatory • Upregulates CD11b/CD18 expression and promotes infiltration (18, 104)
• Increases nitric oxide and reactive oxygen species production (20, 102)
• Enhances phagocytosis of debris (11, 113)
• Promotes NET formation (107, 152, 162)
• Delays apoptosis (19)

Pro-resolution • Inhibits neutrophil chemotaxis and adhesion (11, 12)

Monocytes/Macrophages

Pro-inflammatory • Promotes differentiation into M1 macrophages and foam cells (111, 125, 169)
• Augments expression of TNF-a, IL-1b, IL-6, and CXCL8 (15, 112, 152, 168)
• Upregulates CD11b/CD18 expression and promotes recruitment (14, 68, 89, 101, 112, 147)
• Increases nitric oxide and reactive oxygen species production (38, 73, 109, 152)
• Enhances clearance of necrotic and apoptotic cells (38)

Pro-resolution • Upregulates expression of LXRa (15)
• Induces VEGF and IL-10 expression (176, 188)
• Suppresses nitric oxide production (73)
• Prevents conversion to foam cells and facilitates M2 polarization (77, 170)

Conventional dendritic cells

Pro-inflammatory • Promotes maturation of immature dendritic cells (199, 200)
• Increases production of TNF-a and IL-12 (199)

Pro-resolution • Suppresses stimulation of T cells (75, 201, 202)
• Inhibits IFNa production in response to TLR ligands (13)
• Drives formation of myeloid-derived suppressor cells (74)

(Continued)
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Foremost among the ways CRP boosts hemostatic processes is by

enhancing platelet activation and aggregation (65, 70, 90, 106–108,

112, 137, 138). Platelets provide optimal conditions for the conversion

of pCRP into pCRP* and mCRP. More specifically, the membranes of

activated platelets contain an abundance of oxidized phospholipids

and undergo membrane ‘ruffling,’ thus providing both exposed PC

and regions of increased membrane curvature (89, 136). Indeed, half

of all platelet-derived microvesicles have neoepitope-expressing CRP

associated with them in people with an acute inflammatory condition

(34), suggesting a close relationship between the two effectors in vivo.

Functionally, mCRP enhances signaling through the major platelet

adhesion receptor GPIIb/IIIa and boosts the responsiveness of

platelets to other stimuli, such as adenosine diphosphate,

epinephrine, and thrombin (65, 70, 90, 106). Platelets stimulated

with mCRP release more of their granules (65, 108), which contain

a variety of pro-coagulation factors (e.g., Factor V, von Willebrand

Factor, fibronectin) and pro-repair factors (e.g., platelet-derived

growth factor [PDGF], insulin-like growth factor-1, transforming

growth factor [TGF]-b) (136). Increased secretion of High Mobility

Group Box 1 (HMGB1) by platelets stimulated with mCRP has also

been reported, which has downstream effects on neutrophils (107).

The platelet scavenger receptor CD36 and adhesion receptor GPIIb/

IIIa have been implicated in mediating some of the effects mCRP

exerts on platelets (65, 70). Additionally, we note that platelets express

ample amounts of FcgRIIa and TLR4, and there is substantial overlap

between the effects observed with mCRP and those with FcgRIIa and
TLR4 stimulation (139, 140).

Platelet activities are also affected by interactions between CRP

and endothelial cells. Like with platelets, CRP can bind and dissociate

on the membranes of endothelial cells at sites of inflammation (21).

Stimulation of endothelial cells with mCRP leads to the upregulation

of vascular cell adhesion molecule (VCAM)-1 and intercellular

adhesion molecule (ICAM-1) (21, 28, 105, 108, 141, 142), the latter

of which is a ligand for platelet GPIIb/IIIa (136). Thus, mCRP

reinforces a major GPIIb/IIIa adhesion and signaling axis for

platelets from both ends. CRP also supports platelet adhesion by

inhibiting the expression and activity of endothelial nitric oxide

synthase (eNOS) in endothelial cells (143, 144). Under normal

conditions, endothelial cells produce nitric oxide to prevent
Frontiers in Immunology 06
unnecessary platelet aggregation and degranulation (3). By

inhibiting eNOS, mCRP facilitates platelet adhesion and aggregation.

