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Introduction: Ischemic stroke, a prevalent cerebrovascular disorder characterized

by reduced cerebral blood flow, and systemic lupus erythematosus (SLE), an

autoimmune disease affecting various organs, are suspected to share

overlapping etiological mechanisms and genetic predispositions. This study

aimed to identify shared diagnostic biomarkers and molecular mechanisms by

analyzing datasets from the GEO database.

Methods:Wepinpointed differentially expressed genes using the limma package and

identified co-expression modules associated with both conditions using Weighted

Gene Coexpression Network Analysis. Pathway enrichment analysis was conducted

using GO and KEGG to identify co-driver genes. LASSO regression was applied to

evaluate potential diagnostic markers, and immune cell infiltration was quantified

using the CIBERSORT computational method. A middle cerebral artery occlusion

(MCAO) mouse model was developed to assess core gene expression in vivo.

Results: We identified 69 shared driver genes linked to stroke and SLE, which

were narrowed down to the top 10 genes through a Protein-Protein Interaction

network analysis with Cytoscape. LASSO regression selected EIF2AK2, PARP9,

and IFI27 as diagnostic biomarkers, supported by ROC curve analysis. Immune

cell infiltration profiles were nearly identical between ischemic stroke and SLE.

9.4T MR imaging, H&E and Nissl staining confirmed ischemic stroke in the MCAO

model, and qPCR analysis confirmed elevated expression of the three hub genes.

Discussion: Our findings provide evidence for common diagnostic indicators

and disease mechanisms in ischemic stroke and SLE, offering novel insights for

potential therapeutic strategies targeting their shared immune cell

infiltration microenvironments.
KEYWORDS

ischemic stroke, systemic lupus erythematosus, diagnostic biomarkers, bioinformatics,
immune infiltration
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1 Introduction

Ischemic stroke, a leading cause of global mortality and

disability, affects millions of individuals annually (1).

Characterized by a sudden loss of cerebral function due to the

disruption of blood flow, whether through ischemia or hemorrhage,

stroke has profound public health implications, with significant

morbidity and mortality rates. According to data from the World

Stroke Organization (WSO), stroke ranks as the number two cause

of mortality worldwide and is the third most frequent contributor to

the combined metric of death and disability. Between 1990 and

2019, there was a significant increase in the burden of stroke, with a

70% increase in incident stroke cases, a 43% increase in

stroke-related deaths, a 102% increase in stroke prevalence (2, 3).

Genetic and molecular research has identified several key proteins

and genes associated with stroke pathology. Notably, matrix

metalloproteinases (MMPs) are implicated in the degradation of

the blood-brain barrier, contributing to subsequent brain edema

(4, 5). Furthermore, the exacerbating role of inflammatory

cytokines such as IL-6 and TNF-a in stroke outcomes is well-

established (6). These molecules, which are involved in neuronal

damage, represent potential therapeutic targets. Elucidating the

molecular mechanisms of stroke is crucial for advancing

diagnostic and therapeutic strategies.

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune

disorder that mainly affects women and manifests a spectrum of

clinical symptoms (7). Characterized by the production of

autoantibodies targeting nuclear and cytoplasmic antigens, SLE

induces widespread inflammation and tissue damage. This disease

impacts multiple organ systems, including the skin, kidneys, joints,

and central nervous system. SLE’s prevalence varies globally, with

higher incidences in populations of African, Asian, and Hispanic

descent (8). Genetic studies have identified susceptibility genes,

such as those encoding HLA-DR and complement components,

which are integral to SLE’s pathogenesis (9). Research has also

underscored the role of cytokines like IFN-a and IL-10 in

modulating immune responses in SLE patients (10). These

insights are pivotal for developing targeted therapies aimed at

immune system modulation and disease activity reduction in

SLE patients.
Abbreviations: AUC, area under the curve; BP, biological process; CC, cellular

component; DGIdb, Drug Gene Interaction Database; GO, Gene Ontology; H&E,

Hematoxylin and Eosin; IFN-a, interferon-alpha; IL-10, interleukin-10; IL-6,

interleukin-6; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, Least

Absolute Shrinkage and Selection Operator; MCAO, middle cerebral artery

occlusion; MCC, Maximal Clique Centrality; MF, molecular function; MMPs,

matrix metalloproteinases; MRI, magnetic resonance imaging; NPSLE,

Neuropsychiatric Systemic Lupus Erythematosus; PBMCs, peripheral blood

mononuclear cells; qPCR, quantitative real-time PCR; ROC, receiver operating

characteristic; SLE, Systemic Lupus Erythematosus; STRING, Search Tool for the

Retrieval of Interacting Genes/Proteins; TOM, topological overlap matrix;

WGCNA, Weighted Gene Coexpression Network Analysis; WSO, World

Stroke Organization.
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SLE samples are distinguished by the presence of autoantibodies

and immune complexes that exacerbate inflammation and tissue

damage. In the context of stroke, these autoantibodies can intensify

the inflammatory response, worsening clinical outcomes (7).

