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Single-cell transcriptomic
analysis identified resistant
MDSCs and a stress-tolerant
gene co-expression network as
common MDSC features across
multiple disease settings
Tianmeng Chen1*, Julia Hughes1, Alyssa Gregory1,
Julia Conroy1, Patricia Loughran1, Jinming Song2, Wei Chen3

and Timothy Billiar1*

1Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States, 2Department of
Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,
3Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
Background: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of immunosuppressive myeloid cells. The identification of a

molecular signature common to MDSC regardless of tissue source would aid

in the classification of cells as MDSCs.

Methods: Single-cell RNA sequencing (scRNA-seq) was performed on GM-CSF+

IL-6-induced human MDSCs to characterize the extent of heterogeneity within

monocytic MDSCs (M-MDSCs). Cytokine-treated PBMCs were also cultured in

the absence of serum to include an additional element of cell stress. Independent

published bulk and single-cell transcriptomic datasets were used for validation.

Findings: A cluster of cells with preserved MDSC features was induced by the

combination of inflammatory signals and cell stress in the form of serum

starvation (resistant MDSCs, rMDSCs). A gene co-expression module (the

yellow module) was identified specific to rMDSCs. The genes upregulated in

MDSCs can be further classified into stress-tolerant vs. -sensitive features. This

yellow module mostly contained stress-tolerant genes and showed excellent

separation for distinguishing M-MDSCs from control cells across a range of in

vitro and in vivo conditions (ROC AUC = 0.954), a feature not found in the stress-

sensitive genes. Importantly, rMDSCs were identified in scRNA-seq datasets of

immune cells from multiple human cancer types. Tumor C1Q macrophages,

which have been associated with immunosuppression, highly expressed the

yellow module gene signature.
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Interpretation: These results demonstrate the importance of the combined

roles of inflammation and cellular stress in shaping the features of M-MDSCs and

highlight cellular resilience represented by rMDSCs and the role of stress-

tolerant features in defining common MDSC features.
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Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of myeloid cells defined by their immunosuppressive

effects on T cells. The prevalence of MDSCs dramatically rises

during acute (i.e., trauma and sepsis) and chronic (i.e., cancer)

inflammatory diseases (1–3) and is thought to contribute to

infectious complications and poor prognosis by suppressing

immune responses (4–7). MDSCs can be generally classified by

lineage as either granulocytic (G-) or monocytic (M-). Human

MDSCs are defined as CD11b+CD33+HLA-DRlo (G-MDSCs:

CD66b+/CD15+ vs. M-MDSCs: CD14+) (8).

Transcriptomic sequencing has been used to study the features

of MDSC isolated from patients with different diseases. An scRNA-

seq study sequenced tumor and adjacent normal tissues from

patients with non-small cell lung cancer and demonstrated that

MDSCs are distinct from M1 and M2 macrophages in their

transcriptomic profiles (9). Another scRNA-seq study identified

CD84 as a novel surface marker to enrich for MDSCs in human

breast cancer (10). A study combining experimental and RNA-seq

data demonstrated impaired phagocytosis in M-MDSCs isolated

from patients with acute-on-chronic liver failure due to Toll-like

receptor pathway suppression (11). However, the identification of

features, including molecular markers common across human

MDSC populations, remains limited. Two major limitations need

to be addressed (1): First, the markers and transcriptomic signatures

are often dependent on the source of the MDSCs. The

characterization of MDSC features from one source is not always

generalizable across multiple sources of MDSCs. Second, the MDSC

markers/signatures typically overlap with those from conventional

immune cell populations leading to challenges in establishing

thresholds to distinguish MDSCs.

As a strategy to identify heterogeneity within human MDSCs, we

applied single-cell analysis combined with flow cytometry and

functional assays on monocytic MDSCs generated by the exposure

of PBMC to GM-CSF + IL-6 in vitro. Because MDSCs likely face

further selection pressure by the cellular stress encountered within

harsh microenvironments such as those found in tumors or

inflammatory conditions, we also exposed the cytokine-generated

MDSCs to serum starvation. This led us to identify and characterize a
02
cluster of resistant MDSCs (rMDSCs) that retained MDSC function

and had gene expression and cell surface markers unique from the

other clusters under serum starvation. Gene coexpression network

analysis revealed a gene module in rMDSCs, which was stress-

tolerant. The gene module identified MDSC with high specificity

across a number of MDSC sources including within multiple solid

malignancies and, interestingly, was also identifiable in AML. These

findings suggest that the resistance to cell stress is likely to be a factor

that shapes the transcriptome and function of monocytic MDSCs.
Methods

Human M-MDSC generation in vitro

Cryopreserved human PBMCs obtained from healthy

volunteers enrolled in a protocol approved by the University of

Pittsburgh Institutional Review Board (#19040329) were used for

these studies. All participants gave written informed consent.

