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Andújar-Pulido E, Pérez-Alegre M, Pera A and
Ruano J (2025) Integrated single-cell
chromatin and transcriptomic analyses of
peripheral immune cells in patients with
alopecia areata.
Front. Immunol. 16:1565241.
doi: 10.3389/fimmu.2025.1565241

COPYRIGHT

© 2025 Gay-Mimbrera, Gómez-Arias, Álvarez-
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Integrated single-cell chromatin
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peripheral immune cells in
patients with alopecia areata
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Introduction: Alopecia areata (AA) is an autoimmune disorder characterized by

non-scarring hair loss ranging from mild, self-limiting episodes to severe and

chronic forms. While prior research has primarily focused on lesional skin, the

contribution of systemic immune cells remains underexplored.

Methods: We performed integrated single-cell RNA sequencing (scRNA-seq)

and single-cell assay for transposase-accessible chromatin sequencing

(scATAC-seq) on peripheral blood mononuclear cells (PBMCs) from patients

with mild and severe AA, as well as healthy controls. A total of 32,453 high-quality

cells were analyzed across 36 immune cell subtypes.

Results: In AA patients, especially those with severe disease, we observed

increased transcriptional heterogeneity, cytokine and chemokine pathway

activation, and upregulation of antigen-presentation machinery enriched in

TH1, TH2, and TH17 signatures. Chromatin accessibility profiling revealed

42,248 significant peaks with pronounced epigenetic remodeling in CD14+

monocytes, NK cells, and CD8+ T cells. Mild AA showed early immune

regulatory failure, with elevated exhaustion markers in double-negative T cells

and increased apoptosis in myeloid populations. Pseudotime and transcription

factor analyses indicated altered differentiation trajectories, and inferred cell-cell

communication networks highlighted monocytes, NK cells, and memory T cells

as key signaling hubs.
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Discussion: Our results provide the first integrated single-cell chromatin and

transcriptomic map of peripheral immune dysregulation in AA. These findings

uncover systemic alterations associated with disease severity and identify

candidate pathways for immune modulation and therapeutic targeting.
KEYWORDS
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Introduction

Alopecia areata (AA) is a common, unpredictable, immune-

mediated hair loss disorder with varied clinical presentations (1).

Managing AA poses significant challenges in achieving long-term

control, efficacy, and safety (2). Severe forms, such as alopecia totalis

(AT) and alopecia universalis (AU), frequently relapse, and their

underlying mechanisms remain poorly understood (3, 4).

Predicting the clinical course of AA is difficult due to limited

understanding of the driving immunological mechanisms (5–12).

Emerging evidence suggests the involvement of systemic factors

beyond local follicular inflammation (13, 14), including associations

with other immune-mediated diseases (15, 16) and environmental

influences (17, 18). Severe AA has also been linked to heightened

systemic inflammation and increased cardiovascular risk (19, 20).

In healthy skin, anagen-phase hair follicles (HFs) are protected

from immune-mediated damage by a specialized form of immune

privilege (IP), which extends from the follicular bulge—where

keratinocyte stem cells reside—down to the bulb (21). During

anagen, the HF undergoes intense growth, characterized by high

mitotic activity of keratinocytes and melanocytes in the bulb. This

creates an immunologically active environment, increasing the

likelihood of presenting neoantigens or self-antigens, particularly

those derived from melanocytes. The increased perifollicular
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vascularization during this phase also facilitates the entry of

circulating immune cells—including potentially autoreactive

lymphocytes—into the follicular microenvironment.

This immune protection is maintained by both passive and

active mechanisms. These include the downregulation of MHC

class I and II molecules, the secretion of immunosuppressive factors

such as a-melanocyte-stimulating hormone (a-MSH) ,

transforming growth factor-beta 1 and 2 (TGF-b1, TGF-b2),
interleukin-10 (IL-10), and cortisol, as well as the expression of

non-classical MHC molecules like HLA-E and HLA-G (22).

Additionally, antigen-presenting cells (APCs), such as Langerhans

cells, are excluded from the follicular epithelium. The absence of

lymphatic vessels in the lower follicle region further limits antigen

drainage and immune cell trafficking. Together, these mechanisms

reinforce the immune-privileged status of the HF.

In AA, this equilibrium is disrupted—either by environmental

insults or intrinsic immune regulatory defects—leading to the

collapse of HF IP, which represents a key initiating event in

disease pathogenesis (21, 23). This breakdown results in the

upregulation of MHC class I and II molecules by follicular

epithelial cells, facilitating the presentation of melanocyte-

associated autoantigens to CD8+ and CD4+ T cells (24).

Interferon-gamma (IFN-g) acts as a central mediator by activating

the JAK/STAT signaling pathway, thereby amplifying antigen

presentation and inducing the expression of IFN-inducible

chemokines (CXCL9, CXCL10, CXCL11) and interleukin-15 (IL-

15) (25, 26). These mediators promote the recruitment of

autoreactive CD8+ T cells and NKG2D+ natural killer (NK) cells

to the HF bulb, where they exert cytotoxic effects against follicular

structures (27). This immune infiltration establishes a self-

perpetuating inflammatory loop that sustains immune activation

and follicular damage, ultimately driving the premature transition

of anagen HFs to the telogen phase and resulting in hair shedding.

Increasing evidence suggests that the immunopathology of AA,

initially localized to the HF, is also mirrored in the systemic immune

compartment. Peripheral blood analyses in AA patients have

demonstrated altered frequencies of immune cell subsets, including

increased proportions of cytotoxic CD8+ T cells and NK cells, along

with reduced numbers or impaired function of regulatory T cells

(Tregs) (28, 29). These systemic alterations parallel the immune

infiltrates observed in lesional skin, supporting the hypothesis that
frontiersin.org
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follicular immune dysregulation leaves a measurable systemic

footprint (25, 29). Cytokine profiling in blood has consistently

shown elevated levels of IFN-g, IL-15, IL-2, and CXCL10—key

mediators of both JAK/STAT signaling and IP collapse in the

follicular epithelium (30–32). Notably, these changes correlate with

disease severity, as patients with extensive or chronic forms of AA

display stronger Th1/IFN-driven signatures and broader immune

activation across both innate and adaptive compartments (25, 33).

The transition from patchy to extensive disease may involve the loss

of regulatory circuits and progressive amplification of proinflammatory

loops, supported by evidence of Treg dysfunction in both tissue and

blood (28, 34). Chronicity and treatment resistance have also been

associated with increased expression of exhaustion markers (e.g., PD-1,

CTLA-4) on circulating T cells, persistent type I/II IFN signatures, and

sustained cytotoxic activity by memory CD8+ T cells (25, 32). Recent

transcriptomic and epigenomic studies confirm that many of the

pathways activated in lesional skin—such as antigen presentation,

cytotoxicity, and IFN signaling—are also reflected in blood immune

cells, particularly in patients with severe or refractory disease (25, 28, 32).

We hypothesize that severe, chronic AA involves epigenetic

reprogramming of circulating immune cells, contributing to

systemic dysregulation (35–39). Identifying disease-driving cell

populations and transcription factor (TF)-controlled gene programs

may help explain phenotypic heterogeneity and support the

development of prognostic tools and personalized therapies (40).

Bulk transcriptomic approaches, such as microarrays or bulk

RNA sequencing, are limited by their inability to resolve

transcriptional heterogeneity across distinct immune cell types (9,

39–44). By averaging gene expression across diverse cell

populations, these methods obscure cell-specific disease signatures

that may be critical to understanding autoimmune pathogenesis.

Single-cell technologies—such as single-cell RNA sequencing

(scRNA-seq) and single-cell assay for transposase-accessible

chromatin using sequencing (scATAC-seq)—overcome these

limitations and have enabled deeper investigation of immune-

mediated skin diseases, including atopic dermatitis (45–49),

psoriasis (50–52), prurigo nodularis (53, 54), and mycosis

fungoides (55–58). While scRNA-seq provides high-resolution

insights into cellular composition and gene expression, scATAC-

seq allows for the study of chromatin accessibility and

transcriptional regulation (59, 60).