Studies indicate that SLE patients face an elevated risk of stroke,

particularly ischemic stroke, due to antiphospholipid antibodies

and other pro-thrombotic factors (11). Conversely, stroke can incite

an autoimmune response resembling SLE, posing diagnostic

challenges and complicating patient management (12). The

interplay between stroke and SLE highlights the necessity of

comprehending the underlying molecular mechanisms and

identifying biomarkers to facilitate diagnosis and management of

these conditions.

Stroke samples display distinct molecular and cellular

alterations reflective of the disease’s pathophysiology. The

ischemic insult triggers a cascade of events, including

excitotoxicity, oxidative stress, and inflammation, culminating in

neuronal death and brain damage (13, 14). Immune cells, such as

microglia and infiltrating leukocytes, are instrumental in mediating

the post-stroke inflammatory response in the brain (15). The

identification of specific biomarkers and molecular signatures in

stroke samples can offer invaluable insights into the disease process

and guide the development of targeted therapies. Moreover,

comparing molecular changes between stroke and SLE samples

may reveal shared pathways and potential therapeutic targets

beneficial for patients with either condition.

This study endeavors to identify diagnostic biomarkers for

stroke and SLE through bioinformatics methodologies, focusing

on immune infiltration analysis and candidate drug identification.

Gene expression profiles will be leveraged to identify genes with

altered expression and to map out networks of protein-protein

interactions (PPI). Machine learning techniques, including LASSO,

will aid in the selection of key biomarkers, while the CIBERSORT

algorithm will assess immune cell proportions. Additionally, the

DGIdb platform will be employed to identify candidate drugs

targeting hub genes.

To further validate our findings, the expression of the core genes

will be verified in an ischemic stroke mouse model. The insights

gleaned from this study may significantly contribute to

understanding the molecular underpinnings of stroke and SLE,

thereby informing the creation of innovative diagnostic and

therapeutic approaches.

2 Methods

2.1 Transcriptome data preprocessing

Consistent with methodologies from previous studies,

peripheral blood transcriptome datasets GSE16561, GSE58294,

GSE72326, and GSE81622 were examined in this study (16, 17).

In the context of ischemic stroke, we incorporated 39 stroke cases

and 24 controls from GSE16561, along with 69 stroke cases and 23

controls from GSE58294. For SLE, the analysis encompassed 157

SLE cases and 20 controls from GSE72326, complemented by 15

SLE cases and 25 controls from GSE81622. These datasets
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encompassed peripheral blood mononuclear cells (PBMCs). We

performed GeneSymbol mapping for the transcriptome data

according to the respective platforms, selecting the median value

in instances of multiple matches. The definitive expression matrix

was compiled after applying the log2(X+1) normalization method.

After the preliminary quality control step, we employed the

‘normalizeBetweenArrays’ function from the ‘limma’ package to

perform quantile normalization. This process aligns the empirical

distribution of expression values across all samples, effectively

minimizing technical disparities. Subsequently, we focused on a

subset of 13,248 genes that were consistently present in all 4 datasets

for further bioinformatics analysis (Figure 1A).
2.2 Selection of potential diagnostic
markers

We performed an analysis of gene expression differences across

the GSE16561 and GSE72326 datasets, leveraging the limma

package with a significance threshold of p value < 0.05 and a fold

change magnitude of |LogFC| > 0.5. To address the issue of multiple

comparisons, we applied the Benjamini-Hochberg method for false

discovery rate control. In the Weighted Gene Coexpression

Network Analysis (WGCNA) (18), an input matrix was

constructed using all genes from the GSE16561 and GSE72326

datasets. Topological calculations were conducted with soft

thresholding from 1 to 20 to determine the optimal soft

threshold. The correlation matrix was first converted into an

adjacency matrix, and then this adjacency matrix was further

transformed into a topological overlap matrix (TOM). Clusters of

modules were determined through the application of average

linkage hierarchical clustering, which was based on the TOM.

