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Porto, Porto, Portugal, 6Cancer Drug Resistance Group, Institute of Molecular Pathology and
Immunology of the University of Porto (IPATIMUP), Porto, Portugal, 7Clinical Hematology
Department, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal, 8Department of
Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,
9Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja
Luka, Bosnia and Herzegovina, 10Department of Pharmaceutical Chemistry, Faculty of Pharmacy,
University of Belgrade, Belgrade, Serbia, 11Department of Immunology, Grigore T. Popa University of
Medicine and Pharmacy, Iasi, Romania, 12Department of Stem Cell Transplantation, Fundeni Clinical
Institute, Bucharest, Romania, 13Julius Maximilians University of Würzburg, Würzburg, Germany
The advent of immunotherapy in the treatment of cancer has opened a new

dimension in the management of this complex multifaceted disease, bringing

hope to many patients whose tumors have failed to respond to conventional

therapies. The adoptive T cell therapy has since been extended to the treatment

of several hematologic malignancies, initially in relapsed settings and more

recently at the forefront of treatment due to high response rates. Despite

exciting initial results, the preclinical antitumor effects of the first long-term

studies show that CAR (Chimeric Antigen Receptor)-T cells have been slow to

translate to the clinical setting, with early clinical trials showing suboptimal

responses. The main reasons for the limited clinical performance seemed to be

related to the low activation and short persistence of CAR-T cells. Thus, began a

journey to improve the initial CAR structure, leading to the development of more

complex constructs, which are grouped into five CAR generations. In this review,

we describe the main challenges and potential solutions for the evaluation of

CAR T-cell-based therapies in the preclinical setting.
KEYWORDS

CAR-T cell tracking, tumor organoids, antigen escape, solid tumor immunotherapy,
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1 Background on CAR-T targets

The emergence of immunotherapies in cancer treatment has

provided a new approach to counter challenging diseases, offering

hope for many patients whose conditions remained unchanged after

conventional chemotherapy. The notion of harnessing the body’s

own defenses and directing them towards the disease was first

proposed back in the 19th century, although the mechanisms

involved remained long unknown. In the second half of the 20th

century, immune cells have been shown to be capable of eliciting an

antitumoral effect and later on, tumor infiltrating lymphocytes were

successfully used in the treatment of cancers (1–3). The concept of

chimeric T cell receptors was later developed when T cell receptors

combined with antibody-derived variable regions were shown to

induce T cell activation in a non-major histocompatibility complex

(MHC) mediated manner (4, 5). This seminal discovery is what led to

the development of the revolutionary immune therapy which uses the

transgenic Chimeric Antigen Receptor (CAR) to direct T cells

towards a desired target cell and induce activation and tumor

killing. CAR-T therapy has been shown to be effective in achieving

clinical response in cancer patients initially in chronic lymphocytic

leukemia and follicular lymphoma with the first CD19-targeting

CAR-T cell therapy eventually approved by the Food and Drug

Administration (FDA) in the U.S.A. in 2017 for the treatment of
Frontiers in Immunology 02
pediatric and young adult B-cell acute lymphoblastic leukemia (6–8).

The adoptive T cell therapy has since been expanded to the treatment

of multiple hematologic malignancies starting in relapsed settings and

recently moving towards the front lines of treatment due to the high

response rates (1, 9, 10).

While exciting, the preclinical antitumoral effects of initial

CAR-T cells were slow to translate to the clinical setting, with

early clinical trials showing suboptimal responses. Despite the

remarkable initial responses observed in clinical trials, long-term

outcome studies show that most of the treated patients experience

progression of the disease. The main reasons for this limited success

seem to be related to low CAR-T cell activation and reduced

longevity/durability, as well as antigen escape. Consequently, the

initial CAR structure has been continuously improved, leading to

the development of more complex constructs that can be organized

into five CAR generations (Figure 1) (1).

The first generation of CARs consists of an extracellular

antibody-derived single-chain variable (scFv) region joined to

CD3z or FceRIg signal transducing endodomains by a hinge, and

a transmembrane domain (11, 12). While first-generation CARs

were able to induce T cell activation and produce in vitro and in vivo

antitumoral effects in tumor models such as ERBB2-expressing

tumors and ovarian cancer, early clinical trials employing these

receptors unfortunately showed little to no tumor response and
FIGURE 1

Five CAR-T cell generations. The 1st Generation of CAR-T cells contain the CD3z domain, which triggers the intracellular signaling. The 2nd Generation
has a co-stimulatory domain (CD28 or 4-1BB) enhancing the cytotoxicity of the CAR-T cells. The 3rd Generation has two co-stimulatory domains,
offering superior cytokine secretion and CAR-T cell persistence. The 4th Generation has the cytokine inducer domain, and two co-stimulatory
domains, modulating cytokine secretion. The 5th Generation of CAR-T cells have two co-stimulatory domains and with similar structure to the 2nd

Generation with a STAT3 binding site, and its activation triggers cell signaling through CD3z, CD28 and JAK/STAT3 signaling activating the CAR T cells
and maintain proliferation.
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limited in vivo persistence of CAR T cells, varying from one to nine

weeks, with longest durability in patients stimulated with

interleukin 2 (IL-2) (12–17).

The second generation of CAR constructs improved on the first

generation by integrating an additional costimulatory endodomain

into the CAR structure to enhance function and persistence. Since

normal T cell receptor (TCR)-mediated T cell activation requires

costimulation, it was postulated that replicating this mechanism in

CAR-T cells might enhance their activation. It was thereafter

demonstrated that costimulatory signaling effectively improves

CAR T cell activation regardless of whether it is exogenous,

intrinsic, or originates in target cells (18–20). Costimulatory

domains employed in CAR constructs originate in the activation

pathways of B and T lymphocytes, where they provide the required

signaling for activation. Multiple domains such as CD27, CD28, 4-

1BB (CD137), OX40 (CD134) have been successfully used to

augment CAR function by increasing activation, cytotoxicity and

persistence (21, 22). The two most commonly used costimulatory

domains are 4-1BB and CD28. While both improve efficacy,

important differences have been observed among the two

approaches. CD28 CAR has been shown to lead to a more robust

expansion while 4-1BB CAR is associated with longer persistence,

likely due to activation of non-canonical NF-kB pathway with

antiapoptotic effects (23–25). It is important to note that the

choice of costimulatory domain influences T cell differentiation

and phenotype, though results from mouse models and clinical

trials show that the efficacy between the two types of CAR is similar

(24–26). Following validation of their clinical efficacy, second-

generation CAR were approved for use in clinical practice,

pioneered by the 4-1BB anti-CD19 CAR-T therapy in 2017 (8).

Further efforts to improve CAR-T efficacy led to the development of

third, fourth, and fifth generation CARs. The third-generation

receptors incorporate multiple costimulatory domains, usually

from different receptor families such as Ig and tumor necrosis

factor superfamilies (27, 28). This approach benefits from the joint

effects of each costimulatory domain such as inducible T cell

costimulatory (ICOS) domain and 4-1BB, which promote

persistence of CD4+ and CD8+ CAR-T cells, respectively (29).

Multiple studies have shown the improved in vivo expansion and

persistence of third generation CAR-T cells, which might prove

beneficial in instances where the target antigen is scarcely expressed

(30, 31). The superiority of third generation CAR-T to the second

one is still to be established as, in certain instances, they

underperformed compared to the second-generation. One of the

proposed mechanisms for the observed lower efficacy is tonic

signaling, leading to activation induced activation-induced cell

death. The order of costimulatory domains on the CAR and their

proximity to the cell membrane may account for this effect and

might be mitigated by alternative receptor designs (32).

Digressing from the beaten path of adding new domains to the

CAR receptor, the design of fourth-generation CAR-T cells aims to

improve antitumor effect by secretion of cytokines to induce a

proinflammatory microenvironment. In addition to the CAR, these

cells, also known as TRUCKs (T cells Redirected for Antigen-

Unrestricted Cytokine-initiated Killing), include a constitutive or
Frontiers in Immunology 03
NFAT (nuclear factor of activated T cells) inducible expression

cassette. Upon CAR binding to its target antigen, CD3z
mediatedCD3z-mediated phosphorylation of Nuclear factor of

activated T-cells (NFAT) induces cytokine secretion, which acts

to enhance CAR-T function as well as to recruit inflammatory cells

(33, 34). Several cytokines known to stimulate T cell functions in

vitro have been incorporated in TRUCKs models, with the most

notable being interleukin 12 (IL-12), interleukin 18 (IL-18) and

interleukin 15 (IL-15) (35, 36).

IL-12 has been reported to induce a more robust antitumor

response against CD19+ positive acute leukemia and in mouse

models of ovarian cancer. However, multiple studies report severe

toxicity related to its potent pro-inflammatory effects and important

macrophage activation (37). In one study, Il-12 TRUCKs induced

significant tumor infiltration by macrophages, albeit at the expense

of a decrease of in CD8+ CAR-T cells, possibly via interleukin 10

(IL-10)-mediated immune suppression (33, 37). Similarly, the use of

IL-18 secreting CAR-T cells enhances antitumor effects and

generates a pro-inflammatory environment, while recruiting

inflammatory cells without severe toxicity (37, 38).

The effects of IL-15 releasing TRUCKs offer promising

therapeutic applications by favorizing a T stem cell memory -like

phenotype, increased persistence, and antitumoral activity via BCL

upregulation (33). Fifth generation CAR-T cells, in addition to

second and third generations, rely on activation of JAK-STAT

pathways via an additional truncated intracellular domain of

cytokine receptors with a binding site for transcription factor

STAT3 (39–41).

Though innovative and exciting, not all advancements

guarantee better outcomes, as benefits gained in terms of

cytotoxicity may be diminished by exhaustion through tonic

signaling, and increased persistence mediated by interleukin

secretion can lead to more severe cytokine mediated systemic

toxicity. Ideally, the optimal design for CAR constructs should be

validated by testing combinations of signaling domains, co-

stimulatory regions in systematic head-to-head comparisons,

though financial and economic constraints are limiting for this

scale of trials.
1.1 CAR-T cell mechanism of action

Depending on generation, CAR-T cells fully or partially mirror

the physiologic TCR mediated activation of T lymphocytes, with its

3 essential signals. Activation is initiated following recognition by

the antigen recognition domain of its cognate antigen, constituting

signal 1 and leading to immunoreceptor tyrosine-based activation

motif (ITAM) phosphorylation in the CD3z domain. Signal 2 is

provided by the costimulatory molecules, and optimal T cell

functioning is achieved with the contribution of the 3rd signal

mediated by cytokines (42, 43). To exert their cytolytic effects,

CAR-T cells employ two main pathways (Figure 2). The perforin

and granzymes induce cell death by creating pores in tumor cell

membranes which are used by the granzymes to enter the cytosol

and trigger apoptotic death through caspase dependent and
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1564998
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tomai et al. 10.3389/fimmu.2025.1564998
independent pathways. The second pathway makes use of FAS

(CD95) ligand secreted by the T lymphocytes, which upon binding

to its receptor on tumor cells, leads to the formation of a death-

inducing signaling complex followed by cell death (43–45).