PBMCs were also purchased from STEMCELL (Supplementary

Table S1). MDSCs were generated by treating PBMCs with GM-

CSF (10 ng/mL) + IL-6 (10 ng/mL) (10, 12) at 5 × 105 cell/mL in

complete media at 37° with 5% CO2. Cytokines were added daily for

3 days. PBMCs cultured in complete media alone were used as

control. Serum starvation was performed using serum-free media.
T-cell suppression assay

Human T cells were stained with CellTrace Far Red dye with 1

µL of 1 µM dye per 5 × 105 cells, at RT for 20 min. T cells were

seeded 5 × 104 cells/well in a 96-well plate. Flow sorted control

monocytes (CD33+, C group), MDSCs (CD33+, T group), or

subsets (CD52hiCD14lo vs. CD52loCD14hi in CD33loCD11b+ cells

after serum starvation) were added to T cells in a 1:1 or 1:2 M:T

ratio (labeled in each figure legend). Human CD3/CD28 dynabeads

were added at a bead-to-cell ratio of 1:1 to stimulate T-cell

proliferation. T cells cultured with CD3/CD28 alone acted as a

positive control. For each donor, duplicates were used for each

experimental condition. Cells were cocultured for 4 days, and then
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harvested, stained for anti-human CD3 SuperBright 600 and live/

dead dye, and evaluated by flow cytometry. Cells were cultured for 4

days, and then harvested, stained for anti-human CD3 SuperBright

600 and live/dead dye, and evaluated by flow cytometry. For each

MDSC population, the assay was evaluated in at least three

different donors.
Phagocytosis assay using flow sorted cells

pHrodo™ Green E. coli BioParticles™ Conjugate was

purchased to evaluate the capabilities of phagocytosis. One vial of

BioParticles (2 mg) was resuspend in 2-mL full media to make a 2-

mg/mL BioParticle solution. Then, BioParticle solution was added

to flow-sorted cells (CD52hiCD14lo and CD52loCD14hi) at 1:10 for a

final concentration of 0.1 mg/mL in full media. Cells and

BioParticles were incubated for 30 min at 37°C, 5% C02 and then

placed on ice to stop the reaction, with technical duplicates for each

population. Cells incubated under the same experimental condition

without BioParticles added were used as negative control. After one

wash, the cells were analyzed using flow cytometer in FITC channel.
Single-cell library preparation, sequencing,
and analysis

We followed Chromium Next GEM Single Cell Multiome

ATAC + Gene Expression protocol (CG000338 Rev C) and

Chromium Single Cell 3′ Reagent Kits User Guide (v3.1,

CG000315) to prepare the corresponding libraries. Libraries were

pair-end sequenced in UPMC Genomic Center. The 10x Genomics

Cell Ranger pipeline (13, 14), Seurat (v4.0.5) (15), and Signac

(v1.4.0) (16) were used to analyze single-cell data. Details are

described in supplemental methods.
Gene set enrichment analysis

A group of significant genes were ranked by a statistical estimate

(e.g., correlation coefficient) and used as the input. Gene set

enrichment analysis (GSEA) was performed using the fgsea R

package (v1.10.1) via fgseaMultilevel() function. MSigDB gene

sets v7.4 were used.
Identification of hdWGCNA modules

We identified consensus co-expression networks using

hdWGCNA (17, 18) across the two subjects of the scRNA-seq

data we generated, fol lowing the tutorial of https ://

smorabit.github.io/hdWGCNA/articles/consensus_wgcna.html.

Generally, the co-expression network was constructed in each

individual separately, and then the networks were integrated, and

the gene modules were identified.
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Analysis of the bulk MDSC dataset

The bulk MDSC dataset, including five different sources of

MDSCs along with the CD11b+ counterparts isolated from healthy

spleen from or bone marrow from the same strain of mice, was

obtained from the published dataset GSE21927 (19). For each

signature, the signature score in each sample was calculated by

the average expression of the signature genes after z-score

transformation across all the samples. To calculate the AUC (area

under the curve) of ROC (receiver operating characteristic) curve

for each signature, logistic regression was fitted between the

signature scores and the MDSC identity. Then, the ROC curve

was built using roc() function from the pROC package (v1.18.5).
Analysis of the tumor immune atlas
scRNA-seq dataset

This data resource integrated published datasets from 13 cancer

types involving 217 patients (20). The Seurat object (TICAtlas.rds)

and the metadata (TICAtlas_metadata.csv) were downloaded from

the website (https://zenodo.org/records/5205544). There are two

different annotations (lv1_annot and lv2_annot) in the meta data.