Modules exhibiting similarity were consolidated. The Pearson

correlation coefficient was utilized to pinpoint the modules that

exhibited the most robust positive and negative correlations with

the disease phenotype, designating these as the core modules. Gene

significance (GS) was quantified by the correlation between

individual gene expressions and the disease trait, while module

membership (MM) was ascertained by the alignment of gene

expression patterns with the principal component of their

respective module.
2.3 Gene ontology and pathway
enrichment analysis

Utilizing the clusterProfiler package, we performed enrichment

analyses to explore the functional annotations within the Gene

Ontology (GO) framework and to identify significant pathways

through the Kyoto Encyclopedia of Genes and Genomes (KEGG)

on the identified common driver genes. GO terms were assigned to

elucidate the biological processes (BP), molecular functions (MF),

and cellular components (CC) associated with the genes, whereas

KEGG was employed for pathway-based annotation. Significance in

enrichment was set at a threshold of P < 0.05.
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2.4 Construction of PPI networks

We integrated a cohort of 69 potential shared driver genes into

the STRING database (https://cn.string-db.org/), omitting any

orphan genes. Subsequently, Cytoscape was employed to discern

pivotal genes and to construct a graphical representation of the

network. Within Cytoscape, the aforementioned genes were

subjected to analysis to determine the top 10 genes within the

PPI network, employing the Maximal Clique Centrality (MCC)

algorithm for this calculation.
2.5 Machine learning for diagnostic marker
identification

We employed the Least Absolute Shrinkage and Selection

Operator (LASSO) regression technique to pinpoint crucial genes.

This method incorporates a penalty term that drives certain

regression coefficients to zero, simplifying the model and

alleviating the effects of multicollinearity (19). The top ten genes,

as determined by the MCC algorithm, were inputted into the

LASSO model based on their expression profiles, with the

occurrence of disease as the binary outcome variable for the

selection of diagnostic biomarkers.
2.6 Analysis of immune cell infiltration

We employed the CIBERSORT algorithm to deduce the relative

abundance of diverse immune cell subtypes from the gene expression

profiles associated with immune cell-specific genes (20). The resulting

data for 22 distinct immune cell infiltrates were consolidated into a

comprehensive matrix for further analysis. Moreover, the Spearman

correlation method was applied to evaluate the relationship between

the key biomarkers and the expression levels of the infiltrating immune

cells, with statistical significance adjustments made using the

Benjamini-Hochberg procedure for multiple comparisons.
2.7 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) was conducted using the

enrichR package in R software (version 4.3.3; R Foundation for

Statistical Computing, Vienna, Austria). Gene expression data

underwent pre-processing and normalization. Samples were

categorized into low and high expression groups based on the

bottom and up 25% of expression levels, respectively. Subsequently,

the GSEA algorithm was applied to determine enrichment scores

and corresponding p-values for each gene set under investigation.
2.8 Drug candidate selection

The shared central genes associated with both stroke and SLE

were submitted to the DGIdb database for analysis (https://
frontiersin.org
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FIGURE 1

Identification of differentially expressed genes (DEGs). (A) Venn plots of crossover genes for the four cohort sets. (B) Volcano plot showing the
distribution of DEGs in stroke-GSE16561. Ching color represents down-regulated genes and orange color represents up-regulated genes.
(C) Heatmap of the top 10 genes with the most prominent differential expression in stroke-GSE16561 cohort. (D, E) Volcano plot and heatmap of
SLE-GSE72326 cohort. (F, G) Venn diagram of overlapping down-DEGs and up-DEGs in stroke and SLE.
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www.dgidb.org/) (21, 22). Drug candidates associated with these