Interestingly, FAS-FASL mediated cytolytic activity has been

reported to be responsible for cytolytic activity against antigen-

negative tumors as well, allowing for clearance of antigen-

heterogenous tumors which might prove to be an avenue for

overcoming mechanisms of resistance to treatment by antigen

loss (46).
2 Available experimental models for
CAR-T research

The Development of novel, effective CAR-T therapies can be a

challenging task. For these therapies to be considered for clinical

applications, first they must be thoroughly characterized. The

purpose of these laborious processes is to predict as accurately as

possible their behavior in the human body. Unfortunately, a model

remains just that, and the multi-faceted characteristics of CAR-T

cells require multiple in vitro and in vivo surrogates to be combined

to achieve a comprehensive characterization.
Frontiers in Immunology 04
2.1 Modeling the target

The cytotoxic potential of a novel CAR construct can be

assessed in vitro, by using tumor-associated antigen (TAA)

expressing cells, or with cell-free antigens. Plate or nanobead-

bound recombinant antigens enable the isolation and evaluation

of CAR-T cell activation in a strictly CAR dependent manner

without the contribution of normally occurring costimulatory

molecules and cell ligands. This also allows for easy adjustment of

antigen density (47–49). Serving as a universal tool for CAR antigen

binding is protein L, a protein of bacterial origin which

indiscriminately binds to immunoglobulin light chain and scFvs,

and can be used for CAR detection as well as for CAR mediated T

cell activation (50, 51). Evaluation of cytotoxic activity against living

cells is the mainstay of in vitro testing as this can provide a more

complex view of CAR-T and tumor cell interaction, recapitulating

costimulatory signaling, dynamics of cell killing and allows

modulation of effector to target (E:T) ratios as well as thorough

characterization of T lymphocytes. The most readily available and

widely used experimental targets for CAR-T therapy are

immortalized cells (cell lines). They are well characterized and

easy to use, thus providing an important frame for various assays

in CAR T development. Tumor cell lines can expand indefinitely
FIGURE 2

Cell death triggered by CAR-T cells. (A) Cell death induced by granzyme and perforin action. The CAR-T cells are releasing perforin and granzyme
after binding the target, both are inducing membrane damage and trigger the apoptosis in tumor cells. (B) Cell death induced via FasL/Fas
mechanism. The CAR-T cells trigger the FasL/Fas signaling which trigger the activation of Casp8 which will further initiate Casp3 cleavage leading to
tumor cell apoptosis. CAR-T, Chimeric Antigen Receptor T cell; FasL, Fas Ligand; Fas, Fas receptor (known as CD95 or APO-1); Casp8, Caspase 8;
FADD, Fas associated death domain; Casp3, Caspase 3.
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and can be genetically engineered to express fluorescent reporter

genes or knocked-out for certain genes to produce negative control

targets (52–54). Additionally, target cells can be created by inducing

expression of certain transgenic antigens. One such example is the

acute B cell leukemia cell line NALM-6 which is often transduced to

express tumor associated antigens (TAA) and to control antigen

density (55) (Figure 3).

While immortalized cells offer a reliable model for research,

they often harbor complex cytogenetic abnormalities and

mutations, and their behavior may differ in certain aspects from

in vivo counterparts (56). Primary tumor cultures offer an

alternative ex-vivo approach which accurately replicates primary
Frontiers in Immunology 05
tumor biology. However, they bear certain limitations regarding cell

purity, while issues of tumor tissue accessibility and limited low ex

vivo culture potential limit the quantities of primary cells available

for experiments. Additionally, repeated passages of primary

cultures alter the cellular heterogeneity with preferential selection

of subclones (57, 58).
2.2 Spheroid cultures (3D structures)

Bridging the gap towards a more realistic in vitro model of

tumors are patient-derived organotypic spheroids (PDOS), a novel
FIGURE 3

Expression of tumor associated antigens (TAA) regulates CAR-T cell persistence and response to therapy. Tumors with positive TAA clones are
sensitive to therapy. However, tumors with poor response to therapy are associated with negative TAA and with other factors that may induce
resistance, such as: T-cell exhaustion, senescence, or T-cell differentiation. In tumor with heterogenous tumor cells including population with high
antigen expressing tumor cells and tumor cells that are TAA negative, the TAA negative clones are selected as they have poor response to CAR-T
therapy and promote resistance to therapy, while TAA positive clones, are targeted and undergo cell death.
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3D ex-vivo model created from patient tumor tissues. This model is

achieved by enzymatic and physical tumor tissue dissociation and

cell separation, after which cells are resuspended in gel to

reconstitute the 3D structure (59). Spheroids bear a high

resemblance to the original tumor and preserve tumor

multicellularity and its native niche. PDOS exhibits architectural

heterogeneity, with superficial layers predominantly epithelial and

an inner core of mesenchymal origin. The spheroids retain initial

tumor cells with stem-like properties and are capable of engrafting

in mice to produce tumor xenografts (60, 61). The utility of these

3D structures is more important in the development of solid-tumor

targeted CAR-T therapies, as this system may replicate aspects of

cell trafficking into tumors and temporospatial heterogeneity of

CAR-T cells characteristics as well as the influence of local tumor

niche on the adoptive cells. This provides a foundation for

optimizing CAR-T cells. For example, Cho et al. (62) have shown

that the size of breast cancer–derived organoids directly impact

CAR-T cell intratumoral trafficking and cytotoxicity, with reduced

cytotoxicity observed in the spheroid core (62). Additionally,

supporting data for the ability of PDOS to model in vivo CAR-T

efficacy comes from pioneering work by Logun et al., in which the in

vitro cytotoxicity exhibited by CAR-T cells against patient-derived

glioblastoma organoids mirrored CAR-T expansion and cytokine

release patterns observed in the same patients during a phase I

clinical trial (63).

Ideally, autologous CAR-T cells would avoid any alloreactivity

that could confound results in PDOS settings. However, using T

cells autologous to the patient from whom the PDOS are derived is

challenging and uncommon. Allogeneic CAR-T cells used in these

models must account for TCR-mediated non-specific cytotoxicity,

which can be controlled by including appropriate experimental

controls, such as non-specific CAR-T cells or non-transduced T

cells from the same donor (64). Alternatively, TCR-mediated

cytotoxicity can be mitigated by using TCR-knockout CAR-T

cells while preserving CAR-specific activation (64).
2.3 In vivo models

Adequate in vivo models are essential for bridging in vitro

research to clinical applications, to mitigate potential adverse effects

such as cytokine release syndrome (CRS) and immune effector cell

associated neurotoxicity as well as to validate antitumor effects

taking into consideration tumor architecture, heterogeneity and

influence of tumor microenvironment. Additionally, important

data such as tumor infiltration, dynamics of CAR-T cells

persistence in the host organism can be obtained using animal

models (48, 65).

2.3.1 Immune-compromised models – xenograft
models

Engraftment of human tumors in immune-compromised mice

is the core principle of xenograft models, the most used in vivo
Frontiers in Immunology 06
model for CAR-T cell research. Human tumors can be obtained in

mice by inoculation with immortalized human cell lines or primary

tumors for creating patient-derived xenografts (PDX) (66).

Inoculation can be done intravenously, to replicate metastases,

subcutaneously, for localized tumors, providing easy access, or

orthotopically, for more anatomically realistic models. Mice used

in for xenograft models are all deficient in adaptive immunity and

including T lymphocytes, thus unable to mount a host versus graft

reaction, and rejection of foreign tissues (67). While athymic nude

(nu/nu) mice lack T lymphocytes , severe combined

immunodeficient (SCID) mice lack both B and T cells, and other

types, such as non-obese SCID, Rag2-Knockout and NSG Mice

(NOD-SCID IL2Rgnull) have increasingly more profound immune

suppression, making them more suitable for the engraftment of

patient-derived tumors (68, 69). Retaining part of the myeloid-

derived immune cells makes it possible to evaluate CAR-T therapies

considering the influence of myeloid-derived suppressor cells

(MDSC) such as dendritic cells and macrophages on tumors and

adoptive cells. This is only valid to some extent, and it is also

noteworthy that these MDSCs may not be fully competent, thus not

being able to fully mirror the properties of human MDSCs (70).

Though mice are the most common in vivo models, they are

largely unfit for the evaluation of adverse effects of adoptive cell

therapy, especially regarding CRS, a severe and potentially lethal

complication caused by large-scale immune cell activation (71).

Thus, non-human primates, though expensive and less accessible,

are used as immunocompetent models for more reliable

recapitulation of CAR-T cell-associated toxicities. They also serve

as models for novel approaches, such as in vivo CAR-T cell

generation, which require competent host T cells and higher

resemblance to humans (65, 72). A cheaper xenograft alternative

to mice, with higher throughput, is the zebrafish embryonic

xenograft, which lacks a functional adaptive immune system

while in this stage of development. These models have important

limitations related to their short duration for evaluation, and due to

important differences between human and zebrafish signaling

pathways. Nonetheless, they have been successfully used to assess

CAR-T mediated antitumor effects in vivo and offer the advantages

of requiring small tumor samples, a low number of CAR-T cells,

and allow high-resolution live imaging of effector: target (E:T)

interactions (73, 74).

Importantly, significant differences have been observed in

response to CAR-T therapies between in vivo models and human

trials. arise due to omission of TME. This discrepancy can be

attributed to the exclusion of the influence of the tumor

microenvironment (TME) on tumor survival, progression, and

resistance development in in vivo immunodeficient models as it

happens in immune-deficient mouse models (75). The complexity

of TME and tumor tumor-associated macrophages (TAM)

interaction with CAR-T cells is gaining increasingly more

attention due to their important immune suppressive effects,

limiting CAR-T efficacy. Alternatively, the potential of cytokine-

producing CAR-T cells to recruit inflammatory cells and modulate
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an antitumoral microenvironment makes comprehensive TME-

tumor models essential in preclinical research (36, 76). The

prerequisite for this is the presence of a functional, adaptive, and

innate immune system. However, this implies the ability to mount a

graft-versus-graft effect.
2.4 Modeling the target and
microenvironment

2.4.1 Immune competent - humanized
Humanized mice (HM) are obtained via reconstitution of the

human immune system in immune-deficient mice and are achieved

through the engraftment of human CD34+ hematopoietic stem and

precursor cells (HSC) in mice. This allows the engraftment of a

human tumor in immune competent mice and a more accurate

portrayal of tumor-TME interaction. Depending on the origin,

engraftment of HSCs from bone marrow, peripheral blood, cord

blood, and bone-liver-marrow cells differ in terms of complications

and duration of immune reconstitution, and achieve slightly

different mature populations (77). Following differentiation,

myeloid and lymphoid cells can interact with and infiltrate

tumors, recapitulating the TME. Unfortunately, HM are

expensive, difficult to obtain and are accompanied by significant

limitations constraints. These include the limited availability of

human stem cells, the toxicity of chemotherapy or irradiation

conditioning, and the risk of engraftment failure. Additionally,

they may be complicated by xenogeneic graft versus host disease

(GVHD), especially as mice age (77–80).

2.4.2 Immune competent – syngeneic
Tumor-bearing immune competent mice fully reconstitute the

complex TME and are easily obtained by inoculation of mice with

murine tumors of genetically identical background (81).

Additionally, genetically engineered mouse models (GEMMs)

such as the Vk*MYC or the Tyr(CreER, BrafCA, Ptenf/f) develop

tumors spontaneous spontaneously or under certain stimuli,

recapitulating oncogenesis with high fidelity, albeit tumors

produced this way present with reduced immunogenicity (82–84).