We extracted the cells which were annotated as monocytes or

macrophages in both annotations and excluded the proliferating

cells (annotated as “Macro. and mono. prolif.,” the cells containing

mixed populations). In the manuscript, we used lv1_annot to show

the cell subset defined by the original paper. After extracting the

monocytes and macrophages, the data were re-normalized and

scaled using the Seurat package. We used our scRNA-seq dataset

as reference. The cell annotations were transferred to this dataset

using the Seurat package. The details of label transfer and signature

score calculation were mentioned under the session of “Single-cell

Feature-barcode count matrix processing”.
Analysis of the AML scRNA-seq dataset

The UMI count matrix and the meta data of all the samples

were downloaded from GEO (GSE116256). The data from different

samples were catenated, normalized, and scaled using the Seurat

package. Signature scores were calculated as mentioned under the

session of “Single-cell Feature-barcode count matrix processing”.
Analysis of the TCGA AML dataset

Data processing
TCGA-AML (RNA-seq) level 3 gene expression data were

downloaded from https://gdac.broadinstitute.org/runs/

stddata:2015_02_04/data/LAML/20150204/. RPKM data were

extracted, log2(RPKM + 1) transformed, and proceeded with

downstream analysis. The patient clinical data and mutation
frontiersin.or
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annotations were obtained from the original paper (21). For the

TCGA-AML data set, we focused on the well-established mutations

of 14 genes that have been associated with AML (21, 22), including

TP53, NPM1, FLT3, DNMT3A, IDH1, IDH2, NRAS, KRAS,

RUNX1, TET2, CEBPA, WT1, PTPN11, and KIT. We annotated

the patients with non-silent mutations as mutation positive, and the

patients with wild-type genes or silent mutations as negative.

Time-to-event analysis in the TCGA-AML dataset
Wilcoxon rank-sum test was performed for each mutation

mentioned above, to identify the mutations significantly associated

with the expression of the yellow module. The significant mutations (p

< 0.05) were included in the Cox regression model along with age,

gender, cytogenetic risk category, FAB morphology code, and blast cell

percentage. The Cox proportional hazards model was performed by
Frontiers in Immunology 04
coxph() function in R using the survival package (v3.1.8). We evaluated

time-to-relapse and time-to-death separately.
Results

As an overview of the methods used in this study, the major

steps are summarized as follows. We carried out in vitro culture

experiments exposing human PBMCs to GM-CSF + IL-6

stimulation, with or without serum starvation. The cells were

then subjected to scRNA-seq. This led to the identification of a

subset of MDSCs resistant to the harsh microenvironmental

conditions created by serum starvation. These resistant MDSCs

(rMDSCs) were characterized further by gene co-expression

network analysis, which yielded a gene co-expression module (the
FIGURE 1

The profile of single-cell RNA + ATAC in GM-CSF + IL-6 induced MDSCs. (A) Illustration of experimental design. (B) PCA plot (scRNA-seq) color
coded by experimental groups. (C) GSEA results for PC1-associated genes. The significant enriched hallmark gene sets (adjusted p value < 0.05) are
shown. MDSC-related pathways are highlighted in a red box. (D) The motif activity score was computed by chromVAR (scATAC-seq) and subjected
to differential testing. Significant differential motifs (adjusted p value < 0.05) between two groups are shown with top 10 over-representative motifs
in each group labeled. (E) UMAP plot (scRNA-seq) color coded by identified GEX clusters. (F) PC1 density plot by GEX clusters. (G) Cell composition
of GEX clusters across six healthy subjects. (H) Gene expression of representative markers in each GEX cluster. (I) GSEA results for PC1-associated
genes: Significantly enriched UV response-associated gene sets (adjusted p value < 0.05).
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yellow module) unique to the rMDSC. The yellow module signature

was used to query published MDSC-relevant datasets representing

multiple diseases and tissues to establish the signature as a feature

common to diverse populations of MDSC.
scRNA-seq reveals that DNA damage
response is a feature of in vitro-induced
MDSCs

To explore the heterogeneity within human M-MDSCs, we

utilized a well-established in vitro model where MDSCs are

generated from PBMCs exposed to GM-CSF + IL-6 (10, 12)

(Figure 1A). PBMCs from six healthy donors were cultured with

or without cytokines. None of the myeloid cells were CD66b+,

confirming that all the cells were derived from the monocytic rather

than granulocytic lineage (Supplementary Figure S1A). Isolated

monocytes from the cytokine-treated group (T group) that were

CD33+ inhibited T-cell proliferation, whereas CD33+ cells from

control (C group) did not (Supplementary Figure S1B), confirming

that cytokine treatment induced an MDSC phenotype. A bead-

enriched CD33+ cell population from both groups was subjected to

single-cell multiome analysis. Principle component analysis of the

scRNA-seq data demonstrated that the first principal component

(PC1) separated the cells from two experimental groups (T group

vs. C group) (Figure 1B), with the positive side of PC1 (T group)

associated with known MDSC-relevant pathways (e.g., glycolysis,

mTORC, and ROS production (23, 24), Figure 1C). The scATAC-

seq data revealed an up-regulation of AP1 family motifs (FOS/JUN),

a feature known to be associated with inflammation and immune

cell activation (25), and downregulation of IRF family motifs after

cytokine treatment (Figure 1D). IRF8 downregulation is regarded as

another characteristic of MDSCs (8). Taken together, these results

confirm that monocytic cells exposed to GM-CSF + IL-6 acquired

established MDSC-related transcriptomic, epigenomic, and

functional changes.