shared hub genes were then identified.
2.9 Animal experiments

Middle cerebral artery occlusion (MCAO) was induced in 3-

month-old male C57BL/6 mice using a modified method (23). Mice

were anesthetized with 3% isoflurane for induction, maintained at

1.5%, and core temperature was kept at 37 ± 0.5°C via a heating

system. A midline neck incision exposed the external carotid artery

(ECA), which was dissected from the vagus nerve. A 7-0 nylon

suture, coated with silicone, was inserted into the ECA and advanced

to the internal carotid artery (ICA) to occlude the MCA. Occlusion

was verified by a >80% drop in cerebral blood flow, measured by

laser Doppler flowmetry (PeriFlux System 5000). The occlusion

lasted 50 minutes before the suture was removed. Arterial blood

gases were monitored to maintain physiological levels (PO2: 120 ±

10 mmHg; PCO2: 35 ± 3 mmHg). After surgery, the mice were

monitored until they recovered. The study was approved by the

Experimental Animal Ethics Committee of Zhongshan School of

Medicine, Sun Yat-sen University, Guangzhou, China. Mice (22-26

grams) were from the Animal Center of Sun Yat-Sen University.
2.10 MRI imaging

Magnetic resonance imaging (MRI) was performed on a 9.4 Tesla

magnet with a 30-cm bore diameter (uMR 9.4T, United Imaging Life

Science Instruments, Wuhan, China), featuring a gradient system

capable of generating up to 1000mT/m in any direction. An 86 mm

quadrature resonator was utilized for transmission, and a three-

channel mouse brain surface coil (Mouse Brain Surface Coil-3) was

employed for signal reception. Mice (n = 4) were administered

anesthesia through a mixture of 2% isoflurane in air, inducing

gaseous anesthesia. Subsequently, they were placed on an MRI-

compatible animal bed. Throughout the procedure, the respiratory

rate of the animals was closely monitored. A circulating warm water

system was employed to maintain body temperature at a stable 36.5 ±

0.5 °C. The acquired MRI sequence parameters were as follows: 2D

Multi echo spin echo sequences: Repetition Time = 2000ms, TE1/

delta TE/TEn7 = 7.34/7.34/51.38 ms, Number of slices = 15, Thick of
TABLE 1 Primer sequences for qPCR.

Gene Forward Primer Sequence

TNF-a 5′-CTTGTTGCCTCCTCTTTTGCTTA-3′

IL-6 5′-TCACAGAAGGAGTGGCTAAGGACC-3′

IL-1b 5′-ATTGTGGCTGTGGAGAAG-3′

EIF2AK2 5′-ATGCACGGAGTAGCCATTACG-3′

PARP9 5′-AGGACGCCAAAGGGATCTG-3′

IFI27 5′-GCTTGTTGGGAACCCTGTTTG-3′

b-actin 5′-TGTCCACCTTCCAGCAGAT-3′

Frontiers in Immunology 05
slices = 0.5mm, Readout FOV = 20mm, Phase-Encoding FOV =

18mm, Bandwidth = 250Hz, Matrix = 208 (RO) * 187(PE), Averages

= 4. Data analysis was conducted using the U_VIEWER software

(R001, Shanghai United Imaging Healthcare Co., Ltd.). Subsequently,

the MRI data collected were utilized for statistical evaluation.
2.11 H&E and Nissl staining

At 24 hours post-MCAO, the mice (n = 4) were euthanized, and

their brains were harvested. Following the procedure, in situ cardiac

perfusion was promptly performed using a 4% paraformaldehyde

(PFA) solution in phosphate-buffered saline (PBS) to ensure thorough

tissue fixation. Post perfusion, the brains were extracted and further

fixed in PFA for a duration of 24 hours at 4°C to maintain tissue

integrity. For Hematoxylin and Eosin (H&E) staining, the tissue

sections were subjected to deparaffinization and rehydration. They

were then stained with Harris hematoxylin, differentiated in a 0.5%

hydrochloric acid solution, counterstained with eosin Y, dehydrated,

and finally coverslipped. Nissl staining involved staining sections with

0.1% cresyl violet acetate, rinsing, dehydrating, and coverslipping.

Both stained sections were examined under a light microscope to

evaluate tissue morphology and neuronal characteristics.
2.12 Quantitative real-time PCR

RNA extraction and quantitative real-time PCR (qPCR) were

performed according to previously described methods (24). The

primer sequences used for qPCR are summarized in Table 1. Gene

expression levels were normalized to b-actin and presented as 2-DDCT.
2.13 Statistical analysis

Quantitative outcomes are reported as the mean ± standard

deviation (SD) for each experimental group. Data analysis and

visualization were performed using GraphPad Prism software

(version 8, GraphPad Software, La Jolla, CA, USA). Statistical

significance was determined with a p-value threshold of less than

0.05 (p < 0.05). The levels of statistical significance for the

experimental results are indicated by the following notations: *p <

0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
Reverse Primer Sequence

5′-CTTTATTTCTCTCAATGACCCGTAG-3′

5′-ACGCACTAGGTTTGCCGAGTAGAT-3′

5′-AAGATGAAGGAAAAGAAGGTG-3′

5′-TGACAATCCACCTTGTTTTCGT-3′

5′-CCGGCTCCATAAACTGGGT-3′

5′-GGATGGCATTTGTTGATGTGGAG-3′

5′-CTCAGTAACAGTCCGCCTAGA-3′
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3 Results