Therefore, in this study we performed integrated scRNA-seq

and scATAC-seq on PBMCs of AA patients (mild and severe) and

healthy controls, aiming to characterize systemic immune

dysregulation associated with disease severity.
Materials and methods

Patient selection and sample collection

We collected fresh peripheral blood samples from patients with

alopecia areata (AA), excluding those with ophiasis or sisaipho

patterns, and enrolled age-, sex-, and ethnicity-matched healthy

controls through the outpatient clinic of the Department of
Frontiers in Immunology 03
Dermatology at Reina Sofı ́a University Hospital, Córdoba,

Spain (Figure 1A).

A total of 35 individuals were enrolled: 12 patients with severe

AA, 11 with mild AA, and 12 healthy controls. All were included in

the flow cytometry analyses. From this group, a subset of 16 samples

—comprising 5 severe AA, 6 mild AA, and 5 controls—was selected

for single-cell RNA sequencing (scRNA-seq) and single-cell

chromatin accessibility profiling (scATAC-seq) based on stringent

quality control criteria and sequencing performance.

Eligible participants were aged ≥18 years and had a confirmed

clinical diagnosis of AA. Patients with other immune-mediated

diseases were excluded, except for those with clinically stable

Hashimoto’s thyroiditis. These individuals were included only if

they had not received systemic immunomodulatory or

corticosteroid therapy in the 8 weeks prior to sampling. All patients

were free from systemic immunosuppressive treatments—including

corticosteroids, methotrexate, cyclosporine, or JAK inhibitors—for at

least 8 weeks. In addition, topical therapies (e.g., corticosteroids,

minoxidil) were discontinued at least 4 weeks before sample

collection to minimize pharmacological effects on circulating

immune cells. None of the participants were receiving systemic

immunosuppressants at the time of sampling (Table 1).
Severity criteria for AA

Severity was assessed using the Severity of Alopecia Tool (SALT)

and characteristics of the most recent flare (61). Patients were classified

into two groups: mild–moderate AA, defined as <50% scalp involvement

and disease duration under one year; and severe AA, defined as SALT

≥50%, duration of one year or longer, or the presence of AT or AU.

Single-cell isolation, nuclei suspension preparation, and Single-

Cell workflow

Human peripheral blood mononuclear cells (PBMCs) were

isolated by Ficoll-Paque density gradient centrifugation and

cryopreserved 2x106 cells per sample. Cell viability was 95% or

greater for all samples. PBMCs were quickly thawed at 37°C in a

water bath and washed with culture medium RPMI 1640

supplemented with 10% FBS. DNase treatment was done before the

nuclei isolation. The nuclei isolation was conducted with an RNase

inhibitor. Nuclei suspension was filtered with a 40µm cell strainer and

counted in a Countess 3 FL Automated Cell Counter (Invitrogen,

USA); all samples had <5% live cells. High-quality nuclei were checked

by 60x brightfield microscopy. The targeted number of nuclei was

5000 nuclei per sample. Finally, single-cell chromatin accessibility and

gene expression profiling was performed using the Chromium Next

GEM Single Cell Multiome ATAC + Gene Expression Kit (10x

Genomics, USA), in accordance with the manufacturer’s protocol.
scRNA-seq and scATAC-seq library
preparation and sequencing

scRNA-seq libraries were prepared according to the

manufacturer’s instructions using the Chromium Single Cell 3′
frontiersin.org
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Reagent Kits v2 Chemistry (10x Genomics, USA), and sequenced in

multiplex on the NovaSeq 6000 platform (Illumina, USA) at

Cabimer’s Genomics Core Facility. Raw sequencing data were

processed with the Cell Ranger ARC pipeline (v2.0.0; 10x

Genomics, USA) for FASTQ generation, demultiplexing,

alignment to the GRCh38 human reference genome, and
Frontiers in Immunology 04
generation of gene-barcode matrices in Linux, following the

manufacturer’s guidelines. This included: (1) an ATAC matrix

computation step involving barcode processing, read trimming,

read alignment, duplicate marking, peak calling, and peak-barcode

matrix generation using either the mm10mouse or GRCh38 human

reference genome; and (2) a gene expression (GEX) matrix
FIGURE 1

Study design, cell type abundance, and marker expression in alopecia areata patients and controls. (A) Overview of the study design, from blood
collection to cell/nuclei isolation, sequencing (scRNA-seq/scATAC-seq), and downstream analysis. (B) Dot plot showing expression of key markers
across immune cell types. (C) UMAP feature plots illustrating distribution of representative genes (e.g., CD3G, CD4, FOXP3). (D) UMAP clustering of
major immune subsets: T cells (CD3+), CD4+ (CCR7, IL7R), CD8+ (CD8A), Tregs (FOXP3), monocytes (CD14, FCGR3A), NK cells (GNLY, NKG7), B
cells (CD19, MS4A1), plasmablasts (CD38), dendritic cells (FCER1A, CST3), HSPCs (PTPRC). (E) Violin plots of selected marker genes across cell types.
(F) Dot plot comparing expression levels and cell fractions by disease group (control, mild AA, severe AA). Statistical analysis is denoted by asterisks:
***p < 0.001, *p < 0.05, and “ns” non-significant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1565241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gay-Mimbrera et al. 10.3389/fimmu.2025.1565241
computation step comprising read trimming, genome and

transcriptome alignment, UMI correction, and UMI counting;

followed by joint cell calling. Downstream secondary analyses for

ATAC and GEX data included dimensionality reduction, clustering,
Frontiers in Immunology 05
peak annotation, transcription factor analysis, differential

expression analysis, differential accessibility analysis, and feature

linkage, as described above, using the Seurat (Satija Lab, USA),

Signac (Stuart Lab, USA), and ArchR (Greenleaf Lab, USA) toolkits.
TABLE 1 Patient baseline characteristics at the time of sampling.

Subject
ID

Type Comorbidities Age
(y)

Sex Race Disease
duration

SALT Ongoing
treatment

Previous
treatments

Evolution
1 year

AA032 AT Hypothyroidism,
hypercholesterolemia

49 F White 40 y 100% None PRP
DPCP
DXM Mini-pulses

No changes

AA037 AT Vulgar Warts,
Psoriasiform
lesions, IBD

40 F White 13 y 100% None Topical
corticosteroids
DXM Mini-pulses
Infliximab
Ustekinumab
Adalimumab

No changes

AA040 AT Depressive disorder 46 F White 33 y 100% None Topical
corticosteroids
Latanoprost and
bimatoprost
Cyclosporine
Hydroxychloroquine

No changes

AA042 AT None 23 F White 18 y 100% None DPCP
DXM Mini-pulses
Topical
corticosteroids
Methotrexate,
Ritlecitinib
Cyclosporine

No changes

AA049 AU Hypothyroidism,
Hypertension

52 F White 16 y 100% None DXM Mini-pulses
Cyclosporine
DPCP

No changes

AA033 AA
MP

Renal
lithiasis, Dyslipidemia

47 M White 6 y 4% None Topical and
systemic
corticosteroids

Total recovery

AA034 AA
MP

None 41 M White 6 y 31% None Biotine Partial
improvement

AA035 AA
MP

None 50 F White 3 m 19% None None Total recovery

AA038 AA SP Hypothyroidism,
hyperglycemia

27 M White 4 m 3% None None Single
patch
relapsing

AA041 AA
MP

Hypothyroidism 41 F White 2 m 5% None None Multiple
patch
relapsing

AA043 AA SP None 45 M White 8 m 1% None Topical
corticosteroids

Single
patch
relapsing

CN205 HC None 40 M White NA NA NA NA NA

CN206 HC None 36 F White NA NA NA NA NA

CN209 HC None 21 M White NA NA NA NA NA

CN210 HC Nome 41 F White NA NA NA NA NA

CN212 HC None 43 F White NA NA NA NA NA
Patients with clinically stable Hashimoto’s thyroiditis were included if not receiving systemic immunomodulatory treatment. All participants were free from systemic immunosuppressive therapy
for ≥8 weeks and had discontinued topical treatments (e.g., corticosteroids, minoxidil) at least 4 weeks before blood sampling. AA, Alopecia Areata; DPCP, Diphenylcyclopropenone (also known
as diphencyprone); DXM, Dexamethasone; HC, Healthy Control; IBD, Inflammatory Bowel Disease; MP, Multiple Patches; PRP, Platelet-Rich Plasma; SP, Single Patch; NA, Not Applicable..
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Quality report of scRNAseq analysis for
circulating immune cells in AA