Next, we used the scRNA-seq data to identify clusters associated

with different cell states and referred to these as gene expression

(GEX) clusters. This yielded three CD14+ GEX clusters that were

distributed along PC1 and representing low, intermediate, and high

upregulation of the cytokine-induced MDSC associated

transcriptomic profile (CD14+_MDSC_GEXlo, MDSC_GEXint,

and MDSC_GEXhi). In addition, two small clusters, one

associated with IFN pathway-related genes (CD14+_IFN-specific)

and the other CD16+ features (CD14+CD16+ subset), were also

identified. The monocytes from the control cells clustered together

(CD14+_baseline) and were distinct from the cytokine-treated cells.

All the GEX clusters included cells from all six donors, indicating

the consistency of the observed patterns. MDSC_GEXhi aligned on

the farthest right side of PC1 and represented the profile most

consistent with MDSCs, with a high expression of ITGAM (CD11b

coding gene) and CEBPB and a suppressed IRF8 expression

(Figures 1E–H, Supplementary Figure S1C).

Interestingly, a high number of ultraviolet radiation (UV)

response-related gene sets were also significantly associated with
Frontiers in Immunology 05
PC1 (Figure 1I). Genes known to be upregulated after UV exposure

were associated with PC1+ and UV-downregulated genes associated

with PC1−. This observation indicates that a DNA damage response

is closely associated with MDSC generation in this model. As such,

we sought evidence for DNA damage using several analytic

packages and, surprisingly, using infercnv (26), identified an

increase in inferred somatic copy number variation (SCNVs) in

the MDSC population. The presence of SCNVs in MDSCs was

inferred by comparing the gene expression intensities across

genomic positions of cytokine-treated cells to reference cells

(control cells) (Supplementary Figure S2A). Under “subcluster

mode”, we identified two major SCNV clusters. SCNV_hi cells

had a large number of inferred SCNVs compared with the SCNV_lo

cells (Supplementary Figure S2B, Supplementary Table S1), and

both clusters were identifiable across the six donors (Supplementary

Figure S2C). Except for the CD14+_baseline cluster, all the other

GEX clusters were composed of cells derived from both SCNV_hi

and SCNV_lo subsets. MDSC_GEXint and MDSC_GEXhi had a

higher ratio of SCNV_hi compared with MDSC_GEXlo

(Supplementary Figure S2D). By multivariate linear regression, we

found that pathways known to be MDSC-related, including

glycolysis and mTORC and ROS production, were associated with

both gene expression and SCNV profiles (Supplementary Figure

S2E), whereas the UV response pathways were mostly associated

only with the SCNV profile (Supplementary Figure S2F).

Furthermore, the inferred SCNVs were validated using cyto-SNP

microarrays (Supplementary Figure S3, Supplementary Figure S4).

Taken together, these observations provide evidence that a DNA

damage response associates closely with the monocytic MDSC

formation in this model. The identification of the two SCNV

clusters reflects the different DNA damage states among these

MDSC clusters.
Identification and characterization of
resistant MDSCs under serum starvation

It is known that harsh microenvironmental conditions can

influence the effectiveness of DNA repair pathways (27), and

failure of DNA repair can lead to apoptosis (28). MDSCs are

often exposed to harsh conditions such as the depletion of

nutrients as encountered in the tumor microenvironment. Our

observation that sustained inflammatory cytokine exposure leads

to DNA structural changes that were tolerated by newly formed

MDSCs led us to postulate that additional cell stress might further

select for MDSC more representative of MDSC encountered in vivo.

As such, we adopted serum starvation as a common cell culture

approach to induce cellular stress (29, 30). PBMCs from C and T

groups were cultured without serum (labelled as CS and TS groups).

The apoptotic rate (a consequence of cellular stress response) was

evaluated within monocytic cells and defined as the ratio of

Annexin V+ (Ap+) cells to Ap− cells. The spontaneous apoptosis

rate in complete media that includes serum was ~10% in the C and

T groups. Serum starvation for 24 h dramatically induced apoptosis

in monocytes from the CS group (~50% Ap+), whereas the
frontiersin.org
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FIGURE 2

Identification and transcriptomic characterization of resistant MDSCs after serum starvation. (A) Experimental design. (B) Annexin V staining in the
cells cultured in full media. FMO: Fluorescence Minus One control for Annexin V. (C) Annexin V staining in the cells cultured after serum starvation
for 24 h (D) Annexin V staining in cytokine-treated cells after serum starvation for 24, 48, and 72 h (E–L) Integrated scRNA-seq data from two
different donors (TS group: serum starvation for 48 h). (E) PC1 density plot color coded by groups. (F) Correlation between the two groups of DEGs.
(G–I) UMAP plot color coded by GEX clusters identified in this dataset (G), groups (H), and donors (I). (J) Enrichment analysis between GEX clusters
and the transferred labels using chi-square test. (K) Gene expression of representative markers in each GEX cluster.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2025.1565211
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1565211
counterpart from the TS group was resistant to apoptosis (~10% Ap

+). Interestingly, serum starvation yielded two distinct populations

of monocytic cells in the TS group including a CD33lo subset, as

assessed by flow cytometry, that displayed a lower apoptotic rate

than a CD33hi subset. The differences in apoptotic rates continued

to diverge between these two subsets with serum starvation for 48

and 72 h (Figures 2A–D).

