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Identification of the gene
signatures related to NK/T cell
communication to evaluate the
tumor microenvironment and
prognostic outcomes of patients
with prostate adenocarcinoma
Kun Zhang †, Huyang Xie †, Fan Zhao and Yeqing Huang*

Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
Background: Prostate adenocarcinoma (PRAD) is a leading cause of male

mortality, with NK/T cell communication being key areas of the research.

Methods: The Seurat package was utilized to normalize and reduce the

dimensionality of the single-cell data, and CellMarker 2.0 was employed for

cell annotation. CellChat was utilized to construct the ligand-receptor

interaction network of cell subsets. Differentially expressed genes (DEGs) were

filtered by the limma package. Univariate Cox and the LASSO regression in the

glmnet package were used to obtain biomarkers and develop a risk model. The

survminer package was used to calculate the optimal threshold for dividing

patients into high-risk and low-risk groups, and then Kaplan-Meier (KM) survival

analysis was performed. Single-sample GSEA (ssGSEA), TIMER, and ESTIMATE

packages were employed for immune infiltration analysis. Pathway analysis was

conducted for the low- and high-risk groups using GSEA. Immunotherapy

responses were evaluated by adopting TIDE method. Additional cellular

validation (quantitative real-time PCR, CCK-8, Transwell, and scratch assay)

was implemented to confirm the effects of feature genes on PRAD.

Results: Compared with the benign group, NK/T cells were the cell type with the

greatest changes in the tumor group, and their communication intensity was

relatively high among all cell types. A RiskScore model was constructed as

fol lows: 0:579*FOXS1   +   0:345*GPC6   +   0:385*ISYNA1   +   0:418*ITGAX  +  

0:792*MGAT4B  +  0:368*PRR7   +   0:458*REXO2. Analysis of the differences

between the two risk groups showed that the level of immune infiltration was

higher in the high-risk group, and it was significantly enriched in immune-

correlated pathways, while the low-risk group was mainly enriched in

metabolism-related pathways. TIDE analysis indicated that the high-risk group
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had higher immune escape potential. The cellular validation assays have revealed

the higher expression of seven biomarkers in PRAD groups. Further, ISYNA1

knockdown inhibited the proliferation, migration, and invasion ability of

PRAD cells.

Conclusion: The current research reveals key communication genes in PRAD,

offering new possibilities for the exploration of new therapeutic targets.
KEYWORDS

NK/T cell communication, tumor microenvironment, prostate cancer, immune escape,
machine learning
1 Introduction

Globally, prostate cancer (PCa) is a common cause of death

among men. Statistics show that in 2022, there were 1,466,680 new

PCa cases globally, accounting for 7.3% of new cancers and ranking

fourth (1). More than 95% of PCa cases are adenocarcinomas, with

the majority originating from acini and a minority originating from

ducts (2). Its incidence is closely related to location and age (3, 4). In

the early stage, prostate adenocarcinoma (PRAD) has relatively

mild symptoms, with the most common being dysuria and

increased frequency of urination (5). In the advanced stage,

PRAD may present with urinary retention and back pain (5).

Currently, the main treatment method for PCa is androgen

deprivation therapy, but it is difficult to completely cure

metastatic castration-resistant prostate cancer (mCRPC) caused

by cancer metastasis (6). The research on immunotherapy for

PRAD mainly focuses on Sipuleucel-T and monoclonal antibodies

(7), but experiments have found that their efficacy in PRAD patients

is not yet significant (8, 9). Given the long natural course of PRAD

and the relatively high mortality rate of moderate or high-risk local,

locally advanced or metastatic cancers (10), it is necessary to

establish a prognostic model related to PRAD, which helps in the

strat ified treatment of pat ients and the select ion of

medical regimens.

The single-cell RNA sequencing (scRNA-seq) technique has

offered unprecedented opportunities for studying intercellular

interactions within the tumor microenvironment (TME) in recent

years (11), particularly in the research of immune cells such as T

cells and natural killer (NK) cells. NK/T cells play pivotal roles in

tumor immune evasion and immune surveillance (12). Studies have

found that combinations of NK-cell-based immunotherapy and T-

cell-based immunotherapy may be beneficial for tumor

immunotherapy (13). Nguyen et al. suggest that further detection

of tumour-infiltrating lymphocytes in prostate cancer may help to

gain insight into the regulatory mechanisms of T cells in the TME

(14). In addition, NK/T cells interact with tumor cells and other

immune cells through cellular communication (15). Currently, the
02
systematic inference of ligand-receptor-mediated intercellular

communication has become a research hotspot, which is closely

linked to tumorigenesis (16, 17). Understanding these intercellular

communication mechanisms can uncover new immune escape

pathways and provide novel strategies for immunotherapy

in PRAD.