Read quality control was performed using FastQC (Babraham

Bioinformatics, UK) for each FASTQ file, and results were aggregated

using MultiQC (Ewels et al., Sweden). Reads were aligned to the

human reference genome (GRCh38) using Cell Ranger ARC v2.0.2

(10x Genomics, USA). Raw count matrices were imported into R

v4.1.2 (R Core Team, Austria) and analyzed using Seurat v4.3.0.1

(Satija Lab, USA). Dead cells were excluded based on quality control

thresholds: fewer than 800 RNA features, fewer than 3,000 ATAC

features, or more than 20% mitochondrial gene content.
Dimension reduction and cell clustering

RNA datasets were normalized and variance-stabilized using

SCTransform, as implemented in Seurat v4.3.0.1 (Satija Lab, USA).

Integration was performed by selecting 3,000 highly variable

features and identifying integration anchors based on

SCTransform normalization. ATAC datasets were processed using

the standard pipeline provided by Signac v1.10.0 (Stuart Lab, USA).

Integration of ATAC data involved quantifying multiome peaks to

identify common features, merging datasets, finding integration

anchors, and integrating the Latent Semantic Indexing (LSI)

embeddings. A weighted combination of RNA and ATAC-seq

modal i t i e s was achieved us ing the WNN approach .

Dimensionality reduction was carried out using Uniform

Manifold Approximation and Projection (UMAP) on the first 30

dimensions. Clustering was performed using the Smart Local

Moving (SLM) algorithm on the WNN graph, yielding 36

annotated clusters based on canonical cell type marker scores

defined via Azimuth v0.4.6 (Satija Lab, USA). Data visualization

was performed using internal plotting functions in Seurat.
Differential gene expression and functional
enrichment analyses

Differentially expressed genes (DEGs) were identified using the

Wilcoxon rank-sum test and logistic regression models, as

implemented in Seurat (Satija Lab, USA). Functional annotation

was performed using DAVID Bioinformatics Resources 2021

(Laboratory of Human Retrovirology and Immunoinformatics,

NIH, USA). Pathway enrichment analysis was conducted with

GeneCodis 4 (University of Granada and CIPF, Spain), using

curated pathway databases including Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), PANTHER,

Reactome, and WikiPathways (62).
Pseudotime analyses

To reconstruct cellular differentiation dynamics, we applied

established computational frameworks tailored for scRNA-seq
Frontiers in Immunology 06
data. Pseudotime trajectories were inferred using the standard

pipeline of Slingshot v2.2.1, enabling robust modeling of lineage

progression and temporal ordering of cells. This method was

selected for its capacity to resolve both intra- and inter-lineage

developmental paths, facilitating the identification of convergent

and divergent differentiation events across cell types. Through this

approach, we gained insight into the hierarchical structure of

immune-mediated responses and the sequence of cellular

transitions specific to AA.

DEG analysis was subsequently performed along the inferred

trajectories, using appropriate statistical thresholds with FDR

correction to ensure rigor. This yielded a curated list of genes

characterized by dynamic expression changes along pseudotime,

offering clues into their potential regulatory roles in lineage

specification and differentiation.

To comprehensively interrogate these dynamics, we performed

four distinct pseudotime-based comparisons, each capturing a

unique facet of the differentiation process:
1. Pseudotime Association Across All Trajectories (1a): Genes

whose expression levels varied along pseudotime,

independent of the final lineage. These genes may be

involved in general differentiation programs.

2. Start-to-End Trajectory Comparison (1b): Genes

differentially expressed between the initial and terminal

stages of each trajectory. This analysis highlights regulators

of commitment and terminal maturation.

3. Lineage-Specific Terminal State Association (2a): Genes

that distinguish the end points of the two major lineages,

revealing molecular signatures that define mature cell fates.

4. Trajectory-Specific Expression Dynamics (2b): Genes

showing differential expression patterns at any point

along the two trajectories. These likely contribute to

pathway divergence and cell fate determination.
Cell communication networks

Intercellular communication is essential for maintaining tissue

homeostasis and orchestrating physiological responses. To dissect the

complex signaling interactions among cell populations, we employed

CellChat v1.6.1 (Jin et al., USA), an advanced computational tool for

inferring and analyzing cell-cell communication networks from

single-cell transcriptomic data. We applied the 10% truncated

mean method to calculate average gene expression within each cell

group, a strategy that minimizes the influence of outliers and

preserves the robustness of downstream analyses.

CellChat enabled the reconstruction of a comprehensive

signaling landscape, revealing potential crosstalk and pathway

activity between immune and non-immune cell populations. This

analysis provided valuable insights into the regulatory mechanisms

driving the cellular phenotypes observed in AA, highlighting key

ligand-receptor interactions and signaling hubs that may represent

novel therapeutic targets.
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Assay for transposase-accessible
chromatin using sequencing and
assignment of candidate transcription
factors

ATAC-seq data were processed using the standard pipeline of

Signac v1.10.0 (Stuart Lab, USA). Dataset integration was achieved

by quantifying multiome peaks to identify shared chromatin

accessibility features, followed by dataset merging, anchor

identification, and integration of Latent Semantic Indexing (LSI)

embeddings. A WNN approach was employed to combine

chromatin accessibility (ATAC) and gene expression (RNA)

modalities, providing a unified multimodal representation of

the data.

Differential chromatin accessibility across experimental

conditions was assessed using a logistic regression framework,

and genomic annotation of ATAC peaks was performed by

assigning each peak to its nearest gene using Signac functions. To

identify potential regulatory mechanisms, we performed TF activity

analysis using SCENIC (Single-Cell rEgulatory Network Inference

and Clustering), enabling the inference of gene regulatory networks

and the identification of key TFs driving cell-state transitions

in PBMCs.
Immunophenotyping by flow citometry

Cryopreserved PBMCs were thawed, washed with phosphate-

buffered saline (PBS), and stained with fluorochrome-conjugated

monoclonal antibodies targeting surface markers to identify innate

(monocytes, natural killer [NK] cells) and adaptive (T and B cells)

immune populations (see Supplementary Table S2 for antibody

panel). Sample acquisition was performed using a 20-parameter

LSRFortessa SORP flow cytometer (BD Biosciences, USA), and data

were analyzed with FlowJo v10.10 (BD, USA). Cell subset

abundances across disease conditions were modeled using a

Poisson Generalized Linear Model (GLM), adjusting for potential

confounders including sex, age, and SALT score.
Statistical analyses

All statistical analyses and data visualizations were performed

using R (R Core Team, Austria) and Python programming

environments, employing relevant packages and libraries. P-

values obtained from all statistical models were corrected for

multiple testing using the False Discovery Rate (FDR) method.

Adjusted P-values < 0.05 were considered statistically significant.
Data and code availability

The scRNA-seq data generated and analyzed during this study

have been deposited in the Gene Expression Omnibus (GEO) under

the accession number GSE277469. Additional data supporting the
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findings of this study, as well as custom code used for data

processing and analysis, are available from the corresponding

author upon reasonable request.
Results

Sequencing, mapping, and cell metrics
confirm robustness of circulating PBMC
dataset

The analysis included 32,453 quality-filtered cells, with each

sample yielding an average of 3,269 cells (range: 1,426 to 4,748)

and an average of 54,590 raw reads per cell (range: 17,055 to 122,594).