To characterize the gene expression profile of the two CD33

subsets, we flow sorted CD33hi and CD33lo cells from the TS group

(serum starvation for 48 h) as well as CD33+ cells from the C and T

groups (cultured with serum) from two different donors (D36 and

D41) and performed scRNA-seq. As shown in Figure 2E, PC1

represents the cytokine-induced changes. Serum starvation partially

reversed these MDSC-related changes as shown by comparing cells

from the TS group to those from the T group (Figures 2E, F). We

identified seven GEX clusters (C0-C6) across the C, T, and TS

groups (Figures 2G–L, Supplementary Figure S5). C6 cells were

relatively low quality with high mitochondrial genes. The other

clusters included C2: mainly from the C group; C5: CD14+CD16+;

C1: mainly from the T group; C0 and C4: mainly from the TS group;

and C3: identifiable from both T and TS groups. Of all the clusters,

only C3 was consistently higher in CD33lo cells compared with

CD33hi cells across two donors (Supplementary Figure S5F). Label

transfer analysis using the scRNA-seq data shown in Figure 1 as

reference showed that only C3 was significantly enriched in

MDSC_GEXhi and MDSC_GEXint, whereas other clusters were

enriched in MDSC_GEXlo or baseline transcriptomic patterns

(Supplementary Figure S5F). Thus, the C3 cluster had the

strongest MDSC-related profile and was also identifiable under

serum starvation.

Among the top DEGs upregulated in C3 was the cell surface

marker CD52, whereas CD14 was markedly downregulated

(Figures 3A, B). We used these markers to attempt to identify the

C3 cluster by flow cytometry and observed that CD52hiCD14lo cells

were dominant in CD33lo cells (23.6% in CD33lo, 4th panel of

Figure 3C) compared with CD33hi cells (9.09% in CD33hi, 3rd panel

of Figure 3C). CD52hiCD14lo cells expressed higher CD11b, CD63,

and C/EBP-beta compared with CD52loCD14hi cells. (Figure 3D).

Thus, we were able to demonstrate the presence of cell cluster C3

after serum starvation by flow cytometry across multiple donors.

Next, we flow sorted CD52hiCD14lo and CD52loCD14hi

populations. Both exhibited a mature monocyte morphology with

dense nuclei (Figure 3E). However, CD52hiCD14lo cells more

potently suppressed T-cell proliferation and exhibited almost no

capacity for bioparticle uptake compared with CD52loCD14hi cells,

two functional characteristics of MDSCs (Figures 3F, G). Thus, we

were able to identify and validate an MDSC cell subset (cluster C3)

that was resistant to the harsh conditions created by serum

starvation. In the remainder of the paper, we refer to the cells

identified in cluster C3 (further defined as CD52hiCD14lo) as

resistant MDSCs (rMDSCs).

Next, we sought to determine how these clusters associated with

different DNA-damaged states. SCNVs were inferred in the GEX

clusters C3, C0, and C4 (from TS group) using the monocytes from

the C group as reference (Supplementary Figure S6). C3 (rMDSC)
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and C4 both had a high number of SCNVs, in contrast to the limited

SCNVs in C0. Both C4 and C0 were less MDSC-like compared with

C3. Thus, the gain of SCNVs was not unique to the formation of

rMDSCs. However, these findings do demonstrate that rMDSCs

were able to maintain their immune suppressive features under

cellular stress created by serum starvation, despite the presence of

high DNA damage. We reasoned that these rMDSCs should have

unique features relevant to their resistance. These features should

render the cells more stable and less susceptible to the changes in

their microenvironment. This could contribute to the resilience of

MDSCs commonly encountered in inflammatory conditions and

tumors. Thus, we hypothesized that features preserved in rMDSCs

may yield a signature highly representative of monocytic MDSCs.
Identification and validation of a stress-
tolerant gene coexpression module as a
common MDSC signature

Gene coexpression networks are closely related to key biological

processes or mechanisms. The hdWGCNA package (18) was used

to identify gene co-expression modules across the C, T, and TS

groups (Figure 4A, Supplementary Table S2). To prioritize the top

rMDSC-specific modules, we aimed to select the modules that were

both MDSC-related (induced by cytokine exposure) and stress-

tolerant (preserved under serum starvation). Therefore, gene

modules that contained genes from the two groups of DEGs, one

reflecting the differences between the C and T groups (shown in the

y-axis in Figure 4B) and the other representing the differences

between the rMDSCs and other cells in the TS group (shown in the

x-axis in Figure 4B), were down-selected. This narrowed the gene

modules of interest to the three shown in Figure 4B labeled in

yellow, blue, or cyan and depicted in the right lower quadrant of the

graph. Among these three modules, the signature score derived

from the yellow module was found to achieve the best separation

between the two groups of cells in both comparisons (Figure 4C),

and this module was selected for further analysis.