By being the closest to nature in vivo model, in addition to TME

models, syngeneic mice are indispensable for modeling and

understanding lymphodeplet ion prior to CAR-T cel l

administration and for assessment of on-target-off-tumor toxicity

and CRS (85, 86). The limitations of syngeneic mouse models stem

from the compromise that both tumors and CAR-T cells are of

murine origin. This implies notable differences regarding immune

cells and cytokine function when compared to humans (87, 88).

Antigen expression varies between the two species, and certain

epitopes have different immunogenicity and thus, targets are not

always translatable between mice and humans (84–89). An

alternative approach in such instances is the use of transgenic

mice, which can be genetically engineered to express human

antigens in an immunocompetent all-murine setting (74). The

main drawback of syngeneic models remains the difficulty of

obtaining murine CAR-T cells, as current protocols for murine T
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culture and expansion have low yields, which is only aggravated by

lower cytotoxicity and shorter persistence (85–90).
2.5 Modeling the effector

In addition to target tumor models used in CAR-T research,

models for effector cells offer provide a reliable setting framework

for the assessment of novel CAR constructs. Acute T cell leukemia

cell line, Jurkat is particularly useful for this purpose as it lacks TCR

a and b chain, which can prove effective to avoid possible Graft

versus Host Disease (GVHD) toxicities and TCR-mediated T cell

activation (91, 92). CAR-Jurkat cells have been successfully used to

show anti-tumor effects of novel CAR constructs and have the

advantage of being high-throughput (93, 94).

The advantages of using an established cell line for CAR

characterization stem from the sturdiness of cells, allowing for

transduction with multiple reporter genes as well as for selection

and expansion of CAR-transduced cells to obtain a homogenous

cell population (95, 96). While this model is far from the reality in

the way that it does not recapitulate all the various T cell subtypes

obtained from patient peripheral blood mononuclear cells (PBMC),

as well as missing the inter-patient CD4+/CD8+ variability, it allows

characterization of CAR constructs while reducing background

noise through isolation of CAR mediated T cell activation (97).

It is increasingly evident that model selection dramatically

influences preclinical CAR-T outcomes. Immortalized cell lines

are high-throughput models though with no heterogeneity;

primary tumor cultures are more clinically relevant but are

subject to clonal drifting; PDOS exhibit spatial heterogeneity by

they lack systemic features, like CAR-T persistence and immune

system interactions whereas mouse models either humanized or

syngeneic are expensive, time consuming and are prone to GVHD

or require murine CAR constructs respectively. As such, integrated

experimental strategies are crucial and tiered model pipelines are

the future for CAR-T therapies to ensure translational relevance

and align preclinical data with clinical results (91, 92, 97).
3 Methods for identifying novel CAR-T
target

Despite the remarkable initial success of CD19 and B cell

maturation antigen (BCMA)-targeting CAR-T cells in the

treatment of B-cell derived malignancies, long-term follow-up

studies reveal that not all patients achieve durable responses,

partially due to downregulation or loss of target antigen (98, 99).

The increasing interest in CAR T cell therapies in oncology

promotes extensive investigation for new surface proteins that

could be targeted by adoptive cell immunotherapies. However,

finding an appropriate surface antigen carries various challenges.

An ideal target for CAR-T-mediated immunotherapy should

exhibit high, exclusive, and uniform expression on cancer cells,

including cancer stem cells. To provide low off-tumor activity and

avoid life-threatening toxicity, the target shall not be present in vital
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tissues, nor be expressed on cells responsible for normal

hematopoiesis (hematopoietic stem/progenitor cells (HSPCs))

(100). Furthermore, a successful CAR target must be associated

with high stability and sustainability. This could be accomplished by

identifying antigens that play essential roles in cancer biology and

survival. It is noteworthy however that none of the proteins targeted

by the currently approved CAR-T therapies fit all of these

requirements, particularly since tumor-specific antigens are rare.

Despite these challenges, an increasing interest in finding novel

targets for CAR-based immunotherapy has been observed over the

years, both for new indications (e.g., solid tumors) (101) and for

relapsed/refractory (r/r) hematological malignancies in which

previous CAR-T treatment rendered ineffective due to antigen

escape (99, 102). Indeed, since seminal case report studies with

CD19 CAR-T cells were published in the early 2010s (7, 103–105),

the number of clinical trials targeting surface proteins expanded

exponentially. Thus, as of the end of 2024 there are 169 ongoing,

and nearly a thousand clinical trials still looking for participants

(https://clinicaltrials.gov/). Selecting known cancer biomarkers or

surface proteins targeted by already existing clinically approved

immunotherapies, especially monoclonal antibodies (mAbs), was

one of the earliest strategies to create new CAR-T treatments for

pre-clinical evaluation. Examples of such antigens include known

surface bio-/prognostic markers such as mesothelin (106, 107),

PSMA (108), GPRC5D (109, 110), or previously known

immunotherapeutic targets: CD20 (111), HER2 (ERBB2) (112),

and EGFR (113), targeted clinically with rituximab, trastuzumab,

and cetuximab mAbs, respectively. Importantly, as the mechanism

of action of mAbs and CAR-T cells differs greatly, targeting the

same antigens through various effector immune cells may provide

different and unexpected toxicity profiles. Indeed, infusion of anti-

HER2 CAR-T cells resulted in multiorgan failure in a patient with

metastatic colon cancer due to rapid cytokine release following

target recognition on normal lung cells (114). Simultaneously, anti-

HER2 mAbs (e.g., trastuzumab, pertuzumab, margetuximab) are

safely used for patients with HER2-positive breast cancer alone or in

combination with chemotherapy (115). Similar observations were

made for other antigens, including CD38 and PD-L1. Despite the

successful targeting of these proteins with respective mAbs,

daratumumab (CD38) (116) or atezolizumab (PD-L1) (117) in

clinical practice, case report studies demonstrated life-threatening

toxicities in patients infused with anti-CD38 (118) or anti-PD-L1

(119) CAR-T cells. Ultimately, this data underscores that target

identification for CAR-T therapy must be performed with caution

and rigorous pre-clinical evaluation, employing malignant and

normal cells. Therefore, in this chapter, we will summarize

unbiased approaches to actively searching for cancer-associated

and cancer-specific proteins, which have led to the development of

new CARs.

Given the considerable advances achieved in studying the

transcriptome of human malignancies and the increasing

accessibility of high-throughput methods such as RNA

sequencing (RNA-seq), the search for novel cancer biomarkers

has long relied on these tools. Importantly, since RNA-seq

evaluates the level of all transcripts in the cell, established tools
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for the annotation of surface protein-coding genes are crucial for

appropriate CAR target identification (120). Furthermore, the

employment of transcriptomic data for immunotherapy target

selection suffers inaccuracy due to a complex correlation between

transcript expression and protein level in cells, which is owing in

part to varying transcript isoforms and translation efficiency (121).

Therefore, to minimize the inaccuracy of this approach, integrated

transcriptome-proteome analyses of normal and cancer cells have

been proposed (122). Indeed, Perna et al. (123) presented an elegant

pipeline for CAR target selection, integrating transcriptomic and

proteomic data generated from acute myeloid leukemia (AML) cell

lines/patient samples, a comprehensive literature search of already

published CARs, and available databases of protein levels in normal

tissues. The rigorous algorithm served to identify more than 20

potential CAR targets. Expression of these proteins was then

evaluated by flow cytometry in primary AML samples, normal

bone marrow, and resting/activating T cells to exclude the

possibility of fratricide killing mediated by CAR-T cells.

Accordingly, four molecules, ADGRE2, CCR1, CD70, and

LILRB2 represented the best profile of expression, fulfilling most

of the criteria for the desirable CAR candidate described at the

beginning of this chapter. In a subsequent study, the authors

verified the expression of selected targets in r/r AML patients and

successfully designed CAR-T cells targeting ADGRE2 in

combination with CLEC12A (124). Importantly, several other

targets were discovered by the combined transcriptomic/

proteomic approach, such as CCR10 (125), ILT3 (LILRB4) (126),

and endothelin receptor B (127), all in multiple myeloma cells.

Accordingly, for CCR10 and LILRB4, antigen-specific CAR-T cells

were developed and proved effective in pre-clinical studies

(125, 128).

Nevertheless, owing to the extensive technological progress that

has been made in studying cell surfaceome, several recent studies

relied entirely on proteomic data in the search for new CAR

candidates (129–131). comprehensive analyses employing mass

spectrometry (MS) platforms are currently well-recognized in the

CAR-T field and are superior to conventional flow cytometry and

mass cytometry approaches as they are not restricted to the

necessity of using previously generated antibodies. Surfaceome

profiling is a multistep procedure aimed at the specific

enrichment of surface proteins, which are then analyzed with

liquid chromatography-tandem mass spectrometry (LC-MS/MS).

The capture of surface proteins is achieved through various

techniques, with chemical-based tagging being the most common

(132). This includes approaches based on biotinylation, metabolic

labeling, or cell-surface capture by glycan oxidation. A

comprehensive and elegant summary of these and other MS-

based techniques for immunotherapy target identification is

available elsewhere (133).

Cell surface enrichment of malignant cells, followed by MS,

contributed to the discovery of new immunotherapy targets, such as

CD72 in B-cell acute lymphoblastic leukemia (129) or SEMA4A in

multiple myeloma (131, 134). In addition, Mandal et al. (130)

presented a specific form of proteomic approach aimed at

identifying tumor-specific proteins, focusing on structural
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differences in surface antigens of cancer and normal cells.

Interestingly, the authors combined cross-linking mass

spectrometry (XL–MS) with the cell surface capture method, thus

yielding enriched surface N-linked glycoproteins in their native

conformation. This led to identifying AML-specific, activated

integrin b2, and generating a novel CAR-T cell therapy,

thoroughly tested in preclinical studies. Of note, one of the

challenges of this structural proteomics technique and other MS-

based approaches for studying cancer cell surfaceome lies in the

high sample input required. As a result, the majority of proteomic

studies mentioned in this review used human-immortalized

malignant cell lines. This approach, however, does not

recapitulate cancer heterogeneity observed in patients nor capture

all attractive antigens, which may be absent on established cell lines.

Noteworthy, Marhelava et al. described an optimized method for

cell surface biotinylation, subsequent MS, and surface protein

detection on xenograft cells generated from B-cell acute

lymphoblastic leukemia patients (135).

Moreover, an innovative approach has been recently developed

to guide CAR-T cells to neuroblastoma cells (136). In the seminal

paper, the authors screened the immunopeptidome of patient-

derived xenografts and found that PHOX2B oncogene-derived

peptides presented in specific MHC class I molecules (HLA) were

particularly enriched in tumors. Interestingly, as selected peptides

were not immunogenic and peptide-specific TCRs did not exert

high affinity, peptide-centric CARs were designed. The selection of

scFvs binding PHOX2B peptide-MHC (pMHC) complexes was

performed, which resulted in identifying one tumor-specific

binder. Importantly, PHOX2B-peptide-centric CAR-T cells

showed impressive tumor-killing potential in pre-clinical

neuroblastoma xenograft models with different HLA allotypes.