While its effects are less direct, CRP also impacts the extrinsic

and intrinsic coagulation cascades. Endothelial cells and smooth

muscle cells exposed to CRP upregulate TF (43, 145–149), thereby

boosting the extrinsic coagulation pathway. Support for the

intrinsic pathway stems from CRP-mediated activation of

neutrophils. Neutrophils that swarm to the injury site generate

structures called Neutrophil Extracellular Traps (NETs) (150).

While the primary role of NETs is the capture of pathogenic

organisms and cellular debris, they include polyanions that can

also activate Factor XII (151). Among its numerous effects on

neutrophils, mCRP has recently been suggested to promote NET

formation, though this may be through an indirect mechanism in

which neutrophils increase NETs in response to the HMGB1

secreted by platelets (107, 152, 162).
Inflammation

The local immune response to tissue injury begins with the

release of pro-inflammatory cytokines and DAMPs from damaged

and dead cells (153–155). Nearby epithelial cells, endothelial cells,

fibroblasts, mast cells, and tissue-resident macrophages respond to

and amplify these signals to recruit nearby and circulating immune

cells. For example, endothelial cells release IL-1b, IL-6, CXCL8 (i.e.,
IL-8), tumor necrosis factor (TNF)-a, and monocyte chemotactic

protein (MCP)-1 to activate and attract immune cells and

upregulate integrins like ICAM-1 and VCAM-1 to facilitate

leukocyte adhesion to the site of damage (105, 108, 153–156).

Aspects of the hemostasis response also contribute, with

molecules such as thrombin stimulating cytokine secretion from

local cells and platelets releasing pro-inflammatory chemokines and

cytokines (136, 157).

A variety of innate immune cells, including neutrophils,

monocytes, invariant NKT cells, mast cells, and plasmacytoid

dendritic cells, respond to those pro-inflammatory cues and

populate the wound site (154). Among them, neutrophils are the

major effector for the first 24-48 hours post-injury, representing
TABLE 1 Continued

Cell Type Reported effects of CRP

Plasmacytoid dendritic cells

Pro-resolution • Suppresses IFNa production to autoantigens (203)

Mast cells

Pro-inflammatory • Promotes histamine release (204)

Fibroblasts

Pro-inflammatory • Increases IL-6, CXCL8, and VCAM-1 production (205, 206)

Pro-resolution • Inhibits migration (76)
CRP, C-reactive protein; CXCL8, C-X-C motif ligand 8; HMGB1, high mobility group box 1; ICAM-1, intercellular adhesion molecule-1; IFNa, interferon alpha; LXRa, liver X receptor alpha;
MCP-1, monocyte chemoattractant protein-1; NET, neutrophil extracellular trap; PDGF, platelet-derived growth factor; TLR, toll-like receptor; TNF-a, tumor necrosis factor alpha; VCAM-1,
vascular cell adhesion molecule-1; VEGF, vascular endothelial growth factor; vWF, von Willebrand Factor.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1564607
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Potempa et al. 10.3389/fimmu.2025.1564607
more than 50% of infiltrating leukocytes (4, 154). In general, their

major activities are the secretion of antimicrobial substances (e.g.,

ROS) and the formation of NETs to capture and kill any potential

pathogens. They also have a role as phagocytes, albeit only for

smaller pieces of debris (150). After neutrophils, monocytes are the

other major immune cell during the early response, peaking in

number with a slight delay relative to neutrophils at approximately

72 hours post-injury (4). Responding monocytes initially

differentiate into pro-inflammatory (i.e., M1) macrophages,

release various pro-inflammatory cytokines and antimicrobial

substances, and phagocytose pathogens, tissue debris, and

apoptotic cells (4, 158). The specific contributions of the other

cell types have been investigated more sparsely, though they are no

less important to the timely repair of tissue damage (1).

The role of CRP in augmenting the acute inflammatory

response is extensive and has been discussed at length by multiple

other recent reviews (6, 7, 92–99). For brevity, we will briefly

describe only a few key connections between CRP and

neutrophils or monocytes/macrophages, and direct readers to the

other reviews for more detailed information.