To interpret the biological meaning of the yellowmodule, GSEA

was performed using the genes included in hdWGCNA analysis

based on the kME (module eigengenes) value for the yellow module

as the rank. As expected, the yellow module was positively

associated with MDSC-related pathways (e.g., mTORC and ROS

production (23, 24)) and the CEBPB regulon, whereas the IRF8

regulon was enriched in the negative side (Figure 4D,

Supplementary Figure S7). The yellow module was also associated

with a high DNA damage response and metabolic pathways

including gluconeogenesis (Figure 4E).

Next, to determine if the yellow module is also upregulated in

other MDSCs, we utilized a bulk transcriptomic dataset that

included multiple sources of MDSCs (19). This dataset

encompassed both in vitro models of cytokine-induced MDSCs

and in vivo MDSC models from tumor-bearing mice. We also

compared the yellow module signature with a well-accepted human

MDSC signature (31). This published 39-gene signature was indeed

expressed higher when comparing MDSCs with the corresponding
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control cells from a single source (Figure 5A, left panel), supporting

the effectiveness of this signature. However, this was not always the

case when comparing the signatures between different sources of

MDSCs. This resulted in an ROC AUC of 0.699 for distinguishing

MDSCs from non-MDSCs across different sources (Figure 5A, right

panel). In contrast, the gene signature score of the yellow module

genes performed well in separating MDSCs from the control cells

regardless of the sources (ROC AUC = 0.954, Figure 5B). As an

additional comparison, we assessed the ROC curve for MDSC of the

red and brown modules from our analysis. Both are the gene

modules upregulated in the MDSCs we generated in vitro

(Figure 4B). The red module, mostly containing genes impacted

by serum starvation, showed a poor separation for MDSCs (ROC
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AUC = 0.542, Figure 5C). The brown module, containing about half

serum starvation tolerant genes and half sensitive genes, showed a

better separation (ROC AUC = 0.764, Figure 5D) than the red

module, but still not as strong as the yellow module. This analysis

demonstrates that among the MDSC-related gene modules, the

gene signature associated with tolerance to cellular stress achieved a

better consistency across different sources of MDSCs than the genes

associated with sensitivity to serum starvation. Of the genes coding

for conventional MDSC surface markers, ITGAM (CD11b coding

gene) was included in the yellow module, whereas CD14, CD33,

S100A8, and S100A9 were not (Supplementary Table S2). This

highlights CD11b as a better marker for MDSCs based on resistance

to cellular stress. CD52, a marker associated with rMDSCs was also
FIGURE 3

Transcriptional and functional characterization of resistant MDSCs in the TS group. (A) Significant DEGs between C3 and other clusters in the TS group. (B)
Gene expression of representative markers in each GEX cluster. (C–G) Phenotypic and functional validation of resistant MDSCs (using the cells from the TS
group under serum starvation for 48 h). (C) Flow cytometry validated the enrichment of resistant MDSCs (CD52hiCD14lo) in CD33lo compared with CD33hi
after serum starvation (upper left quadrants, third vs. fourth panels). (D) Flow cytometry validated the other markers for resistant MDSCs. (E) Diff-Quik Staining
for flow sorted populations. (F) Results of the phagocytosis assay. (G) Results of the T-cell suppression assay.
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included in the yellow module. Thus, we were able to show that the

elevated yellow module genes are a common feature across multiple

monocytic MDSC populations using an independent dataset.
Identification of rMDSC-like cells in the
tumor microenvironment of human
cancers

We next sought evidence for the presence of rMDSCs-like cells

in human tumors by querying a published scRNA-seq dataset from

the tumor immune atlas. This data resource integrated published

datasets from 13 cancer types derived from 217 patients (20). This

dataset is ideal to computationally scan for the presence of rMDSC-

like cells in the tumor microenvironment in vivo. We extracted the

cells in the monocyte–macrophage lineage and excluded the

proliferating cells since they are a mixed population that includes
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both monocytes and macrophages (Figure 6, Supplementary Figure

S8, Supplementary Table S3). Using our scRNA-seq dataset as a

reference, we annotated the selected cells using label transfer. We

were able to identify the cells predicted to be rMDSCs in 9 out of 13

cancer types. The predicted rMDSCs were also associated with some

conventional MDSC markers, including high ITGAM and CEBPB

and low IRF8 (Figures 6A, B).