This study highlights that integrated transcriptomic, epigenomic,

and immunopeptidomic dataset analyses hold promise in searching

for cancer-specific proteins that could be targeted with CAR-T cells.

More clinically relevant data are needed to verify the safety and

efficacy of this method.

Importantly, all above-mentioned techniques study the whole

tumor population, thus failing to address tumor heterogeneity. The

current advancement in single-cell analysis technologies overcomes

issues and provides a helpful tool to profile the tumor at a single-cell

resolution. This is particularly important as bulk tumor analysis for

CAR target identification may overlook rare, though clinically

important cell types, such as cancer stem cells or therapy-resistant

clones. Noteworthy, cover single-cell transcriptomics (scRNA-seq),

with various platforms available, such as 10X Genomics. Indeed, by

using scRNA-seq datasets, Gottschlich et al. identified CSF1R CD86

as viable CAR targets for AML (137). It is important to note that,

given the complex correlation between transcript expression and

protein level, single-cell proteomics are arguably more useful for

developing CAR targets than single-cell transcriptomics. In fact,

single-cell proteomic techniques such as CITE-seq (cellular

indexing of transcriptomes and epitopes by sequencing) (138) or

Cellenion’s platforms have been developed and could be exploited

to revolutionize CAR target development (139).
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Nonetheless, despite impressive numbers of novel techniques

for CAR target selection and novel CAR-T therapies being tested as

single or multi-targeting CARs (dual, tandem, mixed, etc.), thus

addressing tumor heterogeneity, other hurdles related to CAR-T

treatment persist. These challenges are particularly frequent in solid

tumors and are linked to limited CAR-T cells trafficking and

persistence in the tumor microenvironment, as explained in detail

in the following chapter.
4 Challenges for CAR-T cells in solid
malignancies

4.1 Limited efficacy in clinical response

CAR-T cell therapies have made a name for themselves and first

gained approval for use in hematologic malignancies though initial

studies did not specifically aim a narrow spectrum of malignancies.

In fact, some of the earliest targets for CAR-T research were solid

tumors such as ovarian cancer, colorectal carcinoma and renal

cancers, however several core differences between solid and

hematologic malignancies have favored the latter for clinical

applications of CAR-T cells which gained approval for clinical

practice whereas, to date, no CAR-T therapies are FDA approved

for solid tumors (140, 141). Unfortunately, despite exciting results

in vitro, early phase clinical trials for solid cancers showed little to

no response. Consequently, a significant amount of research is

currently being undertaken to elucidate the underlying causes of

this phenomenon. and to date much research is going into

decrypting the reasons for this matter. For instance, a phase I

trial of CAR-T cells targeting the a folate receptor in 8 patients with

metastatic ovarian cancer, and another targeting the tumor-

associated glycoprotein 72 (TAG-72) for metastatic colon cancer

showed no clinical response. However, in the latter trial, the longest

living out of the 25 patients was the patient with the greatest most

significant lymphocyte expansion and had detectable circulating

CAR-T cells at 48 weeks and whereas in all other patients they were

not detectable after 14 weeks, thus pointing to potential benefits of

CAR-T cells in solid tumors if their activity can be preserved.

Despite the low or absent objective clinical responses, these trials

did much to show that adoptive immune therapies in solid tumors

are a category of their own when it comes to CAR-T cell efficacy, or

lack thereof. Low CAR-T persistence, reduced intratumor

trafficking and the occurrence of inhibitory factors to CARs all

rapidly emerged as challenges which would require various

strategies to be overcome (16, 142).
4.2 CAR-T cell expansion and persistence

CAR-T cell expansion as an early activity indicator, followed by

persistence are clearly associated with favorable responses in

hematologic malignancies (143). Stemming from the use of

murine-derived antibodies and their inherent immunogenicity,
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the occurrence of human anti-chimeric antibodies (HACA)

hindering T cell expansion, has been reported in several clinical

trials, with over half of the patients developing CAR-directed

antibodies in clinical trials targeting TAG-72 (142). In another

clinical trial, with similar incidence of HACA, investigators showed

that antibodies arising to CAR-T targeting carbonic anhydrase IX

(CAIX) have inhibitory capacities and reduce CAR-T functionality

and persistence (144). Though not specific to solid tumors, this

phenomenon seems to be reported less frequently in hematologic

malignancies. This might have to do with the prior treatments that

patients with lymphoma and leukemias often undergo prior to

CAR-T therapies and are therefore often more lymphopenic than

pa t i en t s wi th so l id tumors . Lymphodep l e t ion wi th

Cyclophosphamide (CP) and Fludarabine (FLU) has become an

integral part of CAR-T therapies as it led to remarkable benefits

across trials in both types of cancers, allowing for achievement of

72% overall response rate (ORR) and 50% complete remission (CR)

in relapsed refractory Non-Hodgkin Lymphomas (NHL) treated

with CD19 targeted CAR-T therapies, with enhanced T cell

expansion as well as reducing immune responses to therapy

(145). The efficacy of conditioning judged by the degree of

lymphopenia at the time of adoptive cells infusion appears to be

good predictor for T cell engraftment, as absolute lymphocyte

numbers are inversely correlated with CAR-T expansion (146).

For instance, a phase I trial using conditioning with either CP

+Oxaliplatine or CP+FLU showed more profound lymphodepletion

with the latter regimen, which correlated with higher peak CAR-T

expansion as well as lower immune response to CAR sequence

(147). Likewise, in two phase I solid tumor trials targeting

CEACAM5+ cancers and metastatic castration resistant prostate

cancer, prior conditioning with FLU and CP or CP alone led to

improved T lymphocyte expansion and activation in patients with

more intense conditioning, however, both trials reported serious

adverse effects of acute respiratory toxicity and CP dose-related

cystitis respectively (148, 149). Perhaps due to the rather intact

adaptive immunity of patients with solid tumors, the maximal

benefits of lymphodepletion cannot currently be achieved due to

dose-limiting toxicities. Indeed, there may yet be benefits to be

achieved with alternative conditioning regimens.

Persistence of CAR-T cells after infusion is a particularly

challenging aspect in solid tumors. With circulating tumor cells

readily available, hematologic malignancies are naturally more

accessible targets, and the hypothesis is that persistent antigen

exposure is what entertains enables superior CAR-T cell

expansion and persistence in these patients (150). Generally, the

kinetics of infused cells follow pattern of expansion at 7-10 days,

followed by a gradual decrease to undetectable levels at

approximately 6 weeks (91, 151). A phase I/II trial for HER-2

positive sarcoma included 19 patients, maximum CAR-T levels

were observed at 3 hours following infusion and persisted for 6

weeks, however, no expansion was observed. Despite this, tumor

samples from two patients, obtained following treatment, both

showed CAR-T infiltration (152). In another phase I trial

targeting EFGRvIII in recurrent glioblastoma, including 10

patients, the peak expansion occurred within 3-10 days and was
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followed by a rapid decline after the 14th day. Seven of the 10

patients underwent surgical tumor resection at different time

points, which allowed for assessment of tumor CAR-T

infiltration. Interestingly, tumor infiltration seems to be higher at

the earlier time points, suggesting that there is no late CAR-T

localization in the tumors in this case (151). While persistence has

become an indicator of promise and efficacy for CAR-T, it does not

always seem to be the case. When evaluating GD.2 targeting CAR-T

including a constitutively active chimeric IL-7 receptor in high

grade pediatric tumors in a phase I trial, patients experienced

improvement in neurologic deficits and 29% of 11 patients

achieved objective partial response, however response to

treatment did not show any correlation with expansion in

peripheral blood and while circulating CAR-T cells declined

within 4 weeks, they were present in tumors up to 3 months post

infusion (153). These observations imply that due to tumor-

localized antigens, peripheral CAR-T cell persistence in patients

with solid tumors is a surrogate and might not capture the dynamics

within tumors and lymphoid structures.
4.3 CAR-T cells intra tumoral trafficking

A very relevant depiction of the dual nature of prerequisites for

CAR-T cell therapy efficacy in solid tumors comes from the biology

of checkpoint inhibitors and mechanisms of resistance to treatment.

According to work done by Dangaj et al. characterizing the

immune reactivity of tumors, the efficacy of checkpoint inhibitors is

dependent on tumor infiltration by cytotoxic T cells. The key

players in these events are the chemokines CCL5 and CXCL9

secreted by tumor cells and local myeloid cells respectively.

Overexpressing tumors are immunoreactive and are associated

with improved outcomes and response to checkpoint inhibitors,

whereas downregulation of chemokine expression via DNA

methylation leads to loss of infiltrating lymphocytes (154). In a

complementary manner, murine studies of pancreatic ductal

adenocarcinoma showed that residing cancer-associated

fibroblasts (CAF) as well as FAP (fibroblast activation protein)

positive stromal cells reduce the efficacy of checkpoint inhibitors by

suppressing the cytotoxic activity of locally present cancer specific

effector T cells. This inhibition is mediated by secretion of CXCL12

binding to CXCL12 receptor on tumor cell but antitumoral effects

of checkpoint inhibitors can be restored via depletion of CAF or

inhibition of CXCL12 (155).

As checkpoint inhibitors mechanism of action relies on

endogenous cytotoxic T cells, it becomes evident that the intra

tumoral presence of reactive T cells and their actual anti-tumor

effects are two distinct prerequisites for CAR-T cell therapy success.

The barriers preventing these goals for CAR-T cells are described as

reduced intra tumoral trafficking and local immune suppression

under the influence of the local TME.

Encompassing the stark differences in persistence and

trafficking between hematological and solid malignancies is an

interesting phase I clinical trial which used the same ROR1

targeting CAR-T cells in patients with ROR1 positive chronic
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lymphocytic leukemia (CLL), breast cancer and non-small cell lung

cancer. This particular setting allows for a fairer comparison

between the two different entities. As expected, expansion was

greatest in CLL patients with the highest peak (over 95% of CD8

+ cells) in the patient with the highest proportion of circulating

tumor lymphocytes perhaps due to increased antigen exposure,

whereas peak levels in patients with solid tumors were much lower,

and 4 out of 18 patients had peak CAR-T levels < 3% of circulating

CD8+ cells. This translated into trafficking, with only 2 out of 7

solid tumor samples showing detectable CAR-T levels and this was

in the patients with high expansion peaks. Two out of 3 patients

with CLL achieved a partial response, whereas, disappointingly,

only one out of 18 patients with solid tumors achieved a transient

partial response (147). The underwhelming levels of tumor

infiltration seem to be improving with the use of novel

generations of CAR-T cells (152). For instance, a clinical trial

using PSMA TGFb dominant negative armored CAR-T cells

showed better tumor trafficking, detectable in 7 out of 9 biopsies

performed at day 10 following infusion. The CAR-T levels

measured by qPCR as copies/ng of genomic DNA were 1 log

lower than in peripheral blood in most patients, whereas one

patient had 17 times higher CAR-T levels in tumor than in blood,

however despite approximately 30% of patients showing a reduction

in PSA, no radiological response was documented (156). Though

CAR DNA can be found in increasingly more samples, the small

size of patient cohorts is insufficient to make correlations with

clinical response, which is made more difficult by the very low

number of responders. Multiple studies have shown both in murine

models as well as human trials that local administration of CAR-T

cells enhance trafficking and antitumoral effects, although it is still

unclear what appropriate tumor infiltration is and will probably

vary depending on tumor and particular CAR construct.