These data correspond to a selected subset of 16 high-quality samples

(5 severe AA, 6 mild AA, and 5 controls) from the broader study

cohort, which included 12 severe AA, 11 mild AA, and 12 control

participants. We obtained 8,004 cells from controls, 7,807 from mild

AA patients, and 16,642 from severe AA patients (Figure 1B).

Sequencing quality and mapping metrics
Sequencing depth was adequate across all samples, with a mean

of 187.8 million read pairs (range: 152.1–211.5M). The average Q30

base percentage was 93.8%, with Read 1 and Read 2 achieving 96.0%

and 95.2%, respectively. Valid barcode and UMI rates were

consistently high, averaging 98.1% and 99.9%, respectively,

indicating reliable capture of single-cell information. Duplicate

read rates ranged from 75.2% to 100.2%, reflecting some

variability in library complexity. TSO rates varied from 2.5% to

9.0% across samples.

Genome mapping metrics were also consistent, with an average

of 97.5% of reads mapped to the genome and 93% mapped

confidently. On average, 54.4% of reads aligned to exonic regions,

32.2% to intronic, and 29.8% to intergenic regions. Transcriptome

alignment rates averaged 70.5%, and antisense mapping was low

(11.8%). Most samples showed a high proportion of confidently

mapped read pairs (avg. 89.5%), although a few samples (e.g.,

CON210, 89.0%) were slightly lower. Unmapped read fractions

were low overall, with a few exceptions (e.g., ARE049, 3.4%).

Cell and fragment quality metrics
The average estimated number of cells per sample was 3,269

(range: 1,426–4,748). Mean raw reads per cell were 54,590 (range:

17,055–122,594), with a consistent transcriptomic read fraction

(avg. 68.2%). Median UMI counts and gene numbers per cell

were 2,212 and 1,235, respectively. The average fraction of high-

quality fragments was ~50%, with lower values in some samples

(e.g., ARE038, 35.7%).

Mapping and alignment metrics
Reads mapped to the genome were consistently high across

samples, with an average of 97.5%. Confident genome alignment

averaged 93%, with 54.4% of reads mapping to exonic regions,

32.2% to intronic regions, and 29.8% to intergenic regions.

Approximately 70.5% of reads aligned confidently to the
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transcriptome. Antisense mapping was low (mean: 11.8%),

indicating correct strand orientation in the majority of reads.

The proportion of confidently mapped read pairs averaged

89.5%, with minor variability across samples (e.g., CON210:

89.0%). Most samples showed low fractions of unmapped reads;

however, ARE049 had a slightly elevated rate (3.4%). Non-nuclear

reads, considered technical noise, remained minimal across samples.

The number of captured cells varied between 1,426 (CON210)

and 7,478 (CON209), with corresponding variability in sequencing

depth per cell. Some samples (e.g., CON210) exhibited high read

pairs per cell (119,894), potentially reflecting lower cell recovery or

deeper sequencing. The average fraction of high-quality fragments

was approximately 50%, with some samples, such as ARE038,

showing lower values (35.7%).

ATAC-seq targeting quality metrics
The number of peaks per sample varied, with a maximum of

91,936 in CON209, possibly indicating sample-specific

overamplification. The fraction of genome in peaks was relatively

consistent across samples. Transcription Start Site (TSS)

enrichment scores were generally acceptable, although some

samples fell below the recommended threshold of 4. High-quality

fragment fractions also showed variability, with some samples (e.g.,

CON211, 30.3%) showing reduced targeting efficiency.
Comprehensive cell type annotation
reveals altered peripheral monocyte and
lymphocyte subsets in AA

Using 18 key markers and the most prominently expressed

genes in each cluster, we identified 19 primary cell types through

WNN graph-based clustering with a supervised learning method

(Figures 1B, C, E). Each cluster was named according to canonical

cell type markers assigned via Azimuth version 0.4.6.

Subsequent unsupervised clustering (Figure 1D) revealed four

distinct subclusters within the monocyte population: classical

CD14+CD16- monocytes, proinflammatory CD14+CD16- monocytes,

intermediate CD14+CD16+ monocytes, and non-classical CD14-CD16+

monocytes (Figures 1D, 2A, D). Additionally, the CD4+ T cell

compartment included two subclusters of T central memory cells

(TCM) 1 and 2, and a mixed cluster of naïve and TCM CD4+ T cells

(CD4+ naïve/TCM). The CD8+ T cell population had distinct

subclusters: naïve CD8+ T cells, a combined TCM/TEM population,

and subclusters 1, 2, and 5 of CD8+ T effector memory (TEM) cells. NK

cells were further categorized into NK CD56bright cells and subclusters

1, 2, and 5 of NK CD56dim cells.

Most cell subtypes did not show differential patterns when

comparing controls and different severities of AA. However, we

observed a significant reduction in CD14+CD16- monocytes in both

mild and severe AA (p < 0.001) (Figure 1F). Additionally, mild AA

showed increased CD4+ TCM (p < 0.05) and NK CD56dim cells (p <

0.05), while severe AA had an elevated subpopulation of CD8+ TEM

cells (p < 0.05). No significant differences were found in other

cellular subtypes between AA patients and healthy subjects.
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AA patients display increased
transcriptional activity across circulating
immune subsets

All patients with AA showed an overall increase in marker

number, expression changes, and variability in cell percentages

across all PBMC types and subtypes (Figure 2E). These effects

were more pronounced in severe cases, with monocytes being most

affected, followed by NK and CD8+ T cells.

Specifically, CD14+ proinflammatory and CD16+ monocytes had

the highest number of altered markers. Significant changes were also

seen in NK cells, CD8+ T cells, pDCs, and cDC2s, highlighting a

dysregulated innate immune response (Figure 2E). To a lesser extent,

increases were observed in adaptive immune cells like HSPCs,

plasmablasts, and B cell subtypes. Tregs showed minimal changes,

suggesting a possible failure to control inflammatory activity.
Lineage-specific transcriptional signatures
highlight functional skewing in monocytes,
NK cells, and T cells

Single-cell transcriptomic analysis identified lineage-specific

transcriptional profiles across key populations in PBMCs from

patients with AA, revealing distinct functional states in monocytes,

NK cells, and T cell subsets (Figure 2C).

In summary, monocyte subsets in AA exhibit distinct yet

overlapping transcriptional profiles. Shared expression of LYZ,

FCN1, IRAK3, and CD83 across all subsets reflects a conserved

monocytic core program involved in innate immune sensing and

regulation. Transcription factors such as ZEB2 and NFKBIZ were

also broadly expressed, supporting a shared inflammatory potential.

CD14+ monocytes showed enrichment in matrix remodeling

(VCAN) and inflammatory metabolism (NAMPT, PLTP, PLIN2),

while CD16+ monocytes upregulated pro-inflammatory alarmins

(S100A9) and cytokines (IL1B), stress-responsive transcription

factors (FOSB, BACH1), and effector molecules like TNFAIP2.

CD14+/CD16+ monocytes displayed a hybrid profile overlapping

with both classical and non-classical subsets.

NK cell subpopulations displayed distinct transcriptional signatures.

NK CD56bright cells expressed higher levels of XCL1, XCL2, IL7R, and

KLRF1, suggesting immunoregulatory and chemotactic roles. In

contrast, NK CD56dim cell subsets were enriched for cytotoxic

mediators including PRF1, GZMB, GNLY, TYROBP, and NKG7,

consistent with their established effector function.

CD4+ T cells exhibited gene signatures associated with memory

and survival (CD27, ICOS, BCL2), along with markers indicative of

chemotactic activity and tissue remodeling (CCL5, ADAM8). CD8+

T cells showed strong expression of cytotoxic mediators (GZMA,

GZMH, GZMK) and proliferation-associated genes (MKI67,

TOP2A), indicating active effector function and clonal expansion.