3.1 Identification of DEGs in stroke and SLE

An initial identification of 527 differentially expressed genes

(DEGs) was conducted based on the stroke dataset (GSE16561),

including 283 upregulated genes and 244 downregulated genes

(Figure 1B). A volcano plot was used to visualize these DEGs,

while a heatmap was utilized to present the top 10 significantly

upregulated and downregulated genes among these DEGs

(Figures 1B, C). Notably, ARG1 emerged as the most significantly

upregulated gene in stroke samples (Figure 1B). Moreover, 431

DEGs were discovered from the SLE dataset (GSE72326),

comprising 297 upregulated genes and 134 downregulated genes,

with IFI27 identified as the most significantly upregulated gene in

SLE samples (Figures 1D, E). Subsequently, through intersection

analysis, 37 DEGs were found to be commonly downregulated and

65 DEGs were commonly upregulated across both datasets

(Figures 1F, G).
3.2 WGCNA of stroke and SLE

Subsequently, WGCNA was executed on the stroke dataset

GSE16561 and the SLE dataset GSE72326 to investigate the

correlation between clinical traits and genes. No notable outlier

samples were detected in either the SLE or stroke datasets. Utilizing

the WGCNA method, the optimal soft threshold was determined to

be 15 for both stroke and SLE datasets (Figures 2A, B). Through

module similarity assessment, 14 modules were identified in the

stroke dataset and 8 modules in the SLE dataset (Figures 2C, D).

Analyzing the relationship between genetic modules and specific

conditions revealed that the palevioletred3 module had the highest

positive correlation with stroke, with a correlation coefficient of 0.56

as depicted in Figure 2E. Similarly, the red module showed the most

significant positive correlation with SLE, with a coefficient of 0.54,

as illustrated in Figure 2F. Notably, a strong link was identified

between gene significance (GS) and module membership (MM)

across the modules, with respective correlation coefficients of 0.57

for stroke and 0.31 for SLE (Figures 2G, H), indicating a significant

relationship between module genes and disease occurrence.

Ultimately, WGCNA identified 5 overlapping genes that may play

a key role in the development of stroke and SLE (Figure 2I).
3.3 Enrichment analysis of common driver
genes in stroke and SLE

In the previous analysis, 65 commonly elevated DEGs were

identified in stroke and SLE, and 5 overlapping genes were found in

the stroke and SLE modules. Given that the gene modules identified

through WGCNA represent a subset of genes with correlated

expression patterns, and may not encompass all DEGs,

particularly those pivotal for disease advancement, we decided to

merge the 65 DEGs with the genes from the 5 modules for further
Frontiers in Immunology 06
analysis. By removing duplicate genes, we obtained 69 candidate

genes that may play a key role in the molecular mechanisms

regulating stroke and SLE. Consequently, our initial step was to

conduct GO and KEGG enrichment analyses on the selected genes.

The findings indicated that these genes participate in cytokine-

cytokine receptor interactions, pathways that modulate immune

responses, and other pathways (Figure 3A).

Furthermore, to clarify the enriched pathways for the peripheral

circulation marker-associated genes mentioned earlier, our analysis

in the Metascape database showed that these genes were categorized

into distinct functional groups. Notably, the most significant were

those involved in the positive regulation of innate immune responses

and neutrophil-mediated inflammatory reactions (Figure 3B).

Concurrently, the enrichment analysis utilizing the Metascape

database highlighted a shared involvement of immune and

inflammatory processes in the pathogenesis of stroke and SLE, as

depicted in Figure 3C. Subsequently, to refine our selection of genes

within the same functional group, we imported the 69 potential

driver genes into the STRING database, excluding those that were

not interconnected (Figure 3D). Following this, the MCC algorithm

within Cytoscape was employed to identify the top 10 genes from the

PPI network, focusing on the genes previously discussed. Ultimately,

IFIT3, STAT1, IFIT2, RSAD2, EIF2AK2, IFIT1, MX2, PARP9, IFI27,

and EPSTI1 were designated as potential diagnostic biomarkers, with

IFIT3 emerging as the most prominent among them (Figure 3E).
3.4 Identification and validation of
potential shared hub genes by LASSO

In order to identify key genes with the highest diagnostic value, we

performed further LASSO regression analysis on the aforementioned

10 candidate genes using machine learning algorithms. The LASSO

method selected 4 genes from the SLE dataset and 5 genes from the

stroke dataset (Figures 4A, B). By taking the intersection of the selected

genes, we ultimately identified 3 key genes with the highest diagnostic

value, this is EIF2AK2, PARP9, and IFI27 (Figure 4C).