Inherent to the heterogenous and tridimensional nature of solid

tumors, infiltration of the neoplastic fortresses is a monumental task for

transgenic lymphocytes. The first challenge encountered by CAR-T

cells is the lack of physiological stimuli to guide lymphocytes to

inflammation sites. Selective extravasation of lymphocytes from

circulating blood into tissues is dependent on endothelial

upregulation of integrins and selectins and is also supported by

expression of costimulatory molecules. In tumor vessels, angiogenic

factors VEGF, bFGF mediate a reduction in expression of integrins

ICAM-1/2, VCAM-1, and E selectin leading to the so called anergy

manifested as reduced lymphocyte-endothelium interaction and

immune tolerance. Additionally, tumors can induce endothelial cells

to secrete Fas-ligand which further reduces lymphocyte infiltration by

inducing apoptosis in the adhering cells (157). Secondly, a physical

barrier of dense tumor stroma and extracellular matrix produced by

fibroblasts isolate tumors from the immune cells (158).

It stands to reason that antitumoral effects would be directly

correlated with the number of CAR-T cells located inside the

tumors. However, assessing effector cell trafficking to tumor sites

proves to be rather difficult and currently available data on CAR-T

trafficking in clinical trials is very scarce. Very few studies include

systematic biopsies while others assessed effector cell infiltration on
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palliative reasons.

Accurate assays are critical to understanding and optimizing

CAR-T therapies in solid tumors. Most accurate for this purpose are

tumor biopsies which can be processed by immune histochemistry

(IHC), flow cytometry of dissociated tissue or by more sensitive

qPCR (159–161). The risks associated with repeated surgical

sampling, potential infections and discomfort make it an

unreasonable approach for routine practice and even for dynamic

CAR-T monitoring within clinical trials.

Non-invasive assays would be much more practical for this

purpose; however, they assays are not as sensitive as tumor biopsies.

For instance, one clinical trial which used both biopsy and imaging

found intra tumoral trafficking in one out of the three tumor

samples, whereas 111-Indium based assays failed to show any

tumor infiltration (142). As opposed to diagnostic applications of

PET imaging, where its sensitivity is critical for evaluating residual

disease, the purpose in CAR-T therapies would be to assess

sufficient or relevant tumor infiltration, thus different expectations

might be applicable in this case.

Various assays are available for in vitro and in vivo models,

however, very few translate to human applications. Bioluminescence

assays are commonly used in mice and make use of Luciferase

transduced CAR-T cells able to emit light upon metabolization of

substrate. Humans, however, are too large for the lymphocyte emitted

light to traverse tissues. Two-photon microscopy, one of the highest

resolution assays used in research is also not translatable to humans

(51). Positron emission tomography (PET) based imaging is an

alternative non-invasive assay which is reported to retain sensitivity

for as few as 10000 CAR-T cells, which has been used in several

clinical trials (162, 163). For this, CAR-T cells can be labeled prior to

infusion and tracked after infusion for as long as they remain

radioactive. This has no apparent deleterious effect on cell

activation or viability; however the radiotracer is diluted with each

cell division and though radioisotopes with long half-lives such as

89Zirconium-oxine can be used, the trafficking window is about 8

days (163, 164). Alternatively, CAR-T cells can be traced at any time

point with the transduction of reporter genes which metabolize and

accumulate radioactive substrate. Two such examples are reporter

herpes simplex virus type 1 thymidine kinase (HSV1-TK) and probe

9-(4-(18F)fluoro-3-(hydroxymethyl)butyl)guanine (18F-FHBG) or

Escherichia coli dihydrofolate reductase enzyme (eDHFR) reporter

with (18F)-TMP fluorine-18 probe which have been validated for

tracking CAR-T cells into tissues and confirmed by IHC (51, 165).

The caveat of this approach is that CAR-T cells require an additional

transduction prior to infusion, and that it cannot be applied to CAR-

T cell therapies already in trials. Additionally, signal intensity in

tumors seems to be influenced by local vascularization which may be

low in poorly irrigated tumors. This is further complicated by the

reported nonspecific tracer uptake in tissues leading to background

signal (163). Inducible T-cell COStimulator (ICOS) targeting tracers

directly bind activated T cells, thus obviating the need for prior CAR-

T cell manipulation and allow tracking of CAR-T cells distribution

though they will also show non-transduced T cells (166).
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4.4 Tumor immunosuppressive
microenvironment

Poor responses to therapy even in patients with detectable

tumor infiltration confirm that the mere presence of CAR-T cells

is not sufficient to produce adequate anti-tumor effects. Inactivation

of CAR-T cells with the occurrence of exhausted phenotype is the

result of both intrinsic and extrinsic factors. Excessive signaling

attributable to the CAR structure itself has been shown to lead to

exhaustion through tonic signaling, with 4-1BB CAR seemingly less

affected by this phenomenon (167). Additionally, extrinsic signaling

and immune suppression can induce T cell exhaustion, for instance

through PD1/PD-L1 signaling (168).

As has been shown in the case of checkpoint blockade

inhibitors, tumor microenvironment plays an important part in

suppressing immunity towards tumors. Multiple cell types mediate

the immune suppressive local microenvironment, with cancer

associated fibroblasts (CAF), lymphocytes, endothelial cells,

macrophages, and myeloid-derived suppressor cells (MDSC)

altering cell phenotypes and functions to create a protective niche

for cancer cells. MDSC seem to be especially important as they

appear to expand in response to robust CAR-T cell expansion,

protecting tumors (146, 156).

The immunosuppressive TME is characterized by the presence

of various immunosuppressive cells such as regulatory T cells (Treg

cells), myeloid-derived suppressor cells (MDSC) and tumor-

associated macrophages, as well as the upregulated expression of

immunosuppressive molecules such as programmed cell death

protein 1 (PD-1) and programmed death-ligand 1 (PD-L1),

making this environment an important barrier for an effective

antitumor immune response (276–278). Treg cells are an

immunosuppressive subset of CD4+ T cells characterized by the

expression of the master transcription factor forkhead box protein

P3 (FOXP3)+ and CD25 (the interleukin-2 (IL-2) receptor (chain))

(279). Treg cells were originally identified in 1995 by Sakaguchi

et al. as CD4+CD25+ T cells that suppress an excessive immune

response to various antigens but also contribute to tumor

progression by inhibiting antitumor immunity (280). Treg cells

are frequently detected in inflamed tumors, where they suppress

various types of effector lymphocytes, including CD4+ T helper cells

(TH) and CD8+ cytotoxic T lymphocytes and CD8+ cytotoxic T

lymphocytes (CTLs) (281). In addition, tumor infiltration of Treg

cells and the high number of Treg cells in the TME are associated

with poor prognosis in various cancers (279, 282).

Interestingly, in a clinical trial including patients with recurrent

glioblastoma, early tumor CAR-T trafficking was accompanied by

polyclonal lymphocyte infiltrates, however these reactive

lymphocytes show a Treg (regulatory) phenotype along with high

concentration of immunosuppressor molecules (151). On the other

hand, a trial using 4th generation GD.2 targeting CAR-T cells for

high grade pediatric tumors showed that incorporating a

constitutively active IL-7 receptor leading to improved tumor cell

killing was associated with higher level of tumor-specific

polyfunctional cells (153). Similarly, another study in patients

with recurrent high-grade glioma showed an increased survival
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associated with elevated pretreatment intra tumoral CD3 levels

(146). This is to show that local immune cells are crucial allies which

can play a dual role both pro and antitumoral and that treatment

efficacy may depend on which way they can be swayed. One

remarkable example of immune cells which can change

allegiances is the tumor associated macrophage which can take a

proinflammatory and antitumoral M1-like phenotype or a

myelosuppressive M2-like phenotype which prevents T

lymphocyte mediated cytotoxicity by secreting PD-L1 and

CTLA4-lingands and is associated with poor prognosis (169, 170).
4.5 Tumor antigen heterogeneity

Unlike hematologic malignancies where lineage specific

antigens are universally and consistently expressed, solid tumors

lack highly specific targets (171). Instead, they are TAA, defined by

overexpression, although these antigens are also shared by other

normal tissues of epithelial origin. In addition to the lack of

specificity, TAA exhibits important heterogeneity in expression

levels between different patients but also within different regions

of the same tumor and temporal heterogeneity with tumors

changing histology over time. This is explained by selection of

subclones and results in distinct tumor cell populations with

varying levels of antigen expression (172–174). Tumor cells

evas ion of cy to tox ic i ty through ant igen express ion

downregulation and selection of TAA negative clones, termed

antigen escape is one of the main mechanisms of resistance to

CAR-T cell therapies.

For instance, the early recurring tumors in mice bearing

peritoneal ovarian cancer showed reduced TAA expression and

correlated with reduced CAR-T persistence and in patients with

recurrent glioblastoma, five out of seven biopsies evaluated after

CAR-T therapy had lost TAA expression (151, 175). Therefore,

selecting patients for treatment depending on their percentage of

expression is essential since high antigen expressing cells are

preferentially killed within tumors meaning that lower antigen

expression increases the risk for antigen escape (174).

Unlike TCR which benefits from an activation amplification

system allowing them to recognize very low levels of antigens, CAR-

T cells depend on a higher threshold for antigen density with low

TAA densities limiting CAR-T cell activation (55, 176). Countering

this issue with higher CAR expression is useful to a certain extent, as

too high CAR densities lead to antigen independent activation and

CAR-T cell exhaustion. At the same time, excessive antigen affinity

of CAR increases the risk of on-target off-tumor toxicity. Severe

toxicity stemming from on-target off-tumor cytotoxicity was

reported in several clinical trials where CAIX targeting CAR-T

cells infiltrated the antigen expressing bile-ducts causing grade 2 to

4 hepatotoxicity even at the lowest used treatment doses, as well as

the severe respiratory toxicity in the trial assessing CEACAM5

targeting CAR-T cells which led to trial closure (141, 148).

Regarding CAR affinity, it seems that a good balance between

activation by overexpressed tumor-associated antigen while

avoiding activation by lower-level expression in normal tissues is
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more likely to be achieved in the range of Kd 10-6 – 10-7 M which is

the natural affinity range of TCR (176). Another mechanism of

resistance to therapy related to antigen heterogeneity besides

antigen escape was discovered using tumor-derived organoids

showing that antigen-negative tumor cells form shield-like

structures protecting the high-expressing cells. Additionally, the

authors of this study proposed a saturation mechanism for CAR-T

cell therapies in solid tumors showing that effector cells which do

not act to kill cancer cells, termed “free CAR-T cells” increase with

higher therapeutic doses, leading to increased risks of side-

effects (177).
4.6 The influence of microbiota in CAR-T
cell therapy

Gut microbiota has been studied in various topics during the

last decades, including autoimmunity, metabolic disorders,

cardiovascular disease, neurodegenerative disorders and even in

cancer. Gut microbiota has a critical role in immune regulation and

could influence the outcome of antitumor therapies (178).