In this study, by analyzing single-cell data from PRAD, we

identified the cell communication receptor-ligand genes between

NK/T cells and other cell types, and constructed their interaction

networks. Through bioinformatics methods, we screened for

differential genes related to the communication receptor-ligands

between NK/T cells and other cells. This study developed a risk

model with these key genes and conducted prognostic analysis.

Then, we performed in vitro experimental verification on the

obtained biomarkers and evaluated the immune infiltration levels

and immune therapy responses of different risk groups. These

findings not only provide potential biomarkers for early detection

and prognostic assessment of PRAD but also open up new

possibilities for future stratified and personalized treatment

developments in PRAD.
2 Material and methods

2.1 Collection and processing of data

The gene expression data and related clinical data of PRAD patients

were obtained from the The Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov) database (18). The FPKM values of TCGA-

PRAD RNA sequencing (RNA-Seq) data was transformed into

TPM and then log2-converted. After retaining the samples with

complete progression-free interval (PFI), 495 PRAD samples and 52

adjacent normal control samples were recruited. The expression

data and clinical data (MSKCC, Cancer Cell 2010) of PRAD were

extracted from the cBioPortal website (https://www.cbioportal.org/

). After screening, a sum of 131 tumor samples were included. From

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
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geo/), we sourced four benign and four PRAD single-cell samples in

GSE193337. The library construction platform was 10x Genomics,

and the sequencing platform was Illumina HiSeq 4000.
2.2 ScRNA-seq analysis

The Seurat object was created by using the CreateSeuratObject

function in the Seurat package (19). Cells with the number of

retained genes ranging from 200 to 8000 and the quantity of

mitochondrial genes less than 20% were reserved. Next, the

NormalizeData function (19) was used for normalization. After

the principal component analysis (PCA) dimensionality reduction,

batch effect was eliminated by the harmony package (20). Then, the

RunUMAP function (19) was utilized for dimensionality reduction

by uniform manifold approximation and projection (UMAP).

Finally, cells were clustered by the FindNeighbors and

FindClusters functions (19) with the parameters of dims = 1:30

and resolution = 0.1. According to the marker genes provided by the

CellMarker2.0 database, the cell types were annotated (21).
2.3 Cell communication

CellChat (22) was used to develop the ligand-receptor

interaction network of cell subpopulations. The netVisual_bubble

and netVisual_circle packages (22) were utilized to display the

bubble plots of receptors and ligands between NK/T cells and other

cells and the number of communications between them.
2.4 Screening of differently expressed
genes differentially expressed genes (DEGs)

Differential analysis between the tumor and control sample

groups in the TCGA cohort was performed in the limma package

(23). The screening criteria were that |log 2fold change (FC)| > log2

(1.5) and p < 0.05, thus obtaining the DEGs. Then, the intersection

was taken between the mRNAs related to the receptor and ligand

genes of the communication between NK/T cells and other cells

(cor > 0.5, p < 0.01) and the TCGA DEGs to obtain the mRNAs

related to the communication of NK/T cells.
2.5 Development of the risk model and
validation

The TCGA-PRAD samples were assigned randomly at the ratio

of 5:5 into training set and test set. The survival package (24) was

utilized to conduct univariate Cox regression analysis to determine

the prognostic relevance of the intersection genes and p < 0.05 was

selected for filtering. Subsequently, the glmnet package (25) was

employed to carry out LASSO COX regression analysis and

stepwise regression to further narrow down the gene scope.
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Through multivariate analysis, the key genes and their

corresponding coefficients were calculated, and the RiskScore for

patients was calculated based on the formula:

RiskScore  =  Sbi �  Expi

where bi refers to the regression coefficient of each key gene,

and Expi represents the expression of the corresponding gene.