CD4+ and CD8+ TCM displayed transcriptional signatures

consistent with a resting memory state and potential for tissue

interaction, marked by CD27, ICOS, BCL2, ADAM8, STMN1, and

CCL5. In contrast to CD8+ TEM, they lacked prominent effector and
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proliferative markers such as GZMH, MKI67, TOP2A, and TIGIT,

supporting their identity as less activated, long-lived memory T cells.
Immune cell activation and effector
programs are amplified in severe versus
mild AA

Gene expression analysis revealed a markedly higher

transcriptional activity in severe AA patients compared to those with

mild disease and healthy controls (Figures 2E–G). This increased

activity was observed across nearly all cell subsets, with the most

prominent changes in CD14+ and CD14+CD16+ monocytes, NK

CD56bright cells, CD4+ naïve/TCM, and CD8+ TCM/TEM

populations, reflecting a broad and coordinated response to severe
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activation. In contrast, mild AA cases displayed a more heterogeneous

pattern, with modest activation in CD14+CD16+ monocytes and NK

CD56dim 1 cells, and potential regulatory engagement by Tregs

suggesting early-stage inflammatory modulation.

In severe AA, upregulated genes were enriched in pathways

related to MHC class I presentation, chemokine signaling, damage-

associated molecular patterns (DAMPs), cell migration, and

antimicrobial responses (Figure 2G). Notably, NAMPT, FOS,

S100A9, PRF1, and GNLY were strongly upregulated in monocytes,

NK cells, and CD8+ TEM, alongside increased expression of HLA-C

and B2M, indicative of heightened antigen presentation and cytotoxic

activity (Figure 2B). In contrast, mild AA showed higher expression

of IL7R, TSC22D3, DUSP6, and ZFP36L2, suggesting preserved

homeostatic regulation and anti-inflammatory signaling,

particularly in memory T cells and monocytes.
FIGURE 2

Cell type-specific expression patterns and differential gene expression in Alopecia. (A) Stacked bar plots showing immune cell proportions across
groups. (B) Heatmap of shared marker expression across major cell types. (C) Heatmaps of differentially expressed genes (DEGs) in monocytes, NK,
CD4+, CD8+ T cells, and Tregs. (D) Bar plot of proportions of key subsets within NK, CD4+, CD8+, and monocyte compartments. (E) Violin plots of
marker expression across severity groups. (F) Volcano plots and violin plots of significant DEGs across disease groups (adj. p < 0.05, log2FC > 0.5).
UMAP, Uniform Manifold Approximation and Projection; scRNA-seq, single-cell RNA sequencing; scATAC-seq, Assay for Transposase-Accessible
Chromatin with high-throughput sequencing; gdT, Gamma Delta T cells; Treg, Regulatory T cells; MAIT, Mucosal-Associated Invariant T cells; dnT,
Double Negative T cells; TCM, T Central Memory cells; TEM, T Effector Memory cells; NK, Natural Killer cells; MONO, Monocytes; cDC2,
Conventional Dendritic Cells type 2; pDC, Plasmacytoid Dendritic Cells; HSPC, Hematopoietic Stem and Progenitor Cells. Statistical analysis is
denoted by asterisks: ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, and “ns” non-significant difference.
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Additionally, key transcription factors such as FOS, JUNB, and

NR4A3, along with the inflammation modulator ZFP36, were

significantly overexpressed in severe AA, moderately expressed in

mild cases, and downregulated in healthy controls, further

highlighting the progressive immunopathology associated with

disease severity (Figure 2G).
Cytokine and chemokine expression
profiles indicate enhanced immune
activation and tissue-directed recruitment
of peripheral immune cells

Our integrated single-cell transcriptomic and chromatin

accessibility profiling revealed diverse functional programs across

PBMC subsets in patients with AA. Distinct expression patterns

were observed for cytokine signaling, chemokine-mediated

migration, cytotoxicity, exhaustion, and cellular senescence

(Figure 3A–C).

Cytokine and cytokine receptor expression: Th1,
Th2, and Th17 axis engagement in AA

Monocytes, particularly CD14+ classical and proinflammatory

subsets, exhibited strong expression of IL1B, IL15, IL17RA, and

IL1RAP, indicating engagement of Th1 and Th17 pathways, as well

as activation of the IL-1/IL-6/IL-18 axis (Figure 3A). This

inflammatory profile was further supported by cDC2s, which

expressed IL1B and IL13RA1, suggesting additional responsiveness

to Th2-mediated signals.

NK CD56bright cells upregulated IL12RB2, IL18R1, and

IL18RAP, which are central to Th1-type activation and IFN-g
production, promoting cytotoxic function and inflammatory

amplification. Meanwhile, CD56dim subsets expressed IL32,

IL2RB, and in some cases IL2RG, indicating responsiveness to g-
chain cytokines and contribution to both effector and

homeostatic signaling.

In T cells, expression of IL7R, IL2RG, and IL32 in CD4+ and

CD8+ subsets supports a transcriptional program associated with

survival, memory maintenance, and cytokine-driven activation. The

presence of IL4R and IL13RA1 in T and B cells, albeit modest,

points to partial activation of the Th2 axis, while IL17RA expression

in monocytes and innate-like lymphocytes confirms a parallel

Th17 component.

Chemokine and receptor expression: migration,
immune polarization, and tissue recirculation

Distinct chemokine and receptor profiles across cells subsets in

AA highlight coordinated mechanisms of cell recruitment, tissue

homing, and inflammatory amplification (Figure 3B). CD14+

monocytes and CD56dim NK cells prominently expressed CCL3,

while CCL4 and CCL5 were shared by cytotoxic CD8+ TEM cells

and gd T cells, indicating a chemotactic axis involved in mobilizing

effector cells to inflammatory sites. Expression of CXCL8 in CD14+
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monocytes and CXCL16 in CD16+ monocytes suggests a sequential

role in initiating and sustaining inflammation, respectively.

CXCR4, a key regulator of cell trafficking, was broadly expressed in

B naïve, CD8+ TCM/TEM, gd T cells, and MAIT cells, pointing to a

shared mechanism for recirculation and tissue migration. Additional

receptors such as CXCR6 and CCR6, found in CD4+ memory T cells

and innate-like populations, support mucosal and peripheral tissue

homing capacities. CCR7 expression in naïve CD4+ and CD8+ T cells

further reflects their readiness for lymph node recirculation and antigen

surveillance. Of note, NK CD56bright cells expressed XCL1, a chemokine

involved in dendritic cell recruitment and inflammatory modulation,

reinforcing their role in orchestrating early immune responses.
Immune dysfunction signatures define
cytotoxic, exhausted, and senescent states
in circulating immune cells of AA patients

Our study found significant overexpression of exhaustion markers

(TOX, TIGIT, GZMK, CTLA4) in DNT 2, indicating chronic antigen

stimulation and cell exhaustion in patients with AA (Figure 3C). Other

cells showed lower levels of these markers, including gd T cells

(GZMK), cDC2s (CDKN1A, ENTPD1, HAVCR2), and CD14+

monocytes (CDKN1A). Apoptotic markers were limited, with CASP3

in plasmablasts and CASP1/ANXA5 in monocytes and cDC2s,

suggesting higher apoptosis in these cells. In contrast, the anti-

apoptotic marker BCL2 was prevalent in CD4+ T cells, naïve CD8+ T

cells, and Tregs, indicating preserved T cell viability. Senescence

markers were less common but showed increased susceptibility in

monocytes, dendritic cells, and DNT 2 cells in AA patients.
Distinct transcription factor activity profiles
reveal cell type–specific regulatory
alterations in circulating immune cells in
AA

To explore the regulatory mechanisms driving transcriptional

changes in AA, we performed TF enrichment analysis on DEGs

from AA patients versus healthy controls (Figures 3D–F). The

global view (Figure 3D) revealed a distributed regulatory

landscape, with no single TF dominating across all cell subtypes.