The role of gut microbiota in CAR-T cell therapies was

evaluated by several groups, in retrospective studies, which are of

high importance as the data suggests that the response to therapy

and the toxicity of CAR-T cell therapy have a clear connection with

microbiota. Smith et al. evaluated patients with R/R B-ALL and

LBCL that received anti CD19 CAR-T cells using CD28 and 4-1BB

costimulatory CAR-T cells, showing that the patients that received

broad-spectrum of anaerobe-targeting antibiotics correspond with a

decreased alpha diversity and the exposure to the antibiotic cure

was correlated with reduced progression-free survival, overall

survival and in the case of lymphoma patients, ICANS had higher

incidence in those that received antibiotics (179).

The presence of Bifidobacterium longum and the peptidoglycan

synthesis was strongly correlated with a long-term survival and

response to therapy. Furthermore, it was highlighted that the

presence of Akkermansia muciniphila could be potentially

responsible for a better quality of the final CAR-T product as the

CD3+ and CD4+ T cells count were favorable for generating a good

quality product (180).

Hu et al. presented the case of multiple myeloma patients that

have different gut microbiota patterns who achieved CR after anti-

BCMA CAR-T cells. The research highlights different amino acid

metabol ism pathways enriched in responders versus

nonresponders, with Bifidobacterium marked as enriched in CR

patients and being associated with CRS (181).

The first observation of the relationship between gut

microbiome and CAR-T cell therapy was made by Kuczma et al,

who evaluated the anti-CD19 CAR-T cells in murine models. The

study showed that the administration of a broad-spectrum

antibiotics therapy was responsible for the alteration of the gut

microbiome and was associated with a prolonged persistence of the

CAR-T cells (182). While, on the other hand, Uribe-Hernadez et al.

s howed tha t v ancomyc in the r apy admin i s t e r ed in
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immunocompetent mice after receiving CAR-T cells experienced

better lymphoma control, as the use of vancomycin enriched

endogenous CD8+ T cells and Cd11+CD103+ dendritic cells (183).

Based on these findings and considering that microbiota has a

key role in immune modulation, many therapeutic strategies have

been developed to adjust microbiota activity to boost the antitumor

effects of different immunotherapies: adjustment of antimicrobial

therapy, diet, prebiotics, probiotics and fecal microbiota

transplantation (178).

The gut microbiota has demonstrated considerable effects on

cancer treatment, and immune functions. Initial findings indicate

their possible connections in changing the effects of CAR T cell

therapies, but the exact mechanisms have yet to be thoroughly

explained. We have highlighted several potential therapeutic

avenues to improve the performance of engineered T cells and

improve the treatment of patients receiving CAR T therapy by

utilizing the gut microbiota. Clinical trials are necessary to evaluate

the possibility of these approaches and to achieve consistent

improved outcomes.
5 Strategies to overcome the
problems

5.1 Memory cell paradigm

Despite the initial success of immunotherapy with CAR-T cells

in hematologic malignancies, high relapse rates and resistance

remain major limitations that urgently need to be addressed.

Although the exact mechanism is not yet clear, recent studies

have shown that CAR-T cell exhaustion is closely related to

epigenetic regulations such as gene modification, DNA

methylation and histone acetylation (184–186). As previously

described, HDAC inhibitors can significantly enhance the

antitumor efficacy of T cells, but only in recent years have the

effects of such a combination with CAR-T cells on therapeutic

outcome been investigated in preclinical and limited clinical studies.

In addition to hematologic malignancies, some solid tumors

that are generally more resistant to CAR-T cell therapy, mainly due

to the immunosuppressive tumor microenvironment and antigen

escape mechanism, have been shown to be more susceptible to

CAR-T cells when HDACi is added to the treatment. The pan-

HDACi vorinostat was able to increase the cytotoxic activity of

CAR-T cells targeting the B7-H3 antigen in several solid tumor cell

lines by increasing the expression of B7-H3 on the cell surface and

downregulating immunosuppressive signaling pathways (187).

Panobinostat resulted in substantial suppression of Her2+

pancreatic tumors in mice when co-administered with Her2-

gp100 dual specific CAR-T cells and a vaccine that activates

CAR-T cells by inducing apoptosis and memory cell formation

(188). In a more recent attempt to improve CAR-T immunotherapy

in pancreatic cancer, Zhang and coworkers incorporated short

hairpin RNA (shRNA) sequences targeting HDAC11 into the

NKG2D (Natural killer group 2 D receptor)-targeted CAR-T cells
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(they termed them sh-NKG2D-CAR) (189). In vitro studies on PC-

3 and DU-145 cells showed that downregulation of HDAC11 by sh-

NKG2D-CAR resulted in enhanced cytotoxicity compared to

conventional CAR-T cells, which was attributed to enhanced T-

cell activation and degranulation capacity as well as increased

expression of Granzyme B (GzmB) and IFN. Sh-NKG2D-CAR

were also able to promote proliferation and differentiation of

CAR -T cells into memory T cells while reducing depletion, as

demonstrated in vitro and in the pancreatic cancer xenograft model

in mice. These reports provide a reliable basis for further clinical

evaluation of CAR -T cell therapy in combination with HDAC

inhibition as a promising strategy to increase efficacy and overcome

resistance to CAR -T cell therapy in malignant B-cell tumors and

some solid tumors. However, HDACi could induce DNA damage in

both normal and cancer cells. Fortunately, normal cells could repair

the HDACi induced DNA damage, which can explain the

therapeutic window observed in clinical practice. This off target

effect could be controlled as in the case of demethylating agents, by

following a standard regimen, in cycles, allowing the normal cells to

recover, while the tumor cells which grow faster and have intense

metabolism, will still be affected by HDACi (190, 191).

The cornerstone of the CAR T-cell production process relies on

the most effective T-cell product. Several strategies can be employed

to overcome resistance in CAR T-cell therapy related to the

memory cell paradigm, focusing on enhancing memory T-cell

generation, maintenance, and function. Central memory T cells

and stem cell memory T cells are associated with better clinical

outcomes in CAR T-cell therapy. These subsets of T-cells possess

the ability to self-renew and differentiate into effector cells upon

encountering an antigen, offering the potential for long-lasting anti-

tumor responses (192).

The choice of costimulatory domains in CAR design

significantly impacts the differentiation and persistence of

memory T-cells (193, 194). Several domains have been described

in CAR T-cell products, but CD28 and 4-1BB are used in most

clinical trials, and current CAR T-cells approved by the FDA

contain one of these costimulatory domains. It was found that 4-

1BB costimulation is more likely to lead to the new generation of

central memory phenotype T cells with better proliferation,

survival, cytokine secretion ability, and higher persistence than

CD28 costimulation. In turn, CD28 promotes high cytotoxic

activity and an effector-like phenotype (193). Combining 4-1BB

and CD28 can enhance CAR T-cell activity, improve the central

memory phenotype, boost proliferation, and increase recruitment

of lymphocyte-specific protein-tyrosine kinase to the CAR (38).

Selecting memory-like characteristics in T cells used for CAR T-

cell manufacturing can improve outcomes. It was observed that a

memory profile in CD8+ CAR T cells, marked by elevated CCR7,

CD27, and SELL expression in the infusion product, has been

associated with complete response (CR). In contrast, patients with

a more exhausted CD8+ CAR T cell phenotype tend to show a

poorer early molecular response, as indicated by tumor-derived

cell-free DNA levels in plasma (195). Also, central memory

phenotype CAR T cells have been associated with higher in vivo
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Another evidence is that an equal CD4:CD8 ratio in the CAR T cell

product correlates with better outcomes (197–199). Implementing a

1:1 ratio of both CD4:CD8 Chimeric Antigen Receptor (CAR) T

cells can improve outcomes. This consideration is implemented in

the manufacturing workflow where CD4+ and CD8+ T cells are co-

cultured, and ratios are defined during the initial culture stage. This

strategy has been observed to promote the expansion and activity of

CD8+ CAR T cells. The CD4+ cells serve to maximize proliferation

and support the maintenance of a functional CD8+ T cell

phenotype, which is essential for anti-tumor activity, during the

initiation of culture. Coculturing creates a population of CD4+ and

CD8+ T cells at a 1:1 ratio, which improves upon the expansion,

phenotype, and in vivo anti-tumor activity of CAR T cells compared

to isolated cultures of CD8+ T cells. Typically, the manufacturing

process is to select and enrich CD4+ and CD8+ T cells

simultaneously, and then co-culture them in a specified ratio.

This is a practical method since it reduces the manufacturing

process, and if done properly, will lead to a balanced CAR T cell

product. CD4+ cells have a beneficial function on CD8+ through

both cytokines signaling as well as cell contact, through

mechanisms including CD40L-CD40 and CD70-CD27 (145, 200).

Additionally, Galli et al. found that a lower CD4/CD8 ratio in the

infused CAR T cell product was associated with better clinical

responses at 3 and 6 months post-treatment (201). The controlled

ratio of CD4/CD8 ratio for CAR T cell manufacturing has several

limitations such as the high complexity in manufacturing the

product, as separate cultures of CD4 and CD8 positive cells do

complicate the process and implies additional resources and time.

Co cu l t u r i n g a t d i ff e r e n t r a t i o s c an s imp l i f y t h e

manufacturing process.

Producing CAR T cells with a stem central memory phenotype

can also be an option to improve outcomes once these cells have a

more fit metabolism with more vigorous killing activity and

persistence (202).

Altering the metabolic pathways of CAR T cells can foster the

emergence of a memory phenotype. FOXO1 is a key regulator for

memory programming in CAR T cells, boosting their stemness,

metabolic health, and effectiveness (203–205). At the same time, the

NOTCH-FOXM1 pathway contributes to the formation of stem cell

memory-like CAR T cells (206, 207). Additionally, overexpression

of PRODH2 in CAR T cells reprograms proline metabolism,

promoting mitochondrial prol i feration and oxidative

phosphorylation, reducing glycolysis, and increasing the

generation of memory cell phenotype CAR T cells (208, 209).

Also, inhibition of IDH2 with small-molecule inhibitors leads to

an increase in glutamine oxidation and inhibits KDM5-dependent

H3K4 demethylation, increasing the ability of CAR-T cells to

differentiate into memory cells (210). Thus, reducing glycolysis

and enhancing glutaminolysis and polyamine synthesis are

potential strategies to improve CAR T-cells’ persistence and

immune characteristics (211). Transient rest can restore

functionality in exhausted CAR-T cells via epigenetic remodeling.

This can be done by disrupting TET2, which promotes the
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formation of memory cells that results in increased efficacy (212).

Knocking out DNAmethyltransferase 3 alpha (DNMT3A) retains a

stem-like phenotype, preventing exhaustion and enhancing

antitumor activity (213).

For stem central memory phenotype CAR T cell production, a

preselection of naïve and stem memory T cells can enhance the

CAR T cell antitumor responses and persistence, with the cells

exhibiting an increased expansion rate. These being translated into

better long-term efficacy (214). Another way to generate these stem

central memory phenotype CAR T cells is to incorporate the

membrane-bound IL-15, as Hurton et al. mentioned (215).

Coexpressing CAR with membrane bound chimeric IL-15 can

promote the development of T cells with a stem central memory,

this approach enhancing the persistence and antitumor activity of

the CAR T cells. The manufacturing process limitations for these

CAR T cells include the complexity of cell selection and expansion

as preselection of naïve and stem memory T cells is technically

challenging; moreover, the growth media needs specific

concentrations and ratios of cytokines and other growth factors,

and then the TME challenges can impair the function of these CAR

T cells. The main issue with the manufacturing process for these

naïve and stem central memory phenotype CAR T cells is the

variation between batches, as the T cell quality may be different for

one donor to another (216–218).