Then, the survminer package (26) was employed to calculate the

optimal threshold to classify the patients into low- and high-risk

groups. KM survival analysis was performed, and receiver operating

characteristic (ROC) curve model was constructed to predict the

prognostic performance of the TCGA training set and test set. The

area under the curve (AUC) value is a robust metric for assessing

the classification accuracy of the RiskScore model. By comparing

the AUC values to the assessment criteria, we can determine the

effectiveness of the model in distinguishing between high- and low-

risk patients. To better validate whether the model was robust, the

same method was employed to the MSKCC dataset for verification.
2.6 Analysis of the tumor immune
microenvironment (TIME)

To analyze the association between RiskScore and the TIME,

the infiltration status of immune cells was calculated using different

methods. The ssGSEA function of GSVA (27, 28) was utilized to

compute the scores of 28 types of tumor infiltrating immune cells

(TIICs) (1). The TIMER online tool (http://cistrome.org/TIMER)

was utilized to calculate six immune scores, and the ESTIMATE

package (29) was used to score the immune cells.
2.7 Pathway enrichment analysis

The gene set enrichment analysis (GSEA) (30) was employed

for pathway analysis to explore the pathways of diverse biological

processes in the two risk groups. The candidate gene sets from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database were

used to conduct GSEA (31).
2.8 Evaluation of immunotherapy

The TIDE method was adopted to evaluate immunotherapy

response. The standardized transcriptome data were uploaded into

the TIDE website (http://tide.dfci.harvard.edu/) to calculate the TIDE

score, with a higher TIDE prediction score indicating greater

immune escape possibility and lower immunotherapy efficacy.
2.9 Cell culture

In this study, the cell lines, namely human normal prostate

epithelial cells PNT1A (cat.no RE59812) and human PCa cells
frontiersin.org
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DU145 (cat.no YS101C), were sourced from Shanghai Yaji

Biotechnology Co., Ltd (Shanghai, China) (http://www.yajimall.com/).

All cells were cultured in Roswell Park Memorial Institute (RPMI)

1640 (11875093, Gibco, Grand Island, NY, USA) with the

supplementation of 10% fetal bovine serum (FBS) (S9020,

Solarbio Lifesciences, Beijing, China). All cells were incubated in

the incubator at 37°C with 5% CO2. The cells underwent short

tandem repeat (STR) identification, and the results of mycoplasma

detection for these cells were found to be negative.
2.10 Quantitative real-time PCR

Following the instructions, total RNA was isolated from PNT1A

and DU145 cells utilizing the TriZol total RNA extraction kit

(15596026CN, Invitrogen, Carlsbad, CA, USA). Subsequently, the

concentration of the isolated RNA was measured. Then,

complementary DNA was synthesized by reverse transcription

with a relevant assay kit (D7178S, Beyotime, Shanghai, China).

After that, SYBR Green qPCR Mix (D7260, Beyotime, Shanghai,

China) was used for the PCR assay according to the protocols. The

conditions for qPCR included an initial step at 94°C for 30 seconds,

succeeded by 40 cycles consisting of 5 seconds at 94°C and 30

seconds at 60°C. Finally, the relative level was calculated by the 2-

DDCT method (32), with GAPDH as a reference gene. Based on

National Center for Biotechnology Information (NCBI) sequences,

the qRT-PCR primers used in this study were designed using

Primer Premier 6 software. The primer sequences were presented

in Supplementary Table 1.
2.11 Cell transfection

For the liposome transfection, the small interfering RNA

against ISYNA1 (si-ISYNA1) and the negative control small

interfering RNA (si-NC) were all purchased from Merck KGaA

(Shanghai, China) and transfected into DU145 cells utilizing

lipofectamine 2000 transfection reagent (11668027, Invitrogen,

Carlsbad, CA, USA) as per the manuals. The sequences applied

for the transfection were 5’-GCACCCATCATGCTGGACCTA-

3’(si-ISYNA1#1) and 5’-CAGAAGAATGGTACAAATCCAAG-

3’(si-ISYNA1#2).
2.12 Cell viability

DU145 cells in the logarithmic growth phase were plated into

a 96-well dish at a density of 1 × 104 cells per well and incubated at

37°C with 5% CO2 for durations of 0, 24, 48, or 72 hours.