This suggests that transcriptional regulation in AA is context-

dependent and shaped by cell type–specific TF combinations.

Among all subsets, CD8+ TEM 2 cells displayed the highest

number of uniquely enriched TFs, indicative of a specialized

program linked to cytotoxic function and partial exhaustion. Key

TFs such as TBX21, EOMES, PRDM1, and ZEB2 were selectively

enriched, aligning with a memory-effector phenotype.

In contrast, most other TFs were enriched in CD14+ monocytes,

either exclusively or shared with NK CD56dim 2 cells, reflecting

innate regulatory overlap. CD14+ proinflammatory monocytes

showed enrichment of TFs like IRF1, CEBPA, SPI1, MLLT1, and
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CD74, associated with interferon signaling, monocyte activation,

inflammation, and antigen presentation. Conversely, enrichment of

regulatory TFs such as RXRG and KRAB suggests compensatory

anti-inflammatory mechanisms.

NK CD56dim 2 cells expressed TFs related to cytotoxicity and

maturation, including RUNX1, STAT5A, and NOTCH1, supporting

their effector role. The presence of FOXP3 suggests activation-

modulated state, while CD74 and MED1 point to enhanced

transcriptional activity and responsiveness. This profile partially

overlaps with that of CD8+ TEM 2 cells, indicating shared effector

regulatory pathways.

Several TFs, including GLI2 (modulator of inflammation via

Hedgehog signaling), MALT1 (NF-kB activator in T and B cells),

FOXP1 (regulator of memory T and B cell differentiation), RELA

(core NF-kB subunit promoting inflammatory gene expression),

and SPI1 (key driver of monocyte/macrophage identity), were

enriched across multiple lineages, underscoring their cross-lineage

relevance in AA pathogenesis.

Altogether, these results reveal a complex yet structured

regulatory network in AA, driven by both shared and cell type–

specific TFs, and highlight candidate master regulators of disease-

related immune-related responses.
Frontiers in Immunology 11
Flow cytometry validates altered
frequencies of circulating immune subsets
in an independent AA cohort

To validate and complement transcriptional insights, we

analyzed the frequencies of cell subsets by conventional flow

cytometry. Several phenotypically defined populations showed

significant differences between AA patients and healthy

controls (Figure 3F).

Multiple CD56bright NK cell subsets, including CD8+, CD57+,

and CD38+ phenotypes, were significantly expanded in AA (p <

0.05), consistent with increased cytotoxic activity, activation and

terminal differentiation. The CD56dim NKGA2A+ NK subset,

involved in cytolytic and regulatory functions, was also

significantly increased (p < 0.001).

CD8+ T cells expressing CD39+, a marker of activation and

partial exhaustion, were more abundant in AA (p < 0.05). CD4+

Tregs showed a significant increase in CD39+/PD1+ subsets (p <

0.05), suggesting an expanded yet potentially dysfunctional

suppressive compartment.

Among CD4+ T helper subsets, Th2 and Th17 effector memory

cells expressing CD38+ were significantly elevated (p < 0.05),
FIGURE 3

Cytokine and chemokine Expression, cell functionality markers, transcription factor predictions, and comparative analysis in AA. (A, B) Heatmaps of
cytokine and chemokine expression across cell types. (C) Heatmaps of functional signatures: senescence, exhaustion, activation, cytotoxicity. (D)
Word cloud of top transcription factors (TFs) from ATAC-seq data. (E) Dot plots showing top predicted TFs per cell type (NK, CD8+, monocytes). (F)
Bar plot of pathway overlap among DEGs. (G) Flow cytometry validation of immune subsets. Statistical analysis is denoted by asterisks: ***p < 0.001,
**p < 0.01, *p < 0.05.
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supporting a broader activation state and possible shift toward

pathogenic Th polarization.

B cell populations were also altered. B cells expressing CD38+ or

CD86+ were significantly increased in AA (p < 0.01 and p < 0.05,

respectively), suggesting enhanced activation and antigen-

presenting potential.
Pseudotime analysis reveals skewed
differentiation trajectories in circulating
immune cells

To investigate the developmental dynamics, we performed

pseudotime trajectory analysis on CD4+ T cells, CD8+ T cells,

monocytes, and NK cells, comparing patients with AA

(Figure 4A) to healthy controls (Figure 4B). These analyses

revealed marked shifts in differentiation paths and cell state

distributions across cell subsets in AA.

In CD4+ T cells (Figure 4A(i)), trajectories originated from a

CD4+ naïve/TCM cluster and diverged toward two distinct fates:

Tregs and CD4+ TCM 1/2. In AA patients, the CD4+ naïve/TCM

compartment appeared depleted, while Treg and TCM 2

populations were expanded, suggesting accelerated differentiation

or loss of naïve precursors. In contrast, controls (Figure 4B(i))

retained a more prominent naïve cluster and balanced distribution

along both fates.

Monocytes in AA (Figure 4A(ii)) transitioned from CD14+

monocytes toward two terminal phenotypes: proinflammatory

CD14+ monocytes and CD16+ monocytes, with an intermediate

CD14+CD16+ state. The trajectory was markedly skewed towards

the proinflammatory trajectory in AA, while in controls (Figure 4B

(ii)), trajectories remained centered around homeostatic CD14+

cells, with more restricted expansion toward inflammatory states.

For CD8+ T cells (Figure 4A(iii)), the trajectory started from a

naïve population and progressed toward CD8+ TCM/TEM,

branching into two TEM subtypes (TEM 1 and 2) and a terminal

TEM 5 subset. The TEM 5 population, enlarged in AA, represents a

potentially exhausted or chronically activated effector state. In

healthy controls (Figure 4B(iii)), differentiation was more

constrained, with fewer cells populating terminal effector branches.

NK cell trajectories (Figure 4A(iv)) revealed a progression from

CD56bright toward multiple CD56dim subsets, notably NK CD56dim

1, which was expanded in AA and occupied the terminal state. This

subset may reflect heightened cytotoxic activation or tissue-

migratory potential. In controls (Figure 4B(iv)), CD56bright cells

remained more abundant and less differentiated, suggesting a more

regulated NK maturation process.
Cell–cell communication inference reveals
enhanced crosstalk and effector signaling
in AA

To investigate systemic dysregulation in AA, we inferred

ligand–receptor-mediated communication networks between cell
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subtypes using a curated interaction model. A global analysis of the

aggregated communication landscape revealed a substantial

increase in both the number and strength of interactions in AA

patients compared to controls, particularly in severe cases

(Supplementary Figure S10; Figures 4C–E). Notably, CD4+ TCM,

CD8+ TEM, CD56bright NK cells, and proinflammatory CD14+

monocytes emerged as major hubs of outgoing signaling activity.

These findings are consistent with their elevated transcriptional

activity and chromatin accessibility previously identified in

our dataset.

Further analysis of directional communication patterns

confirmed that these subsets act as key signal “senders”, exerting

broad influence over other cell subtypes, including Tregs and cDC2

(Supplementary Figure S11). At the pathway level, we identified

significant contributions to several canonical axes, including MHC

class I/II, CCL, CXCL, IFN, and TNF signaling (Supplementary

Figure S12), all of which have been previously implicated in the

disruption of IP at the hair follicle level.

Within these networks, monocyte and NK subsets were

dominant producers of TNF and type I/II interferon signals,

while Tregs and naïve T cells showed markedly lower

participation in proinflammatory pathways. This imbalance

supports the hypothesis of diminished immunoregulation coupled

with enhanced effector signaling in patients with severe AA.