Furthermore, the diagnostic predictive value of the aforementioned

3 key genes was assessed using ROC curves (Figures 4D–G). In the

stroke-GSE16561 dataset, the AUC values for EIF2AK2, PARP9, and

IFI27 were 0.862, 0.797, and 0.685, respectively, all exceeding 0.6

(Figure 4D). In the SLE-GSE72326 dataset, the AUC values for

EIF2AK2, PARP9, and IFI27 were 0.924, 0.946, and 0.941,

respectively, all greater than 0.9 (Figure 4E). The findings suggest

that these trio of genes demonstrates strong diagnostic capabilities and

could be utilized as biomarkers for the identification of stroke and SLE.

The AUC values across various cohorts within the validation set

demonstrated robust predictive accuracy. In the stroke validation

set (GSE58294), the AUC values for EIF2AK2, PARP9, and IFI27

were 0.761, 0.689, and 0.584, respectively (Figure 4F). Moreover, in

the SLE validation set (GSE81622), the AUC values for EIF2AK2,

PARP9, and IFI27 were 0.677, 0.728, and 0.957, respectively

(Figures 4H, I). The boxplot results showed that these three

diagnostic markers were significantly upregulated in the disease

group in both the stroke and SLE training sets (Figures 4H, I). More
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FIGURE 2

WCGNA analysis of stroke and SLE. (A, B) Mean connectivity for scale independence and soft threshold (b) in the stroke-GSE16561 cohort and the
SLE-GSE72326 cohort. (C, D) Clustering dendrograms of genes in stroke and SLE. (E, F) Heatmap of the correlation analysis of module genes with
clinical phenotypes in stroke and SLE. Red color represents positive correlation and blue color represents negative correlation. (G) Association
between gene significance (GS) and module membership (MM) within the palevioletred3 module of stroke. (H) Association between GS and MM
within the red module of SLE. (I) Venn diagram for intersecting genes between palevioletred module in stroke and red module in SLE.
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FIGURE 3

Functional enrichment and pathway enrichment of stroke and SLE co-driver genes. (A) GO analysis and KEGG analysis of 69 candidate common
driver genes. (B, C) Enrichment analysis of 69 candidate common driver genes using Metascape online tool. (D, E) PPI network analysis of top 10
common driver genes.
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FIGURE 4

Identification of hub genes by LASSO and ROC analysis. (A, B) LASSO regression analysis of the stroke-GSE16561 cohort and the SLE-GSE72326
cohort. (C) Cross-identification of optimal hub genes using LASSO. (D) ROC curves for three shared diagnostic markers in the stroke-GSE16561
cohort. (E) ROC curves for three shared diagnostic markers in the SLE-GSE72326 cohort. (F) ROC curves for three shared diagnostic markers in the
stroke-GSE58294 cohort. (G) ROC curves for three shared diagnostic markers in the SLE-GSE81622 cohort. (H, I) Expression of three hub genes in
stroke and SLE training set (stroke-GSE16561 and SLE-GSE72326). (J, K) Expression of three hub genes in stroke and SLE testing set (stroke-
GSE58294 and SLE-GSE81622). *p< 0.05, **p< 0.01, ***p< 0.001.
Frontiers in Immunology frontiersin.org09

https://doi.org/10.3389/fimmu.2025.1565379
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1565379
importantly, consistent differential trends were observed in the

stroke and SLE validation sets (Figures 4J, K).
3.5 Drug candidates identification based on
hub genes

Utilizing the DGIdb database (https://www.dgidb.org/), we

calculated the predicted small molecule compounds for EIF2AK2,

PARP9, and IFI27 individually, and identified the intersection of these

compounds. This analysis yielded 28 common compounds

(Supplementary Figure 1). Among these, 1,2-Dimethylhydrazine,

Carbon Tetrachloride, Cellulose, Perfluorooctane Sulfonic Acid,
TABLE 2 Identification of candidate drugs based on key genes.