Metabolic interventions can be feasibly implemented in clinical-

grade CAR-T cell manufacturing, while several strategies have been

tested to enhance CAR-T cell metabolic fitness and their antitumor

efficacy (219). Modulating ex-vivo culture conditions such as

cytokine supplementation, nutrient composition and the use of

metabolic pathway activators or inhibitors, all during the

manufacturing process to produce less differentiated memory-like

T-cell phenotypes with improved persistency (220). These changes

should be integrated into current GMP workflows during expansion

and activation phases. Any added agents should pass the regulatory

compliance and safety, all changes should be compatible with the

automated close-system bioreactors and should not induce

variability in products. In the end, the quality control should be

passed without any unintended effects on T-cell phenotype and

functionality (221). The current implementation of metabolic

interventions for next-generation CAR-T cells investigates the

modulation of cytokine cocktails, modulation of glucose and

amino acid concentrations or the transient exposure to metabolic

modulators during the expansion phase.
5.2 Short-lived effector cell paradigm

The short-lived effector cell paradigm involves differentiating T

cells into effector cells that can rapidly respond and eliminate tumor

cells. While these cells are crucial for immediate tumor control, they

have a limited lifespan and may not provide long-term protection.

Indeed, T-cell exhaustion, characterized by the loss of effector

functions, is a significant limitation in CAR Tcell therapy (222, 223).

Disrupting checkpoint signal pathways is a common strategy to

reduce CAR-T cell dysfunction and restore their efficacy. PD-1
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blockade can increase memory phenotype, reduce exhaustion, and

induce durable responses of CAR-T cells (224, 225). The

combination of PD-1 antibody checkpoint blockade and CAR-T

cells demonstrated enhanced effectiveness of CAR-T cell therapy in

both preclinical and clinical studies (226). For example, A Phase I

clinical trial demonstrated that anti-mesothelin CAR-T cells,

combined with the anti-PD-1 agent pembrolizumab, exhibited

therapeutic effects in patients suffering from malignant pleural

disease (227). In another study, CAR-T cells armed with

autocrine PD-L1 scFv antibody reversed exhaustion and

enhanced anti-tumor immune response in solid tumors and

hematologic malignancies by blocking the PD-1/PD-L1 signaling

(228). CRISPR technology can also be used to disrupt checkpoint

pathways. A study showed the preliminary feasibility and safety of

CRISPR-engineered CAR-T cells with PD-1 disruption and

suggested that the natural TCR plays an important role in the

persistence of CAR-T cells when treating solid tumors (229).

Additionally, researchers have worked on engineering CARs that

arm cytokines or express cytokine receptors, swapping inhibitory

domains for activation domains in PD-1 or TGF-b as switch

receptors, as well as deleting negative regulators in T cells or

overexpressing factors that enhance T cell function (230).

Regarding CTLA4, its deficiency improved proliferation and anti-

tumor efficacy in preclinical models of leukemia and myeloma,

rescuing the function of T cells from patients with leukemia who

previously failed CAR-T cell treatment (231).

Specific cytokines can promote memory cell formation and

persistence. IL-15 can enhance CAR-T cell activity by reducing

mTORC1 and preserving stem cell memory phenotype with better

metabolic fitness. This results in superior vivo antitumor activity,

creating a pathway to improve future adoptive T-cell therapies (232,

233). IL-15 also can protect NKT cells from inhibition by tumor-

associated macrophages and enhance anti-metastatic activity (234).

Co-expression of IL-4/IL-15 based inverted cytokine receptor in

CAR-T cells overcomes IL-4-mediated immunosuppression in solid

tumors (235). The expression of IL-7 and CCL19 in CAR-T cells

enhances immune cell infiltration and supports the survival of

CAR-T cells within tumors (236). Furthermore, tumor-targeted

CAR T cells can secrete IL-12 and IL-18 to eliminate ovarian and

other tumors effectively (237, 238).

Metabolic interventions can also enhance the effector function

of CAR T cells (239, 240). For example, targeting the glycolytic

metabolism and polyamine/hypusine axis can control the

generation of CD8+ tissue-resident memory T cells (241).

Additionally, NAD+ supplements can potentiate tumor-killing

function by rescuing defective TUB-mediated NAMPT

transcription in tumor-infiltrated T cells (242). Enhancing fatty

acid catabolism can increase the efficacy of immunotherapy by

improving the CD8+ tumor-infiltrating T lymphocytes’ ability to

slow tumor progression (243). Another strategy is integrating

stearoyl-CoA desaturase 1 (SCD1) inhibitors with CAR-T cell

therapy to improve the antitumor effects. SCD1 inhibitors block

the conversion of saturated fatty acids, including palmitic and

stearic acids, into mono-unsaturated fatty acids via ACAT1-

dependent reduction of esterified cholesterol. Therefore, the
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SCD1-ACAT1 axis regulates effector functions of CD8+ T cells, and

SCD1 inhibitors and ACAT1 inhibitors are attractive drugs for

cancer immunotherapy (244).

The role of HDACs in T cells has been extensively studied in

recent years, and many of them have been shown to be important

for T cell development and function (245, 246). Shen and Pili (2012)

(247) demonstrated that Class I HDAC inhibitors can specifically

target Treg cells and thereby disrupt immune tolerance in cancer.

Their study showed that the HDAC1 inhibitor entinostat

suppresses Treg function, thereby increasing antitumor activity

and immunotherapy efficacy in mouse models of renal cell

carcinoma and prostate cancer (248). The study showed that

entinostat represses Foxp3 expression at either the transcriptional

or post-transcriptional level, resulting in a reduction in Foxp3

protein levels and impaired suppressive function in Treg

populations, while the total number of peripheral Treg cells

remains unaffected (248). The mechanism by which entinostat

exerts its effect on Treg cells is primarily mediated by Signal

Transducer and Activator of Transcription 3 (STAT3). STAT3

forms a complex with HDACs 1 and 3, which leads to

hyperacetylation of STAT3 (249). Entinostat has been confirmed

to specifically target STAT3, triggering its acetylation and pathway

activation, leading to suppression of Foxp3 gene expression and

reduced inhibitory function of Tregs (249). HDAC3 also plays a

crucial role in modulating the suppressive function of Treg cells.

Conditional deletion of HDAC3 in Foxp3+ Treg cells disrupts both

the development of Treg cells and their suppressive function (250).

In addition, the study by Wang and co-authors (2018) shows that

conditional deletion of HDAC8 in Foxp3+ Treg cells or the use of

HDAC8 inhibitors impairs Treg function and promotes anti-tumor

immunity (251). SIRT2 moderately suppressed Foxp3 expression as

well as the immunosuppressive function of Tregs (252).

On the other hand, Trichostatin A, a pan-HDAC inhibitor,

enhances the differentiation and suppressive function of Treg (247,

253–255). Further studies are needed for each HDAC isoform and

their effects on Treg cells. Overall, these data suggest that HDAC

enzymes affect the immunosuppressive function of Treg cells in

tumor microenvironment.
5.3 Overcoming trafficking

A significant obstacle for CAR T-cell therapy in solid tumors is

the poor trafficking of T cells to the tumor sites. This can happen

not only because the immunosuppressive TME can hinder CAR-T

cell activity but also because tumor stroma and physical barriers

limit the mobility and penetration of CAR T cells (256–258).

Directly administering CAR T-cells into the tumor can bypass

the need for systemic trafficking, increase their concentration at the

tumor site, and mitigate off-tumor toxicities (259, 260). Local

delivery can result in an earlier and increased accumulation of

CAR-T cells within the tumor and induce systemic and long-lasting

anti-tumor immunity (256–259). For example, pre-clinical models

have demonstrated the superior therapeutic efficacy of

intraventricular injection of CAR-T cells targeting HER2 and
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IL13Ra2 in breast cancer brain metastases and glioblastoma,

respectively (261, 262). Likewise, preclinical models showed

superior CAR-T cell treatment of malignant pleural mesothelioma

through intrapleural injection (107). Moreover, a transdermal

porous microneedle patch was observed to allow the intra-

tumoral penetration of CAR-T cells and enhance their infiltration

compared to direct intra-tumoral injection in solid tumors (263).

Engineering CAR T-cells to express chemokine receptors can

enhance migration to the tumor. Low radiation doses and

phosphoramide can modify ligands secreted by the TME,

augmenting cell trafficking by inducing the expression of CXCR4

and CXCL-12, blocking inhibitory cytokines and receptors, and

reducing the expression of the endothelin B receptor (155, 264, 265).

Experimental studies in murine models have shown encouraging

results on pancreatic cancer through the negative regulation of pro-

tumor cytokines (266). Some tumors can restrict T cell infiltration by

reducing the expression of T cell-recruiting chemokines or adhesion

molecules essential for extravasation. This can be found in brain, breast,

plural, and liver cancers (267, 268).

Designing CAR-T cells to secrete matrix-degrading enzymes can

disrupt physical barriers in solid tumors and improve infiltration (269).

This can be achieved by engineering CAR-T cells to secrete the

heparanase enzyme, which can degrade the tumor matrix and

overcome tissue barriers and targeting CAR-T cells to fibroblast

activation protein to remove stromal cells (270–272). Other strategies

were found to increase trafficking, such as disrupting the “sugar coat”

by designing molecules that can break the sugar shield that tumors use

to resist CAR -T cell attack (273), the combination of immune therapy

with oncolytic viruses with effective tumor debulking by destroying the

molecular shield used by some solid tumors to escape the immune

system attack (274, 275), and using nanobody-based CAR-T cells such

as PD-1/CTLA-4- antibodies secreting CAR-T cells (276).
5.4 Overcoming tumor heterogeneity

Tumor heterogeneity, the variation in antigen expression within a

tumor, is another challenge for CAR -T cell therapy (192, 224, 258).

Tumor cells can downregulate or lose the target antigen, leading to

resistance, such as on biallelic loss of BCMA has been observed as a

resistance mechanism to CAR -T cell therapy and EGFRvIII-directed

CAR -T cells mediating antigen loss and inducing adaptive resistance

(151, 277). Additionally, the varied and limited antigens found in solid

tumors, as opposed to those in liquid tumors, create a significant

challenge for successful CAR -T cell therapy (258).

One approach to mitigating antigen escapes phenomena

commonly associated with CAR-T cell therapy involves

combinatorial strategies, such as sequential or combination

treatments involving different CAR-T cell products that

concurrently target multiple antigens. This strategy has already

proven to be both clinically safe and effective in DLBCL (diffuse

large B-cell lymphoma), and it could also offer a promising

approach for treating solid tumors (278, 279). Another approach

involves creating multitarget CAR-T cells, which can be done by

integrating two different CAR constructs into T cells or using bi-
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specific or Tandem CAR-T cells. For example, in breast cancer, bi-

CAR-T cells targeting ErbB2 and MUC1 in vitro, showed efficient

antitumor activity (280). In glioblastoma, combinational targeting

offsets antigen escape and enhances effector functions of adoptively

transferred T cells, namely T cells coexpressing HER2 and IL-

13Ra2-CARs (281). Tandem CAR -T cells feature a paired

arrangement of two single-chain variable fragments (scFv).