We identified several key ligand–receptor signaling interactions

mediating cell-cell crosstalk, including CLEC2D–KLRB1, facilitating

communication between CD4+ TCM and NK cells; HLA-DPB1–

DPA1, bridging CD4+, CD8+, Tregs, and NK subsets; and classic T

cell co-stimulatory pairs, such as LCK–CD8 and CD86–CD28,

which are essential for T cell activation and priming.

Cell-cell signals promoting adhesion and migration were

mediated by axes like collagen–CD44, PECAM1–PECAM1,

CCL5–CCR1, and IL16–CD4, guiding cells to inflammatory

niches. Additionally, galectin-mediated regulation involving

LGALS1, LGALS2, LGALS3, and LGALS9 emerged as a potential

mechanism modulat ing ce l l–ce l l contact , ac t ivat ion ,

and apoptosis.

We also observed key immunoregulatory interactions, such as

THBS1–CD47/CD36, TGFB1–TGFBR1/2, and negative feedback

loops through ANXA1–FPR1, HLA-F–LILRB1, and LGALS9–

CD44, which may be essential for resolving inflammation and

restoring homeostasis.
Chromatin accessibility profiling identifies
epigenetic changes in key circulating
immune subsets

Our analysis identified 42,248 significant ATAC peaks across

samples, indicating broad chromatin accessibility changes in AA

patients . While most cel l types showed few changes

(Supplementary Figure S7), NK cells and CD8+ TCM/TEM had

the most peaks. Intermediate B cells and CD14+ monocytes

showed more variability, suggesting diverse chromatin

dynamics. Increased chromatin accessibility was observed in
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CD14+ monocytes, NK CD56bright cells, HSPCs, B cells,

plasmablasts, and MAIT cells (Supplementary Figure S8). In

contrast, naïve T cells, Tregs, and gd T cells showed fewer

changes, indicating stable chromatin regulation.

We identified 261 differentially expressed genes with adjacent

open chromatin regions in AA patients (Supplementary Table S3).

These genes exhibited coordinated regulation at both the epigenetic

and transcriptional levels, implicating functional relevance in

disease pathology.

In B cells (naïve, intermediate, memory), GNG7, LYN, and PAX5

showed the highest number of open chromatin regions, reflecting

altered B cell signaling. Among CD8+ memory/effector T cells and

MAIT cells,CXCR4, ZFP36L2, and ZBTB16 stood out—CXCR4 being

a key player in Th1 polarization and lymphocyte trafficking. NK

CD56bright cells displayed accessibility at AUTS2, IL2RB, and PLCB1;

notably, IL2RB is involved in Th1 and Th2 cytokine signaling via the

JAK/STAT pathway. In monocytes, genes such as NEAT1, EVI5, and

PTPN6 were accessible, the latter regulating JAK/STAT activation. In

plasmacytoid dendritic cells, open chromatin at FCHSD2, RNF149,

IRF7 and PTPRE may underpin interferon-related responses.

Additionally, IL4R, enriched in B naïve cells, links to Th2 signaling.

These findings suggest epigenetic activation of pathways including

Th1, Th2, interferon-JAK/STAT, and B cell signaling across distinct

subsets in AA.
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Gene module analysis highlights
coordinated regulatory programs in
circulating immune cells

To explore their functional organization, we constructed a

protein–protein interaction (PPI) network using STRING,

comprising 259 nodes and 226 edges, significantly above random

expectation (p < 1.0e-16) (Figure 5A). This network revealed a

highly interconnected regulatory structure, indicative of biologically

meaningful co-regulation among these genes.

To further dissect the biological functions of this regulatory

network, we applied unsupervised clustering, resulting in eight

distinct gene modules (Figure 5B(i-viii)). Each cluster was

functionally annotated via enrichment analysis (Reactome, GO,

KEGG), revealing discrete activation and regulatory pathways

relevant to AA pathogenesis.

Clusters 1 and 5 captured modules involved in transcriptional

control, chromatin dynamics, and lymphocyte differentiation,

indicating a general dysregulation of gene regulatory programs

in adaptive immune cells. These included transcriptional

regulators such as ETV6, NCOR2, MAFB, MEF2C, TCF3, and

SPIB, which may modulate key pathways of cell activation and

maturation, contributing to the altered functional states observed

in AA.
FIGURE 4

Analysis of immune cell subtypes, functional pathway enrichment, and ligand-receptor interaction preferences in circulating cell subsets of alopecia
areata (AA) and control samples. (A, B) UMAP plots of major immune subtypes in AA (A) and controls (B). (C) Dot plot of enriched pathways per cell
subtype (size: gene ratio, color: adjusted p). (D) Receptor–ligand interaction frequency: total (i) and excluding HLA (ii). (E) Heatmap of inferred
ligand-receptor interactions between immune subsets. Diagonal separates AA vs control comparisons.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1565241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gay-Mimbrera et al. 10.3389/fimmu.2025.1565241
Centered on antigen presentation and effector T cell responses,

clusters 3 and 4 were enriched for MHC class I and II pathways and

T cell activation genes (e.g. HLA-DPB1, CD74), as well as TNF, IL-

17 , and TCR signa l ing components (e .g . TNFAIP3 ,

BCL3), respectively.

Clusters 6 and 7 were associated with broader modulation,

encompassing chemokine signaling and T helper cell polarization

(Th1, Th2, Th17) via the JAK–STAT pathway, highlighting

disrupted differentiation programs and increased plasticity.

Finally, cluster 8 represented a coherent interferon response

module, including type I IFN effectors, consistent with the systemic

antiviral-like signature previously reported in AA.
Discussion

Our study provides the first comprehensive multi-omic

characterization of peripheral immune cells in AA, integrating single-

cell RNA sequencing and chromatin accessibility profiling. This

strategy enables high-resolution delineation of transcriptional states,

regulatory circuits, and upstream drivers of immune dysregulation,

allowing in-depth comparisons across disease severities.

We identified proinflammatory monocytes, CD8+ effector

memory T cells, and NK cell subsets as major contributors to

systemic activation in AA. These populations exhibited elevated

transcriptional activity, increased chromatin accessibility, and

enrichment of transcription factors involved in cytotoxicity,

antigen presentation, and inflammation. In contrast, regulatory

and naïve subsets displayed limited transcriptional and epigenetic

changes, indicating a selective activation of effector mechanisms.

Genes related to both innate and adaptive immunity—including

memory cell markers and skin-homing/recirculation signatures—

were overexpressed in these subsets, highlighting their peripheral

readiness to engage in tissue-specific responses. Importantly, these

transcriptional profiles mirrored previously characterized lesional

features such as IFN-stimulated genes, cytotoxic granules (e.g.,

GZMB, GNLY), and MHC class I/II upregulation, implicating

systemic engagement in the collapse of HF’s IP (24).

Notably, several subsets—including Tregs, DNTs, and

monocytes—expressed regulatory molecules alongside exhaustion

markers, reflecting a dysfunctional attempt to suppress

inflammation. These states were accompanied by Th1-, Th2-, and

Th17-associated cytokine programs and cytotoxic and antigen-

presenting pathways, all previously implicated in the collapse of

HF’s IP in AA (29).

Our findings are consistent with previous reports of

perifollicular infiltration by CD8+ and NK cells, overexpression of

MHC class I and II molecules in follicular keratinocytes, and

dysfunction of regulatory T cells in both blood and tissue (24,

63). Importantly, our data now extend these observations by

demonstrating that these immunological pathways are also

systemically dysregulated, particularly in patients with severe

AA (64).

In severe AA, we observed a coordinated activation across

transcriptional, epigenomic, and signaling layers within effector
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subsets—most prominently proinflammatory CD14+ monocytes,

CD8+ TEM cells, and CD56bright NK cells. These populations

exhibited increased chromatin accessibility at loci involved in

antigen presentation, chemokine signaling, and interferon

responses, accompanied by strong upregulation of cytotoxic

mediators such as PRF1, GNLY, and IFN-stimulated genes.

Importantly, these axes replicate mechanisms observed in lesional

HF during IP collapse (24, 29, 64).