Chemical Name Interaction Actions
with EIF2AI2

alpha-Chlorohydrin increases i

Estradiol increases i

Oxaliplatin increases i

S-(1,2-dichlorovinyl)cysteine increases i

Temozolomide increases i

Topotecan increases i

Tretinoin increases i

1,2-Dimethylhydrazine decreases d

Carbon Tetrachloride decreases d

Cellulose decreases d

perfluorooctane sulfonic acid decreases d

sodium arsenite decreases d

Vancomycin decreases d

bisphenol A increases d

Cadmium Chloride increases i

Lipopolysaccharides increases a

Plant Extracts increases a

Tetrachlorodibenzodioxin increases a

titanium dioxide increases i

Air Pollutants decreases i

Benzo(a)pyrene decreases a

cobaltous chloride decreases d

Cyclosporine decreases i

Doxorubicin decreases i

Particulate Matter decreases i

Acetaminophen affects expression d

Tamoxifen affects expression a

Valproic Acid affects expression a
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Sodium Arsenite, and Vancomycin were found to downregulate the

expression of EIF2AK2, PARP9, and IFI27. Conversely, Alpha-

Chlorohydrin, Estradiol, Oxaliplatin, S-(1,2-Dichlorovinyl)Cysteine,

Temozolomide, Topotecan, and Tretinoin were identified as

compounds that upregulate the expression of these key genes (Table 2).
3.6 Immune cell infiltration analysis and its
link to central genes

Following our enrichment analysis that highlighted the

significance of the immune system in the progression of both

conditions, we proceeded to investigate if the CIBERSORT
Interaction Actions
with PARP9

Interaction Actions
with IFI27

ncreases increases

ncreases increases

ncreases increases

ncreases increases

ncreases increases

ncreases increases

ncreases increases

ecreases decreases

ecreases decreases

ecreases decreases

ecreases decreases

ecreases decreases

ecreases decreases

ecreases affects expression

ncreases decreases

ffects reaction increases

ffects expression increases

ffects expression increases

ncreases affects expression

ncreases increases

ffects methylation increases

ecreases increases

ncreases increases

ncreases decreases

ncreases decreases

ecreases decreases

ffects expression affects expression

ffects expression decreases
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method could discern distinct immune infiltration patterns,

utilizing data on 22 distinct immune cell types. We commenced

by examining the datasets for stroke and SLE. The differential

expression analysis revealed congruent patterns of gene

expression differences in both conditions when contrasted with

controls. Notably, there was an increased presence of monocytes

and neutrophils in stroke and SLE patients’ samples as opposed to

those from healthy individuals, while CD8 T cells infiltration was

significantly lower (Figures 5A, B), suggesting that both stroke and

SLE seem to experience disruptions in immune regulation and

exhibit inflammatory reactions.

To deepen our comprehension of the functional significance of

three pivotal genes in immune cell infiltration, we performed a

Spearman correlation analysis to examine the link between the

expression levels of these genes and the presence of immune cells.

The findings revealed significant correlations between the genes

EIF2AK2, PARP9, and IFI27 and a range of immune cell

populations. The correlation analysis indicated an inverse

relationship between the genes EIF2AK2, PARP9, and IFI27 and

the presence of M2 macrophages within the stroke dataset

(Figures 5C–E). Notably, EIF2AK2 expression demonstrated the

strongest positive association with resting NK cells, whereas it

showed the most pronounced negative association with resting

dendritic cells (Figure 5C). In terms of IFI27, there was a

significant positive correlation with plasma cells and a marked

negative correlation with resting mast cells (Figure 5D). In the SLE

dataset, EIF2AK2, PARP9, and IFI27 had a significant positive

correlation with neutrophil levels and a negative correlation with

both CD8 T cells and resting NK cells (Figures 5F–H). Given that

the majority of these pivotal genes exhibit elevated expression in

disease states, such as stroke or SLE, this implies an increased

neutrophil enrichment in these conditions. The data suggest that

these signature genes might participate in the infiltration of

immune cells within the blood immune milieu of stroke patients

who have suffered SLE, thereby impacting disease progression.
3.7 Enrichment analysis of characteristic
genes

To gain deeper insights into the pathways linked to the

signature genes, we conducted single-gene GSEA analysis. The

GSEA findings revealed that among the high and low expression

groups defined by the characteristic gene samples, several key

signaling pathways were significantly enriched. These included

the oxidative phosphorylation, lysosome, and phagocytosis

pathways (enrichment score > 0.5, p < 0.05, Figures 6A–F), which

play crucial roles in cellular physiology and pathology. The

oxidative phosphorylation pathway, a critical process for ATP

production via the electron transport chain and chemiosmosis

across the mitochondrial inner membrane, was notably

downregulated in the context of EIF2AK2 and PARP9. The

lysosome pathway, involving the intracellular organelles that

contain hydrolytic enzymes for the degradation of cellular and
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extracellular macromolecules, was upregulated in the presence of

IFI27, indicating its role in autophagy and material recycling.