There is ample evidence linking CRP to enhanced neutrophil

responses. First, CRP promotes neutrophil recruitment through its

effects on endothelial cells and platelets. As described above, pCRP

dissociates into mCRP on the surface of endothelial cells and

promotes their activation. In doing so, mCRP boosts endothelial

cell release of CXCL8 and upregulation of ICAM-1 (21, 28, 141, 159),

a potent neutrophil chemoattractant and key ligand for neutrophil

adhesion processes, respectively (4, 160). Similarly, CRP increases P-

selection expression on platelets (65, 78, 138), which has a key role in

neutrophil localization (21, 161). Neutrophils reciprocally upregulate

CD11b/CD18 (Mac-1) after stimulation with mCRP (18, 162). In

addition to its effects on neutrophil recruitment, stimulation of

neutrophils with mCRP increases NO production, enhances

phagocytosis of debris, delays their apoptosis, and has recently been

demonstrated to be a potent inducer of NET formation (11, 19, 20,

107, 113, 152, 162). Some effects are downstream of interactions

between mCRP and FcgRIIIb (19, 21), which is amply expressed on

the neutrophil surface (163), whereas other effects may be

downstream of FcaRI (164).
Monocyte and macrophage recruitment is similarly enhanced

by CRP through the upregulation of MCP-1 expression in

endothelial cells, and through the stimulation of receptors with

which CRP is known to engage (21, 159, 165, 166), such as FcgRI,
FcgRIIa, and toll-like receptor TLR4 (62, 63, 71, 167). Interactions

between mCRP and monocyte (FcgRs) promote monocyte

differentiation into M1 macrophages and contribute to the

cellular metabolic reprogramming necessary for macrophages to

perform their effector functions (17, 27, 111, 168–170). Cytokines

released by monocytes/macrophages whose secretion has been

augmented by mCRP include at least TNF-a, IL-1b, IL-6, and
CXCL8 (63, 111, 112, 167, 169). Other effects of stimulating

monocytes with mCRP include the upregulation of CD11b/CD18,

increased NO and ROS production, and enhanced clearance of

necrotic and apoptotic cells (14, 17, 73, 109, 111).
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Inflammation resolution

While inflammation is necessary for the elimination of

pathogens and clearance of cellular debris, prolonged

inflammation will stymie reparative activities (4). To prevent this,

there are numerous ‘built-in’ mechanisms to ensure a timely

resolution to inflammatory processes. For example, NETs catch

cytokines and chemokines produced during the initial response,

which results in their degradation by NET-associated proteases and

a reduction in further effector cell recruitment (171). Activated

neutrophils recruit monocytes and macrophages (172), and those

macrophages subsequently contribute to suppressing neutrophil

responses through efferocytosis and promoting neutrophil reverse

migration (173, 174). Efferocytosis simultaneously promotes the

conversion of M1macrophages to the pro-resolution M2 phenotype

that produce anti-inflammatory factors such as TGF-b and IL-10

(175). Overall, by approximately 72 hours post-injury, the

inflammatory response to tissue injury should be ending and a

pro-repair microenvironment forming.

There is evidence to suggest CRP has its own negative feedback

mechanism. As noted, circulating pCRP concentrations may increase

up to 1000-fold in the first 72 hours of an inflammatory response

(9, 130). Interestingly, several in vitro observations have found high

concentrations of pCRP to cause the opposite effects of pCRP*/mCRP

or outright suppressive activities (10–13, 73–75, 78, 170). For

instance, elevated pCRP concentration may help abate

inflammation by suppressing the differentiation of pro-

inflammatory DCs and driving the formation of myeloid-derived

suppressor cells and M2-type macrophages (13, 74, 75, 170, 176).

Moreover, whereas lower concentrations of CRP promote neutrophil

chemotaxis and adhesion, higher amounts inhibit those activities

(11, 12, 78, 177). At least for neutrophils, mCRP and pCRP may bind

different receptors (178), ostensibly providing a mechanistic basis for

these opposing effects. Notably, whereas pCRP is generally resistant

to proteolysis, mCRP is susceptible to degradation by neutrophil-

associated proteases and those peptides demonstrate dominant

negative-like activities in vitro (177, 179, 180). Thus, mCRP

binding sites may not be re-exposed after degradation of mCRP,

which would also shift the balance of CRP activities toward those

mediated by pCRP. Such mechanisms may contribute to the

enigmatic process of neutrophil reverse migration (173).