Following this, 10 mL of CCK-8 reagent was added to each well,

and the samples were incubated at 37°C for 2 hours. For the

construction of the CCK-8 curve, absorbance measurements were

taken at 450 nm, which served as the y-axis, while time was plotted

on the x-axis.
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2.13 Cell invasion assay

For the cell invasion assay, 1 × 105 DU145 cells were suspended

in 200 mL of serum-free medium and cultured in the upper chamber

of the Transwell (3422, Corning, Inc., Corning, NY, USA) coated

with Matrigel (C0372, Beyotime, China), while 700 mL of medium

containing 10% bovine serum were supplemented to the lower

Transwell chamber. After incubation, the chamber was taken out

and gently rinsed with phosphate buffered saline (PBS) buffer

(P1010, Solarbio Lifesciences, Beijing, China) to remove the non-

invasive cells. Subsequently, 4% paraformaldehyde (P1110, Solarbio

Lifesciences, Beijing, China) was employed for fixing the cells,

which were dyed by 0.1% crystal violet (G1063, Solarbio

Lifesciences, Beijing, China) at room temperature for 20 minutes.

The invasive cells were observed with an optical microscope (DP27,

Olympus, Tokyo, Japan) in three randomly selected fields of view

(33). Finally, to ensure the accuracy and reproducibility of cell

counting, we used ImageJ software for automated cell counting.
2.14 Cell migration assay

The DU145 cells (5 × 105 cells/well), after being transfected,

were grown in a 6-well plate containing media devoid of serum.

Upon reaching full confluence, an artificial wound was introduced

into the monolayer using a 200-mL sterile pipette tip. Following a

48-hour incubation period, the cells were photographed under an

inverted optical microscope (DP27, Olympus, Japan). Subsequently,

the percentage of wound closure (%) was calculated to reflect the

migration ability of the PRAD cells, ensuring uniqueness in

reporting (34).
2.15 Statistical analysis

All the statistical data were analyzed in R language (version

3.6.0). Experimental data were analyzed using GraphPad Prism 8.0

software. The Wilcoxon rank-sum test was used to compare the

differences between two-group continuous variables, the Spearman

method was employed to calculate the correlations, the log-rank test

was utilized to compare the survival differences among patients in

each grouping. Unpaired t-test and one-way analysis of variance

were applied for the comparison on the experimental data, and p <

0.05 signified a statistical significance.
3 Results

3.1 Single-cell atlas of PRAD

Single-cell clustering and annotation analysis were conducted

on samples from benign and tumor tissues of PRAD, identifying a

total of seven cell subpopulations: NK/T cells, Macrophage cells,

Epithelial cells, Fibroblast cells, Mast cells, Endothelial cells, and B

cells (Figure 1A). Figures 1B, C depict the marker genes for each of

these cell subpopulations. Among them, high expression of CD3D

and NKG7 was observed in NK/T cells; EPCAM in epithelial cells;
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http://www.yajimall.com/
https://doi.org/10.3389/fimmu.2025.1564784
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1564784
VWF in endothelial cells; CD163 in macrophages; COL1A1 and

ACTA2 in fibroblasts; CD79A in B cells; and TPSAB1 and CPA3

genes in mast cells. Analysis of the distribution of various cell types

between the benign and tumor groups revealed that, compared to

the benign group, NK/T cells exhibited the highest proportional

increase in the tumor group (Figure 1D).
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3.2 Signal communication among various
cell types

Analysis of the number of communications among various cell

types revealed that B cells had the least number of communications

among all cell types (Figure 2A). Examination of the intensity of
FIGURE 1

Single-cell atlas of PRAD. (A) UMAP dimensionality reduction plot for single-cell clustering and annotation of benign and tumor samples from PRAD. (B)
Bubble plot for annotating the expression of marker genes in subpopulations. (C) Violin plot illustrating the expression of marker genes. (D) Proportion of
each cell subpopulation within each sample between the two groups.
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communications among cells showed that NK/T cells exhibited

high communication intensity, indicating their active role in the

TME (Figure 2B). To visually present this point more clearly, the

communication intensity of each cell type was further detailed, and

the results demonstrated that the communication intensity between

NK/T cells and Macrophage cells, Epithelial cells, as well as

Endothelial cells was particularly prominent (Figure 2C). These

findings showed that NK/T cells played a pivotal role in immune

regulation within the TME and have close interactions with other

key cell types. Figure 2D further illustrates the receptors and ligands

involved in cellular communications.
Frontiers in Immunology 06
3.3 Identification of DEGs related to
communication receptors and ligands