In contrast, mild AA was associated with intermediate

activation profiles. Cell types such as NK CD56dim cells and

CD14+CD16+ monocytes showed moderate increases in

transcriptional activity, while regulatory subsets like Tregs

retained expression of homeostatic and anti-inflammatory genes

(e.g., IL7R, TSC22D3, ZFP36L2). Interestingly, some of these cells

co-expressed exhaustion markers (e.g., CTLA4, TIGIT), suggesting

that attempts to restrain inflammation may become progressively

dysfunctional with increasing disease severity. This may help

explain the transition from mild to chronic disease and the

associated loss of treatment responsiveness (63).

Moreover, our pseudo-time trajectory analyses revealed a

skewing of differentiation pathways in AA toward inflammatory

and terminal effector states, particularly in monocytes, CD8+ T cells,

and NK cells. These shifts were accompanied by the contraction of

naïve and precursor compartments, further indicating disrupted

homeostasis. Such patterns of accelerated differentiation may

underlie disease chronicity and relapse.

Adding another layer of evidence, cell-cell communication

analysis uncovered a dense and restructured ligand-receptor

interaction network in severe AA. Proinflammatory subsets such

as CD14+ monocytes, CD8+ TEM cells, and CD56bright NK cells were

identified as dominant signaling hubs, secreting TNF, IFN, and

chemokine signals and orchestrating recruitment via CCL5–CCR1,

XCL1–XCR1, and CXCL10–CXCR3 axes. These findings are

consistent with cytokine elevation profiles previously described in

the serum and skin of AA patients (65–67).

Crucially, all these levels of analysis were consistent in identifying

effector populations as key drivers of dysregulation, particularly in

severe AA. Conversely, preserving regulatory and anti-inflammatory

programs in mild cases suggests a window of immune plasticity that

may allow for disease reversal before the complete collapse of

regulatory control. This concept aligns with clinical observations of

spontaneous remission or effective treatment response in early AA

and resistance or chronicity in more advanced stages (5).

Previous studies have examined this activation in limited cell

subtypes through cytometry, or indirectly via transcriptomic

analysis or measuring proteins like cytokines in bulk samples

(66–72). Our findings are consistent with their results showing

altered monocytes, CD4+ T cells, CD8+ T cell, and NK cells

dysregulation (73–75), transcriptomic changes (76), cytokine/

chemokine activation (24, 77–80), epigenetic changes (35),

immunotolerance (81, 82), and impaired regulatory T cell

function (83). Despite variations in specific cell subtypes and

cytokines involved, findings are consistent, suggesting circulating

immune cells critically contribute to AA’s development and

progression, with implications for targeted therapies.
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Notably, our data reveal that systemic immune dysregulation is

evident even in patients with mild AA. This raises important clinical

implications regarding early therapeutic intervention. Although

JAK inhibitors (JAKi) such as baricitinib, ritlecitinib, and

deuruxolitinib have been approved for the treatment of severe

AA, their potential benefits in earlier disease stages remain to be

fully explored (84). Identifying predictors of progression could

allow for timely stratification and personalized management of

AA patients, an area that warrants prospective investigation.

These findings align with emerging clinical trial evidence

suggesting that early intervention with JAK inhibitors may improve

long-term outcomes by preventing irreversible follicular damage.

Stratifying patients based on peripheral immune activation—

particularly JAK/STAT-associated transcriptional signatures—could

help identify those most likely to benefit from early targeted therapy.

Consistent with these findings, we identified cell type–specific

enrichment of TFs such as SPI1 in monocytes (85), PRDM1 (Blimp-

1) in CD8+ effector T cells (86), and ZEB2 in NK and CD8+ memory

subsets (87). These TFs are known regulators of monocyte

activation, cytotoxic T cell differentiation, and effector memory
Frontiers in Immunology 15
programming, respectively. Although our study inferred TF activity

using integrative scRNA-seq and scATAC-seq analyses,

experimental validation is needed to confirm their functional

roles in AA. Future studies could employ CRISPR interference or

activation (CRISPRi/a), overexpression or knockdown in ex vivo

PBMCs, and ChIP-seq to elucidate TF-target relationships and

regulatory networks. These approaches may clarify whether such

TFs contribute directly to the dysregulated immune circuits

observed in AA and support their potential as biomarkers or

therapeutic targets.
Discrepancies, strengths, and limitations

Our study benefits from high-quality data and robust multi-

omic integration, enabling confident identification of programs

across cell types and disease severities. The confirmation of

severity-associated signatures and their validation in an

independent cohort via flow cytometry further reinforces our

findings’ reproducibility and translational relevance.
FIGURE 5

Network analysis of gene clusters and functional pathway enrichment in immune cell subtypes. (A) Network plot of gene-gene interactions, colored
by cluster. (B) (i–viii) Detailed cluster-specific pathway enrichment: • C1: Nucleosome, chromatin, senescence • C2: B cell activation • C3: Antigen
processing, T cell differentiation • C4: Inflammatory signaling (NF-kB, TNF, IL-17) • C5: Transcriptional control, lymphocyte differentiation • C6:
Chromatin modifiers • C7: Th1/Th17 differentiation, JAK–STAT • C8: IFN signaling, innate immunity.
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One limitation of our study is the absence of significant

enrichment for CD8+ T cells in peripheral blood, which contrasts

with some earlier reports. This discrepancy may reflect

compartmentalization of pathogenic subsets within lesional skin,

rather than circulation. In addition, mast cells and tissue-resident

immune cells—which play key roles in local IP collapse—were not

evaluated in this study. Another constraint is the relatively modest

sample size; however, this is partially offset by the high

dimensionality and resolution of the single-cell data, as well as

the validation of key findings through independent flow cytometry

analyses. Future studies involving larger cohorts will be important

to confirm and expand upon these results.

Although the full study cohort was matched for age, sex, and

ethnicity, the subset selected for single-cell profiling showed some

imbalance in sex distribution due to differences in sample quality and

sequencing performance. To reduce potential confounding, all statistical

models were adjusted for sex, age, and SALT score. Nonetheless, this

imbalance represents a potential limitation when interpreting sex-

sensitive transcriptional differences at the cell-type level.

Finally, because the definition of the “severe” AA group was based

on both disease extent (≥50% scalp involvement) and chronicity (≥1

year duration), we cannot fully separate the relative contributions of

disease severity and duration to the observed immune dysregulation. It

is likely that both factors interact and contribute to the progressive

immunopathology identified.

In summary, our study reveals distinct transcriptional and

regulatory alterations in circulating immune cells of AA patients,

with progressive changes correlating with disease severity. These

findings expand current knowledge of AA pathobiology and

provide a systemic perspective on immune activation that

complements previous skin-focused studies.
Conclusion

This study presents the first integrated single-cell transcriptomic

and epigenetic map of circulating immune cells in AA, revealing

severity-dependent immune activation and regulatory imbalance.

The identification of specific dysregulated pathways and immune cell

subsets provides valuable insight into the systemic nature of AA as an

inflammatory disease. Notably, even patients with mild disease display

molecular evidence of systemic immune activation, challenging the

notion that AA is solely a localized scalp disorder. These findings pave

the way for biomarker discovery and support the development of stage-

specific, targeted immunomodulatory therapies tailored to individual

immune profiles.

Our findings suggest that systemic immune activation is already

present in patients withmild AA, raising important questions about the

timing and intensity of therapeutic intervention. Identifying molecular

or cellular predictors of progression from mild to severe disease could

enable early stratification of patients who may benefit from systemic

treatments. Currently, JAK inhibitors such as baricitinib and ritlecitinib

are approved primarily for severe cases of AA; however, the observed

activation of IFN- and JAK/STAT-related pathways in mild disease

suggests that early targeting of these pathways may be beneficial in
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preventing disease escalation. Prospective studies are needed to

determine which immunological features best predict progression

and could guide early therapeutic decisions.
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