C1Q+ tumor associated macrophages (C1Q TAMs) have been

correlated with poor outcome (32) and colocalize with exhausted T

cells often in the area in fibrotic tissue (20). Overall, the C1Q TAMs

annotated by the original dataset express a higher level of yellow

module compared with other subtypes of macrophages or monocytes

(Figure 6C, left panel). This demonstrates that the yellow module

signature was dominant in a cell population known to be

immunosuppressive. Interestingly, most of the cells predicted to be

rMDSCs corresponded to C1Q TAMs that express extremely high

yellow module genes (Figure 6C, right panel; Figure 6B, middle panel).
FIGURE 4

Identification of a microenvironment-tolerant gene coexpression module highly expressed in rMDSCs. (A) Gene coexpression modules were
identified using hdWGCNA. Module-trait correlations were shown (Ctrl: C group; MDSC: T group; MDSC_SF: TS group; C3: cell cluster 3
characterized in Figure 1G). (B) DEGs were identified between C and T groups (shown in y-axis) and between the rMDSCs (C3) and other cells in the
TS groups (shown in x-axis). The shared DEGs were plotted using log2 fold-change (FC) in each comparison. The genes were colored based on the
gene coexpression modules. (C) The ability to distinguish between different groups of cells was evaluated using the signature scores for each
module. Data were fitted using logistic regression. The area under the curve (AUC) of ROC was computed. (D, E) GSEA results using the genes
included in hdWGCNA analysis ranked by kME value for the yellow module. (D) Significant enriched hallmark gene sets. (E) The significant enriched
curated gene sets related to UV response and gluconeogenesis.
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We speculate that C1Q TAMmay have a gene expression background

that favors the high expression of the yellowmodule signature, and this

background may favor the formation of rMDSCs. In contrast, 39-gene

signature was not highly expressed in C1Q TAM (Figure 6D),

indicating that the 39-gene signature cannot be used to explain the

immunosuppressive association reported in C1Q TAM.
The independent prognostic value of the
yellow module signature in AML patients

A feature of cancer cells is the gain of resistance to cell death

leading to a survival advantage over non-cancer cells [25]. Because

the yellow module was also associated with the resistance of

myeloid cell apoptosis, we wondered whether the yellow module

could be identified in AML. We queried an scRNA-seq AML dataset

(33) and found that no myeloid cells in this dataset were predicted

to be rMDSCs. However, the malignant myeloid cells and their

progenitors expressed an increase in the yellow module signature

compared with the corresponding normal cells (Figure 7A).

Therefore, rMDSCs are clearly distinct from malignant myeloid

cells; however, genes that comprise the yellow module co-

expression network may play a role in myeloid cancer cells.

We next queried the TCGA AML dataset to examine the

association between the yellow module signature and clinical
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outcomes (Figures 7B–E, Supplementary Figure S9). We constructed

a multivariate cox regression model that included the yellow module

signature, age, sex, FAB classification, known AML prognostic factors

(cytogenetic risk category and blast percentage), and mutations that are

significantly associated with yellow module (TP53 and WT1)

(Figure 7B). TP53 is a known tumor-suppressor gene that can be

activated by DNA damage and induce cell cycle arrest or apoptosis

(34). In the TCGA AML dataset, mutation of TP53 was significantly

associated with a high level of yellow module expression (Figure 7C).

Consistent with the original paper, TP53 mutation was a strong

predictor of poor outcome and the only significant mutation for

poor prognosis in multivariate analysis (21). Strikingly, a time-to-

event analysis revealed that the yellow module signature was

independently associated with poor prognosis in AML beyond the

known prognostic markers, including mutated TP53 (Figure 7D). The

independent prognostic value may be due to the survival advantage

associated with the yellowmodule that cannot be fully explained by the

gain of TP53 mutations.

High expression of CD52 has been reported to be associated with

poor prognosis in several subtypes of AML, including normal

karyotype (35), high EVI1 (36), and FLT3-ITD mutated AML (37).

In our network analysis in Figure 4; Supplementary Table S2, CD52

was among the top 10 hub genes in the yellow module. Therefore, we

assessed the correlation between the expression of CD52 and the

yellow module signature in AML patients. In the TCGA data analysis,
FIGURE 5

Demonstration of the yellow module as a common MDSC signature across different sources. A published MDSC dataset GSE21927 was analyzed. For
each gene set or module, the signature score was calculated for each sample. Logistic regression was fitted between signature scores and
categories (MDSC or control) across all the samples. ROC AUC was shown to evaluate how this group of genes can distinguish MDSCs from control
cells. (A) Public MDSC signature. (B–D) The gene coexpression MDSC-related modules computed in our study, with different compositions of
microenvironment-tolerant vs. sensitive genes: (B) Yellow module (mostly microenvironment-tolerant genes). (C) Red module (mostly
microenvironment-sensitive genes). (D) Brown module (half tolerant + half sensitive genes).
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the yellowmodule signature was significantly and positively correlated

with CD52 (spearman correlation: rho = 0.227, p = 0.003, Figure 7E).

Furthermore, the yellow module signature showed a more significant

prognostic value than CD52 gene expression in the presence of TP53

mutation (Supplementary Figure S9). These findings suggest that

upregulation of the yellow module may be biologically manifested

as poor prognosis in CD52 hi AML patients.
Discussion

The goal of this study was to deconvolute the heterogeneity of

M-MDSCs and identify common features conserved across different

sources of M-MDSC populations. We accomplished this by
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inducing M-MDSCs under stress conditions, reasoning that