Elevated CRP concentrations may also help limit inflammation

by reducing and/or obscuring DAMPs. For example, CRP

neutralizes extracellular histones from inducing endothelial cell

cytotoxicity by outcompeting cell-associated binding partners that

facilitate histone uptake (54). Furthermore, CRP prevents the

activation of endothelial cells and macrophages by modified lipids

if allowed to complex with those lipids prior to being added to cell

cultures, suggesting a potential competitive inhibitory effect when in

excess (14, 77). Thus, we propose that upregulation of CRP may

serve as a mechanism by which an inflammatory response is

curtailed through use of CRP as an “antigen sink.” The role of

CRP as an opsonin of cellular debris is arguably also an anti-

inflammatory mechanism of action, given the interaction of CRP
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with inhibitors of the MAC results in the clearance of inflammatory

materials without inciting an inflammatory response (86). Higher

concentrations ostensibly facilitate greater clearance, especially as

the peak of CRP concentrations coincide with the peak of

monocyte/macrophage infiltration.

Altogether, these findings suggest the up to 1000-fold increase

in CRP concentration seen during the first 72 hours of a response

may constitute an anti-inflammatory process rather than one meant

to amplify inflammation. These anti-inflammatory effects may be

achieved through at least two mechanisms: saturation of mCRP

binding followed by the initiation of alternative anti-inflammatory

interactions, and hiding/eliminating DAMPs/PAMPs by acting as

an antigen sink. Further research into the anti-inflammatory

properties of CRP are needed, especially as there is some evidence

suggesting additional feedback mechanisms. For example,

stimulation of macrophages through FcgRI by CRP upregulates

expression of the inhibitory liver X receptor (LXR) alpha and

specific ligands may lead to differing pro- or anti-inflammatory

effects (15, 170, 176).
Tissue regeneration and remodeling

The tissue regeneration and remodeling phase includes its own

set of interdependent processes, which together account for the

growth of new blood vessels (i.e., angiogenesis), the deposition of

granulation tissue, the proliferation of parenchymal cells, and the

remodeling of the tissue into a stable long-term structure (1, 4).

Though conceptually these processes occur after hemostasis,

inflammation, and inflammation resolution, considerable

groundwork for them takes place during those earlier stages (4).

For example, platelets secrete many pro-angiogenic factors (e.g.,

PDGF, vascular endothelial growth factor [VEGF], and TGF-b),
stirring endothelial cells to proliferate and begin the formation of

new capillaries (181). Proteases released by neutrophils free VEGF

sequestered within the ECM and facilitate endothelial cell expansion

into the wound (160). Histamine and trypase released by mast cells

enhance fibroblast proliferation and the deposition of collagen (1, 4).

Macrophages consume dead vasculature and secrete wound healing

factors like arginase, TGF-b, VEGF, PDGF, and insulin-like growth

factor (158). Indeed, there is an ever-growing list of interactions

between the immune response to tissue damage and tissue regrowth.

Several observations now point toward mCRP being among the

list of immune mediators to enhance tissue regeneration. Most of that

evidence revolves around the effect of mCRP on neovascularization.

For one, mCRP colocalizes with a marker of angiogenesis (i.e.,

endoglin [CD105]) in stroke patients (124, 182), suggesting a

potential relationship in vivo. Results from in vitro wound healing

assays support this, as aortic endothelial cells treated with mCRP

exhibited greater vessel formation (124, 183). The upregulation of two

critical receptors for vessel development, VEGF receptor 2 and

Notch3, by endothelial cells after mCRP exposure offers a potential

mechanism for this observation (183–185). Moreover, angiopoietins

are upregulated downstream of Notch receptors and its production

enhanced by hypoxia-inducible factor (HIF)-1a (184). CRP has also
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been shown to stimulate HIF-1a in a pro-angiogenic capacity (186),

implying CRP both promotes Notch receptor expression and

enhances signaling downstream of those receptors. There is also

evidence to suggest mCRP contributes to both the formation and

stability of neo-vessels by variably promoting or downregulating the

expression of VE-cadherin and N-cadherin depending on co-

stimulatory signals (187). The enhanced expression of TF by

endothelial cells in the presence of mCRP adds another layer

(43, 145–149), as TF activation increases endothelial cells secretion

of CCL2, which recruits vascular smooth muscle cells that strengthen

vessel integrity (43). Lastly, there are also indirect effects stemming

from mCRP-mediated release of pro-angiogenic factors such as

VEGF and PDGF (183, 186, 188).