Differential analysis was conducted between tumor and control

sample groups in the TCGA cohort, resulting in 1951 downregulated

genes and 971 upregulated genes (Figures 3A, B). Next, these DEGs

were intersected with mRNAs linked to communication receptors and

ligands betweenNK/T cells and other cells (correlation coefficient > 0.5,

p < 0.01). This intersection identified a total of 2026 overlapping genes

that are associated with communication between NK/T

cells (Figure 3C).
FIGURE 2

Analysis of signaling communication between NK/T Cells and other cell types. (A) Number of communications between cells. (B, C) Intensity of
communications between cells. (D) Ligand-receptor mediated cellular communications between NK/T cells and other cell types.
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3.4 Model construction and validation in
PRAD

The TCGA-PRAD samples were assigned at the ratio of 5:5 into a

training set and a testing set to construct the model. Using the data

from the training set, the intersected genes were subjected to univariate

Cox proportional hazards regression. Subsequently, LASSO COX and

stepwise regression were applied to further shrink the range of genes,

and seven genes independently associated with prognosis were

screened out for constructing the RiskScore model (Figures 4A, B).

The formula for this RiskScore model is (Figure 4C):

RiskScore  =  0:579 * FOXS1   +   0:345 * GPC6   +   0:385 * ISYNA1  

+   0:418 * ITGAX  +  0:792 * MGAT4B  +  0:368 * PRR7   +   0:458 * REXO2

Patients were classified into high- and low-risk group by the

optimal cut-off value of the RiskScore. The ROC curve

demonstrated that the TCGA cohort, training set, and testing set

all exhibited relatively high AUC values at various time points,

which verified its good classification accuracy. Moreover, compared

with those with a low-risk score, the PFI of patients with a high-risk

score was significantly lower (Figures 4D-F, p < 0.001). The same

method was used to validate the MSKCC dataset, and the model

also had a relatively high AUC value. There was a significant

difference in prognosis between two risk groups (Figure 4G). By

analyzing the expressions of prognostic genes in the TCGA cohort

and the MSKCC cohort, it was found that, except for the REXO2

gene which showed no significant difference between the two risk

groups in the MSKCC dataset, the expressions of the other genes in

the low-risk group were all remarkably lower (Figures 4H-I,

p < 0.05).
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3.5 Correlation between the RiskScore and
TIME

To analyze the relationship between RiskScore and TIME, different

methods were used to calculate the infiltration of immune cells.

Analyzing the results of immune cell infiltration assessment by

ESTIMATE, it was found that the low-risk group had lower

StromalScore, ImmuneScore and ESTIMATEScore than the high-risk

group, indicating that the immune infiltration levelwas lower in the low-

risk group (Figure 5A, p < 0.05). Based on TIMER, the immune cell

scores of the TCGA dataset were calculated, and the results showed that

the scores of Neutrophil, B_cell, Dendritic, Macrophage, CD4_Tcell

were all remarkably lower in the low-risk group (Figure 5B, p < 0.01).

Using ssGSEA functional analysis to score 28 types of immune cells (35),

it could be seen that the infiltration scores ofmultiple immune cells such

asmyeloid derived suppressor cells (MDSC), activatedCD8T cell, NKT

cell, regulatory T cell (Treg), NK cell in the low-risk group were all

significantly lower (Figure 5C, p < 0.05).
3.6 Differences in enriched pathways
between high-risk and low-risk groups

The results of KEGG pathway enrichment analysis demonstrated

that the high-risk group was significantly enriched in primary

immunodeficiency, malaria, complement and coagulation cascades,

ECM−receptor interaction, staphylococcus aureus infection pathways

(Figure 6A). The low-risk group was significantly enriched in arginine

and proline metabolism, beta−Alanine metabolism, Butanoate

metabolism, mineral absorption and valine, leucine and isoleucine

degradation pathways (Figure 6B).
3.7 Characterization of immune escape
potential and immunosuppression in PRAD
patients from different risk groups