Research revealed that a tandem configuration of IL13 and

EphA2 scFv demonstrated that the IL13-anti-EphA2 TanCAR

showed significantly enhanced anti-tumor efficacy compared to

single CAR-T cells, in both in vitro and in vivo settings (282).

Using synthetic Notch (SynNOTCH) receptors to control CAR

-T cell activity can overcome challenges of specificity, heterogeneity,

and persistence challenges. With this approach, the SynNOTCH

receptor is activated by one tumor antigen and triggers the

expression of a CAR against a second tumor antigen. Using this

strategy, CART cells are only active and kill when both antigens are

present (283). An alternative approach to antigen escape has been

successfully demonstrated in AML models with CD70 loss by

engineering CD70-targeting CAR-T cells to secrete a CD3/CD33

bispecific T cell engager. This strategy enables the cells to effectively

overcome escape mechanisms involving either CD70 or

CD33 (284).

Intrinsic tumor antigen expression and intratumoral

heterogeneity can be rendered irrelevant by tagging tumors with

small molecules such as FITC, which act as surrogate targets in a

universal manner. A key benefit of this approach is that CAR-T cells

can target both tumor cells and tumor-infiltrating cells such as

MDSCs and tumor assoc ia ted macrophages (TAMs)

indiscriminately, while also priming endogenous cell-mediated

immunity. However, a significant limitation is that tumors must

be tagged via intratumoral injection, restricting this strategy to

large, accessible tumors (285).

Modular CAR-T cells represent a remarkable concept that enables

fine-tuning of therapeutic functions to address tumor antigen

heterogeneity. This technology separates CARs into interchangeable,

interlocking units, allowing engineered T cells to become universal and

function with various target antigens through the simple addition of

compatible Fvs. One notable example is the split, universal, and

programmable (SUPRA) system, which uses leucine zippers to

connect CAR modules, tailor binding affinities, and introduce logic

gates to both enhance sensitivity in heterogeneous tumors and reduce

on-target, off-tumor toxicity (286).

Modular CAR-T cells are poised to expand the scope of T cell

redirection, as multiple similar platforms developed by commercial

companies—such as SparX-ARC-T from Arcellx and OmniCAR

from Prescient Therapeutics—broaden the repertoire of antigen

recognition domains and enable enhanced CAR-T fine-tuning

capabilities (287).

Additionally, CAR -T cells can be combined with treatments

that boost Fas expression on tumor cells, like Smac mimetics or

BCL-2/xL inhibitors. This approach would circumvent tumor

heterogeneity and tumor cells’ resistance to CAR -T cell

elimination (46). Switching CAR-T cells on or off can also control

activation and inhibition. For example, using a bifunctional small
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isothiocyanate allowed CAR-T cells to identify tumor cells

overexpressing folate receptors specifically (288). Furthermore,

employing suicide genes or activating antibody-mediated killing

can inhibit CAR-T cell functionality. Specifically, integrating the

inducible caspase 9 system into CAR-T cells triggers apoptosis,

resulting in reduced CAR-T cell activity (289).

Targeting components of the tumor microenvironment, such as

fibroblast activation protein (FAP) on stromal cells, can indirectly

affect tumor growth and survival and overcome tumor

heterogeneity. FAP is a protease produced by cancer-associated

fibroblasts (CAFs) and is involved in the remodeling of the tumor

extracellular matrix (ECM). Research has shown that the adoptive

transfer of FAP-CAR -T cells diminishes tumor growth in a FAP-

dependent manner and can eliminate stromal cells, evident in

several solid tumors, including mesothelioma, lung cancer, and

pancreatic cancer, demonstrating antitumor activity in preclinical

models (272, 290–292). CAR -T cells can be engineered to release

cytokines that modify the tumor stroma, enhancing their

therapeutic effects. These engineered cells, sometimes called

“armored” CAR -T cells or TRUCKs (T-cells Redirected for

Universal Cytokine Killing), can express various cytokines,

interleukins, pro-inflammatory ligands, or chemokines to

counteract the immunosuppressive environment of solid tumors

(293). Many cytokines, including IL-2, IL-4, IL-7, IL-8, IL-9, IL-10,

IL-12, IL-15, IL-18, IL-21, IL- 23 are being investigated for their

ability to enhance CAR-T activation and persistence (42). For

instance, CAR-T cells directed at the extracellular domain MUC,

designed to secrete IL-12, demonstrated improved efficacy in

preclinical ovarian cancer models (237). Additionally, CAR-T

cells engineered to release IL-18 successfully modulated the tumor

microenvironment, significantly enhancing their in vivo expansion,

persistence, and survival (38).

Many advances in CAR-T cell design offer solutions to isolated

challenges posed by solid tumors. However, clinical efficacy of these

therapies may lie in integrating these models into intelligent,

environment-sensing CAR-T cells using logic gates and modular

CARs, which can adapt and regulate activity in response to tumor-

specific cues to maintain efficacy amid dynamic changes such as

antigen density variations, hypoxia, and suppressive cell pressure.

In parallel, the field must recognize that effective therapy also

requires functional trafficking—ensuring that CAR-T cells not

only reach but also survive and operate within tumors (294, 295).

These biologically tuned CARs should be co-developed with

adjunctive strategies such as localized immunomodulation, matrix

remodeling agents, or oncolytic viruses to dismantle the hostile

tumor stroma and create a receptive environment for T cell action.

Such integrative designs will likely be essential to achieve durable

responses in solid tumors.
6 Successful trials

Despite significant challenges in the field of adoptive cell

therapies for solid tumors, several successful trials bring hope that
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this approach might someday improve the outlook of these patients.

A phase I clinical trial showed remarkable responses using

Claudin18.2 (CLDN18.2) second generation CAR-T for the

treatment of CLDN18.2 positive gastrointestinal cancers. This

trial included 37 patients and led to radiographic tumor reduction

in 83.3% of patients, with an overall response of 48.6% according to

RECIST criteria. While the median persistence of CAR-T cells was

28 days, it ranged from 14 to 203 days. As expected, responders

showed higher peak expansion, with peak values over 2-fold higher

than non-responders which seems to be more characteristic of more

naïve CAR-T subsets. Additionally, a composite indicator of both

persistence and peak expansion, the CAR-T cell AUClast as

determined until the last measurable value seems to be more

relevant for efficacy and positively correlated with PFS. Although

it was shown that 75% of patients developed anti-drug antibodies, it

did not influence response to treatment. Perhaps contributing to the

remarkable response rates, repeated biopsies following CAR-T

infusion did not show TAA downregulation (296).

More recently, an Italian phase I-II study using a 3rd generation

CAR-T cell therapy engineered to express the iCAS9 suicide gene

achieved exceptional responses in pediatric refractory

neuroblastoma, with one third of patients achieving complete

response. The recommended dose selected after assessment of

dose-limiting toxicity was 10x106/kg, which is very similar to the

doses used in the CLDN18.2 trial. Out of the 27 patients treated, 9

and 8 patients achieved CR and PR respectively. An unusual

occurrence is that three of the patients with partial responses

show long term persistence of response, still maintained at cutoff.

In this trial, one patient developed severe CRS in which rimiducid

was effectively used to rapidly reduce circulating CAR-T cell levels.

Remarkably, after 6 weeks, the CAR-T cells re-expanded and the

patient was one of the nine achieving CR. Additionally, CAR-T cells

preserved their iCas9 mediated sensitivity to rimiducid after re-

expansion. In relapsing patients, however, despite preserved tumor

antigen expression, CAR-T cells do not re-expand; however, one

patient achieved a second CR after repeat infusion. In this trial,

high-burden disease was the most important risk factor, and none

of these patients were alive at the 3-year time point (297).

The shared features of these successful trials (Table 1) might be

highly indicative of what will prove to be the future of CAR-T cell

therapy in solid malignancies. Therapeutic doses used in both trials

seem to be similar when accounting for the differences in weight

between pediatric patients and adults, and the CAR-T subtype

composition of infusion appears to be determinant of responses.

Additionally, the preservation of antigen expressions including in

relapse may indicate that downregulation might be antigen specific

and that better understanding of what leads to this property might

allow mitigation of antigen-escape through careful target selection.
7 Conclusions

CAR-T cell therapies have the potential to become the upfront

treatment for both hematologic and solid malignancies. Still, for

solid tumors, clinical applications face several roadblocks which are
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difficult to foresee in preclinical studies. The architectural

complexity and heterogeneity of tumors creates physical and

immunological barriers leading to poor trafficking and infiltration

of CAR-T cells as well as an immunosuppressive TME which limits

the antitumoral potential of current CAR-T cell therapies.

Success in overcoming these challenges rests on several pillars:

characterizing and understanding mechanisms of resistance

towards CAR-T cell therapies, accurately modeling the

components of the CAR-T–tumor interface, and designing

predictive models of clinical efficacy.

The current in vitro and in vivo models often fail to fully

recapitulate the dynamic and immunologically complex environment

of human tumors, leading to discrepancies between preclinical promise

and clinical efficacy. Advanced experimental models such as patient-

derived organotypic spheroids (PDOS) and humanized mice models

provide more accurate platforms which promise to bridge this gap and

allow testing of new CAR-T cell designs and strategies to find solutions

for tumor resistance to treatment.

The costs for the preclinical setup would increase if testing the

CAR-T cells on different organoid, humanized mice and by applying

multi-omics approaches, moreover, many pipelines would need

improvements, but all these investments and challenges will lead to

better understanding and to a comprehensive overview of the next-

generation CAR-T cells. Moreover, using such a variety of in vitro and

in vivomodels could offer a better prediction of the potential outcome,

limiting the future negative outcomes which will come with extra costs

to counter them in later stages of the clinical trials. The regulatory

complexity will increase, while the benefits and outcomes are worth the

investments and challenges during the preclinical setups.

Innovations in CAR design, such as armored CARs, TRUCKs,

dual-targeting CARs, modular and logic-gated CARs are being

developed to enhance persistence, trafficking, and functional

adaptability of CAR-T cells in solid tumors. Additionally, refining

the phenotype composition of CAR-T products to favor stem-like

and memory T-cell subsets has shown promise in increasing

durability and response rates and adjuvant therapies may be used

to mitigate the immune suppressive effects of the TME and aid in

overcoming tumor heterogeneity issues.

Despite these hurdles, there have been encouraging signs of

clinical efficacy in solid tumors, perhaps owing to a synergy of

effective conditioning, target antigen selection and CAR design.

Such notable success seen in phase I trials for gastrointestinal

cancers and pediatric neuroblastoma where patients achieved

remarkable objective tumor responses underscore the feasibility of

CAR-T cell therapies for solid tumors when optimally designed.

Ultimately, the future of CAR-T cell therapy in solid tumors lies

in a comprehensive approach: coupling technological advancements

in cell engineering with the continual refinement of preclinical

models and translational strategies. Robust and iterative evaluation

frameworks integrating transcriptomic, proteomic, and immunologic

data will be crucial for rational CAR target selection and for

overcoming the limitations posed by the solid tumor milieu. While

the road ahead is complex, sustained multidisciplinary efforts hold

the promise of unlocking the full therapeutic potential of CAR-T cells

across a broader spectrum of cancers.
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