The effect of CRP on other aspects of tissue regeneration and

remodeling process has been investigated much more sparsely.

There are likely effects on granulation tissue formation, since CRP

has been reported to enhance the epithelial-to-mesenchymal

transition (91). Conversely, other work has shown CRP can

inhibit fibroblast migration (76), though this was again dose-

dependent and so may represent another concentration-

dependent negative feedback mechanism.
In the clinic

At present, the only diagnostic tests for CRP measures plasma

concentrations of the pCRP isoform (27). Clinicians have

traditionally used results of those tests to report the presence of

inflammation if the levels are above 10 mg/L (roughly 3- to 10-fold

above baseline). However, such individual measurements cannot

discern whether the inflammation is due to a chronic ongoing

inflammatory event or a recent acute inflammatory event that has

concluded. And because the amount of pCRP made varies from

event to event and person to person (189, 190), single

measurements are also unable to discern how long ago or how

severe such an acute event might have been. Therefore, given the

currently available diagnostic tests, we encourage physicians to

measure pCRP levels multiple times with the understanding that

its concentration should halve approximately every 19 hours

(16, 117, 189, 191), excluding any potential effects of changes in

treatment regimen. This minor change could at least assist

clinicians in diagnosing the nature of a condition as acute

or chronic.

Regardless, the more significant benefit to clinical practice

would be the development of a routine clinical method for

determining the abundance of the pro-inflammatory CRP

isoforms (i.e., pCRP* and mCRP), as advances in the CRP field

over the previous decade have confirmed these to be the potentially

immunopathogenic forms of CRP (6, 96, 99, 192). Unfortunately,

both the standard and high-sensitivity tests for pCRP are unable to

detect pCRP*/mCRP and, critically, most findings have found there

is no definitive correlation between serum concentrations of pCRP

and pCRP*/mCRP (27, 30–34, 36, 37, 120–122, 132). This means

there is no concrete means of discerning the amount of potentially

immunopathogenic CRP from current standard practices. Of note,
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this potential absence of a relationship between the different

isoforms may also explain the lack of agreement among studies

investigating whether baseline pCRP levels predict the incidence of

various cardiovascular conditions (6). There are putative

correlations between CRP-positive microparticles (which

ostensibly represents ligand-bound, neoepitope-exposed CRP)

and C1q-positive microparticles, suggesting there may yet be

surrogate methodologies in the absence of direct mechanisms; but

even these relationships may be condition-specific (119, 120).

Ultimately, it is imperative that routine, standardized assays are

developed for the specific detection of pCRP*/mCRP. Only then can

the relationship between CRP and underlying inflammatory

diseases be clearly elucidated.
Conclusion

The recognition that CRP undergoes context-dependent

conformational changes in vivo has helped resolve long-standing

contradictions in CRP research. Moreover, the distinct activities of

pCRP, pCRP*, and mCRP have revealed the existence of a much

more complex role for CRP in the biological response to tissue

damage. Not only does CRP promote early hemostatic and

inflammatory processes, but it also contributes to the resolution

of inflammation and to angiogenesis. Moving forward, more efforts

should be put toward defining the specific conditions in which each

isoform is abundant, including considerations for factors such as

the specific ligands available and cell receptor density. Toward that

end, the development of standardized assays capable of detecting

the pCRP* and mCRP isoforms is of paramount importance, as

neither the general nor high-sensitivity CRP assays currently

available have that ability. Such advances could also transform

CRP from a general inflammatory marker into a more precise

diagnostic tool, potentially enabling better monitoring of disease

progression and therapeutic responses across a range of

inflammatory conditions.
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