TIDE was employed to estimate the potential clinical

immunotherapy benefit to the two risk groups. The results

demonstrated that in the TCGA cohort, the high-risk group had

the highest TIDE score, showing a higher likelihood of immune

escape in the high-risk group and less immunotherapy benefit

(Figure 7, p < 0.05). Moreover, in the high-risk group, the scores

of dysfunction, exclusion, MDSC, and cancer associated fibroblast

(CAF) were significantly higher than those in the low-risk group,

which revealed the significant immunosuppressive features and

complex mechanisms in the TME (Figure 7, p < 0.05).
3.8 In vitro experiments to validate the
function of key genes in PRAD cells and
the potential role of ISYNA1

Subsequently, the roles of seven characteristic genes in PRAD

were validated by in vitro experiments. The results showed that all
FIGURE 3

Identification of DEGs. (A) Volcano plot on the distribution of DEGs
between PRAD and control samples in TCGA. (B) Heatmap
illustrating the expression of the top 50 DEGs in TCGA. (C) Venn
diagram showing the intersection between mRNAs related to
communication receptors and ligands between NK/T cells and other
cells, as well as the DEGs in TCGA.
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six genes (GPC6, ISYNA1, ITGAX, MGAT4B, PRR7, and REXO2),

except FOXS1, were significantly highly expressed in PRAD cells

(Figure 8A, p < 0.01). Since ISYNA1 is highly expressed in DU145

cells and to date, there are few studies on ISYNA1 in tumor research,

especially PRAD. For this reason, we chose to silence ISYNA1 in

order to validate its potential effect on PRAD cell development
Frontiers in Immunology 08
(Figure 8B, p < 0.01). Subsequently, we observed a significant

decrease in the proliferation, migration and invasion ability of

DU145 cells after silencing ISYNA1 relative to controls

(Figures 8C-E, p < 0.001). These results suggest the potential

impact of our NK/T cell-related key gene-based screen on PRAD

cell genesis and development.
FIGURE 4

Construction and validation of the risk model. (A, B) Changes in the regression coefficients of gene features in the LASSO regression model and the
optimal penalty parameter (l) determined by cross-validation. (C) Genes and their coefficients in the risk model. (D-G) 1 - 5-year ROC curves of the
risk model and differences in PFI between the high-risk and low-risk groups in the training set (D), test set (E), TCGA cohort (F), and MSKCC cohort
(G). (H) Expression of seven prognostic genes in the TCGA cohort. (I) Expression of seven prognostic genes in the MSKCC cohort. ns denotes p >
0.05, **p < 0.01, ****p < 0.0001. * means vs. High-risk.
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4 Discussion

According to global data in 2022, although the mortality rate of

PRAD ranks only eighth, its incidence rate ranks fourth (36), and it

has a high recurrence rate, with about one-third of men experiencing

recurrence after local treatment, ultimately leading to the generation of

malignant cells (37). NK cells are cytotoxic immune cells capable of

killing cancer cells in the innate immune system (38). Research has

found that cellular communication functions importantly in the TME

(39), particularly involving NK/T cells, which are associated with the

immune evasion mechanisms of cancers (40). In this study, by

analyzing PRAD-related single-cell data, the interaction between

NK/T cells and other cells was identified, and a risk model related

to communication receptors and ligands was established. These results

provided new insights into the immunotherapy of PRAD and opening

up new potential pathways for personalized cancer treatment.

The risk model in this study includes a total of seven related

molecular markers, namely FOXS1, GPC6, ISYNA1, ITGAX,

MGAT4B, PRR7, and REXO2. As a type of DNA-binding

proteins, Forkhead-box (FOX) family proteins participate in cell

growth, embryogenesis, differentiation, and lifespan (41). FOXS1

has a high expression in pan-cancers, and the gene is linked to a

worse surviva. Its overexpression is related to high infiltration levels

of tumor-associated macrophages (TAM) and Tregs (42), which is

consistent with the result of a higher infiltration level of Tregs in the
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high-risk group in this study. GPC6 belongs to the glypican gene