MDSC often arise and survive in harsh microenvironments that

include sustained inflammation and nutrient or growth factor

depletion. The culture conditions of continuous pro-inflammatory

cytokine exposure and serum starvation generated a myeloid cell

population that exhibited functional features of MDSCs. A

transcriptomic signature representing the combined effects of

inflammatory cytokine exposure and cell stress through serum

starvation had a high ROC AUC for the separation of MDSCs

from control cells across different sources. This signature was also

upregulated in C1Q macrophages (known to be associated with

immunosuppression) in the tumor microenvironment from

multiple cancer types. In addition, the signature was upregulated

in AML cells and was independently associated with poor survival
FIGURE 6

Identification of rMDSC-like cells in the tumor microenvironment of human cancers. A published scRNA-seq dataset integrating the tumor
microenvironment across different cancer types (TICAtlas) was analyzed. (A) Gene expression of representative markers in each predicted cell label
using our scRNA-seq data shown in Figure 1G as a reference. (B) Cell composition is shown in pie charts. (C) Signature scores of the yellow module
grouped by the annotations provided by the original dataset (left) or by the predicted cell labels (right). (D) Signature scores of the published 39-
gene MDSC signature grouped by the annotations provided by the original dataset. BC, breast cancer; BCC, basal cell and squamous cell
carcinomas; CM, cutaneous melanomas; CRC, colorectal cancers; HCC, hepatocellular carcinomas; NSCLC, non-small-cell lung cancers; OC,
ovarian cancers; PDAC, pancreatic ductal adenocarcinomas; UM, uveal melanomas.
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in the TCGA AML dataset. Our study highlights the role of genes

reflecting tolerance to cellular stress in distinguishing MDSCs from

the conventional myeloid cells.

The DNA damage response identified within cytokine-induced

MDSCs suggested that cell stress responses could be a feature

contributing to MDSC heterogeneity. We further reasoned that

MDSCs often either arise in and/or survive in microenvironments

that have not only inflammatory signals but also other cell stressors

that might induce adaptive pathways that could apply selection

pressure for MDSC survival. This concept was supported by the

enrichment of a CD11b+CD52hiCD14lo cell subset in the CD33lo

cell population that was resistant to apoptosis. The selective

upregulation of genes involved in metabolism and the DNA

damage response in these rMDSCs likely confers a survival

advantage. This conclusion is supported by the identification of

rMDSCs or the upregulation of the yellow module signature in cells

in the tumor microenvironment from different cancers and in

malignant myeloid cells from AML patients. It is also notable that

serum starvation partially reversed the MDSC features induced by

cytokine treatment alone, raising the possibility that the early cell

state in the pathway to transition to myeloid MDSC formation

could be reversed by certain cell stressors. Thus, the cell stress

features found within harsh microenvironments high in MDSC
Frontiers in Immunology 12
numbers (i.e., tumor microenvironments and sustained

inflammation) could select for MDSCs with a survival advantage.

Our analysis of the yellow module signature in AML demonstrated

that the signature was associated with mutated TP53 and was

independently associated with poor prognosis. This association was

independent of the known predictors of outcomes (e.g., TP53

mutations, cytogenetic alterations, blast cell percentage). This analysis

supports the possibility that high expression of the yellow module

signature contributes to an autonomous state necessary for maintaining

survival of immune suppressive myeloid cells. This analysis also

highlights the potential importance of the gene network represented by

the yellow module in AML. Currently, the study of MDSC in AML are

very limited (38). Establishing whetherCD52hi cells in AML patients also

have immunosuppressive function requires further investigation.

Our study also has limitations. We used serum starvation as a

cell stressor. This does not necessarily replicate in vivo conditions

such as those likely encountered in the tumor microenvironment.

Since the gene signatures induced by serum starvation in vitro were

easily detected in MDSCs in vivo, we reason that there are responses

that are common across multiple cell stressors. We also

acknowledge that we utilized computational methods to establish

the presence of rMDSC-like cells in tumor microenvironments,

using preexisting scRNA-seq datasets. To fully characterize
FIGURE 7

Identification and the independent prognostic value of the yellow module signature in AML patients. (A) Signature score of the yellow module was
calculated in myeloid and progenitor cells using a published AML scRNA-seq dataset (GSE116256). (B–E) Analysis of the TCGA AML dataset. (B)
Wilcox test was evaluated between each mutation and the yellow module signature score. Mutations were sorted by −log10(p value). Dashed line
annotated where p value = 0.05. (C) TP53 mutation was significantly associated with higher yellow module signature score. (D) Survival analysis
using the Cox regression model. (E) Correlation between CD52 gene expression and the yellow module signature score.
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rMDSC-like cells within a specific cancer type will require

further investigation.

In summary, we identify and characterize a subset of MDSC

(rMDSCs) resistant to cellular stress. The scRNA-seq dataset used to

identify rMDSC will serve as an excellent reference dataset to identify

rMDSC-like cells in scRNA-seq datasets from human disease states.

We also reveal a co-expression set of genes (the yellow module) as a

common feature shared across different sources of MDSCs. The gene

signature derived from the yellow module can be used to detect M-

MDSC cells in vitro and in vivo in bulk or single-cell transcriptomic

datasets. Further study on the effect of microenvironmental factors on

MDSCs may lead to a more refined molecular classification of MDSCs.
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