family, and its function depends on interactions with cytoplasmic

and/or extracellular ligands (43). Chen et al.’s research has

confirmed that GPC2 in the GPC family can promote the

progression of PRAD (44). ISYNA1 encodes an enzyme essential

for inositol biosynthesis. Silencing ISYNA1 can inhibit the growth of

tumor cells (45). Jia et al.’s research has demonstrated that it can

serve as a biomarker related to pan-cancer immunomodulation

prognosis (46). The in vitro experiments in this study also

confirmed that the knockout of ISYNA1 would influence both the

migration and invasion abilities of PRAD cells. ITGAX usually

functions as a receptor for the extracellular matrix and is associated

with tumor angiogenesis (47, 48). Williams et al.’s research has

confirmed that it can act as a susceptibility gene for aggressive

PRAD (49) . The MGAT4B pro t e in be longs to the

glycosyltransferase family and can recognize and bind to both

donor and receptor substrates (50). In liver cancer cells, studies

have found that the expression of MGAT4B is upregulated and it is

related to immune evasion (51). PRR7 is a transmembrane adaptor

protein (TRAP) and an important organizer and regulator of

immune receptor-mediated signal transduction (52). It mediates

T cell receptor signaling by assembling the membrane-proximal

signalosome (53). REXO2 is a homologue of the prokaryotic

oligoribonuclease existing in human mitochondria and cytoplasm

(54). Previous experiments have confirmed that REXO2 can serve as
FIGURE 5

Differences in immune infiltration between the high-risk and low-risk groups. Differences in ESTIMATE (A), Timer (B), and ssGSEA (C) scores between
the high-risk and low-risk groups in the TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. ns (abbreviation of "non-significant")
means p > 0.05.
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FIGURE 6

KEGG enrichment pathway analysis. (A, B) KEGG enrichment pathway analysis of high-risk and low-risk groups.
FIGURE 7

Differences in TIDE scores between high-risk and low-risk groups in TCGA.
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a biomarker for PRAD (55). The above evidence demonstrates the

possible roles that these cell communication ligand-related genes

may play in cancer and also implies their potential as biomarkers

for PRAD.

Analysis on the correlation between the RiskScore and the immune

microenvironment revealed that most of the immune scores in the

high-risk group were higher. However, despite the higher scores of NK

cells, the scores of Tregs in the high-risk group were also higher. Tregs

are a type of T lymphocyte with immunosuppressive functions and

functions crucially in the process of the immune system eliminating

tumor cells as well as in immune self-tolerance (56). Tregs play an

immunosuppressive role in the TIME. Studies have confirmed that

Tregs can promote tumor immune evasion through the activation of

transforming growth factor-b (TGF-b) mediated by integrin avb8
(57, 58). Therefore, although there is a strong immune response in the

high-risk group, the high scores of Tregs indicate that tumors may

“escape” immune attacks by inducing an immunosuppressive

environment. In addition, the biomarkers FOXS1 and PRR7 obtained

in this study are both closely related to Treg signal transduction or

infiltration (42, 53), which further implies that high-risk patients affect

the TME through the immune evasion mechanism.

The results of pathway enrichment showed that the pathways in the

low-risk group were mainly enriched in metabolic pathways, whereas

the high-risk group were mainly enriched in immune-related pathways.

This reflects that the high-risk group is linked to immune dysfunction,

while the low-risk group is in a relatively healthy state. The TIDE

analysis revealed that the exclusion score of the high-risk group was
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high, suggesting that effector immune cells have difficulty effectively

infiltrating into the interior of the tumor, which may be related to

physical barriers or chemical repellent factors in the TME. Meanwhile,

the score of MDSC in the high-risk group was also relatively high.

MDSC is a heterogeneous group of immature bone marrow cells with

the potential to effectively target T cells and suppress autoimmune

responses (59, 60). Studies have already demonstrated that MDSC can

influence the suppression of specific T cell responses in myeloma by

inducing the development of Tregs in the TME (61). Combined with

the results of immune infiltration, the high score ofMDSC indicates that

these cells may suppress effector immune responses by influencing

Tregs, thereby helping the tumor achieve immune evasion. The increase

in the score of CAF further reflects the activity of CAFs. CAF activated

by TGF-b is one of the most abundant stromal cell types in almost all

solid tumors, and its special role is widely recognized (62). Moreover,

TGF-b is closely related to Tregs, NK cells, and immune evasion (63,

64). In conclusion, these characteristics of the high-risk group jointly

reveal the tumor’s strategy of enhancing its survival ability through

multi-level immune suppression mechanisms, providing important

implications for in-depth research on tumor immunotherapy.

The limitations of this study require further consideration and

refinement. Firstly, the sample size and representativeness of this study

may not fully encapsulate the heterogeneity and diversity of PRAD

within the general population, potentially limiting the generalizability

of the study results. To address this issue, future research should

include larger and more diversified cohorts of PRAD samples,

encompassing different stages and subtypes of the disease as well as
FIGURE 8

Cell validation results. (A) Quantified mRNA level of seven feature genes in PRAD cell line DU145 and the control cell line PNT1A. (B) The qRT-PCR
to verify the transfection efficiency of ISYNA1 between the si-negative control (si-NC) and si-ISYNA1 groups. (C) Assessment of the proliferation level
of DU145 cells after ISYNA1 silencing based on the CCK-8 assay. (D) The results of Transwell assay on the invasion of DU145 cells after the silencing
of ISYNA1. (E) The results of scratch assay on the migration of DU145 cells after the silencing of ISYNA1. **p < 0.01, ***p < 0.001, ****p < 0.0001,
and ns stands for no significant difference.
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various ethnic groups. Additionally, the data verification in this study

mainly relies on bioinformatics techniques and in vitro experiments,

lacking the support of in vivo experiments. To verify our research

results more comprehensively, the construction of relevant animal

models is an essential step. Furthermore, the clinical application of the

identified biomarkers and risk models needs to be further explored and

validated in clinical trials.
5 Conclusion

The present study successfully developed a risk model closely

related to communication receptors and ligands, marking

significant progress in exploring the immune mechanisms of

PRAD. The establishment of this model not only deepened our

understanding of the complex immune microenvironment of

PRAD, but also provided strong theoretical support and practical

tools for the formulation of stratified and personalized strategies for

PRAD. Furthermore, we confirmed a crucial role of NK/T cells in

the development of PRAD, offering new targets and ideas for the

progression of novel immunotherapies. In the future, we anticipate

enhancing the antitumor activity of NK/T cells by modulating the

expression or function of communication receptors and ligands, or

designing more precise targeted drugs to inhibit the immune escape

mechanisms of tumor cells, thereby further improving the

treatment outcomes of PRAD and bringing more effective therapy

and better quality of life to patients.
5.1 Scope statement

Compared with the benign group, NK/T cells were the cell type

with the greatest changes in the tumor group, and their

communication intensity was relatively high among all cell types.

A RiskScore model was constructed as follows: 0:579*FOXS1   +  

0:345*GPC6   +   0:385*ISYNA1   +   0:418*ITGAX  +  0:792*MGAT

4B  +  0:368*PRR7   +   0:458*REXO2. Analysis of the differences

between the two risk groups showed that the level of immune

infiltration was higher in the high-risk group, and it was

significantly enriched in immune-correlated pathways, while the

low-risk group was mainly enriched in metabolism-related

pathways. TIDE analysis indicated that the high-risk group had

higher immune escape potential. The cellular validation assays have

revealed the higher expression of seven biomarkers in PRAD

groups. Further, ISYNA1 knockdown inhibited the migratory and

invasive capabilities of PRAD cells. The current research reveals key

communication genes in PRAD, offering new possibilities for the

exploration of new therapeutic targets.
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Glossary

PCa prostate cancer
Frontiers in Immunol
PRAD prostate adenocarcinoma
mCRPC metastatic castration-resistant prostate cancer
scRNA-seq single-cell RNA sequencing
TME tumor microenvironment
NK natural killer
TCGA The Cancer Genome Atlas
FPKM ragments per kilobase of exon model per million

mapped fragments
RNA-Seq RNA sequencing
TPM transcripts per million
PFI progression-free interval
GEO Gene Expression Omnibus
PCA principal component analysis
UMAP uniform manifold approximation and projection
DEGs differentially expressed gene
LASSO least absolute shrinkage and selection operator
KM Kaplan-Meier
ROC receiver operating characteristic
ogy 15
TIME tumor immune microenvironment
RPMI Roswell Park Memorial Institute
FBS fetal bovine serum
qRT-PCR quantitative real-time PCR
NCBI National Center for Biotechnology Information
PBS phosphate buffered saline
ssGSEA single sample gene set enrichment analysis
TIIC tumor infiltrating immune cell
KEGG kyoto encyclopedia of genes and genomes
TIDE tumor immune dysfunction and exclusion
AUC Area Under the Curve
CAF cancer associated fibroblast
FOX forkhead-box
TAM tumor-associated macrophages
Treg regulatory T cell
TRAP transmembrane adaptor protein
TGF-b transforming growth factor-b.
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