Phagocytosis pathway, a vital component of the immune response

where immune cells internalize and digest pathogens or cellular

debris, was enhanced in the condition of PARP9, highlighting its

importance in host defense. Additional, the natural killer cell-

mediated cytotoxicity pathway, which involves the recognition

and elimination of virus-infected cells or tumor cells by natural

killer cells through the release of cytotoxic granules, was

upregulated in the context of EIF2AK2, suggesting a potential

role in immune surveillance and tumor control. These findings

provide valuable insights into the molecular mechanisms

underlying these pathways and their implications in disease states.
3.8 Validation of hub genes

MRI T2 mapping was performed on MCAO mice, focusing on

the region depicted in Figure 7A. The results revealed a significant

increase in T2 values in the ischemic hemisphere (Figure 7B),

indicative of pronounced edema in the affected brain tissue.

Histological examination via H&E staining further elucidated the

impact of ischemia. Notably, the ischemic area exhibited marked

cellular shrinkage, as observed in Figure 7C, where the green square

highlights a region of normal tissue for comparison, and the red

square denotes the ischemic core with evident cellular damage.

Additionally, Nissl staining provided insights into the neuronal

integrity post-MCAO. The staining outcomes, shown in

Figure 7D, underscored the severe damage inflicted upon neurons

in the ischemic region. The qPCR analysis showed that the mRNA

levels of IL-6, IL-1b and TNF-a were increased in the stroke area

(Figure 7E). We examined the mRNA expression of the hub genes in

the stroke area. The results showed that the expression of EIF2AK2,

PARP 9 and IFI 27 was consistent with our DEGs analysis, and the

gene expression was increased in stroke mice compared with non-

infarcted area (Figures 7F–H). Therefore, we validated EIF2AK2,

PARP 9 and IFI 27 as hub genes in the progression of stroke.
4 Discussion

SLE is notably associated with a heightened risk of stroke,

affecting both ischemic and hemorrhagic subtypes (25). Patients

with SLE experience a higher incidence of cerebrovascular diseases

compared to the general population, with mortality rates from

cerebrovascular events notably elevated. Neuropsychiatric systemic

lupus erythematosus (NPSLE) is common among SLE patients, with

cerebrovascular diseases being prevalent manifestations (26). The

presence of antiphospholipid antibodies (aPL) correlates strongly

with NPSLE symptoms, including headaches and seizures, while

various pathological changes, such as microvascular damage and

large vessel vasculitis, have been documented in SLE patients (26).

Therefore, enhancing surveillance and management of

cerebrovascular diseases is crucial in this patient population.
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FIGURE 5

Correlation of hub genes and immune cell infiltration in stroke and SLE. (A, B) Boxplots showing the pattern of immune cell infiltration in the stroke-
GSE16561 cohort and the SLE-GSE72326 cohort. (C-H) Lollipop plots showing the correlation between hub genes and immune cells. *p < 0.05,
**p < 0.01, ***p < 0.001.
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In our study, we identified 65 overlapping upregulated DEGs in

datasets related to stroke and SLE. Through WGCNA, we

pinpointed significantly correlated modules, ultimately narrowing

our focus to 69 candidate driver genes. Enrichment analysis using

GO and KEGG highlighted the upregulation of pathways relevant to

cytokine-cytokine receptor interactions and immune response

regulation, underscoring the importance of immune system

dysregulation in the pathogenesis of both stroke and SLE.

We further explored the role of neutrophils in SLE, which

release neutrophil extracellular traps (NETs) containing self-DNA-

peptide complexes, activating plasmacytoid dendritic cells (pDCs)

and promoting autoantibody production (27, 28). This process

exacerbates inflammation by elevating interferon-alpha levels.

During stroke, the immune system’s activation is multifaceted,

involving both innate and adaptive immunity (12). The innate

immune response contributes to early ischemic damage through the

release of inflammatory mediators and activation of microglia,

which produce cytokines and reactive species that can either

promote or resolve inflammation.
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Using Cytoscape software, we constructed a PPI network based

on the 69 common driver genes to identify hub genes, ultimately

selecting 10 as candidate diagnostic markers. Machine learning

technique, LASSO regression analysis, was utilized to refine our

search, leading to the identification of three genes, EIF2AK2,

PARP9, and IFI27, which demonstrated strong diagnostic

potential confirmed by ROC curves in both stroke and SLE

cohorts. Importantly, all three genes exhibited consistent

upregulation in both conditions compared to controls.

EIF2AK2, belonging to the family of eukaryotic initiation factor

2-alpha kinases, plays a role in modulating immune reactions and the

regulation of protein synthesis under stressful conditions (29–31).

Variants in EIF2AK2 have been linked to neurodevelopmental and

neurodegenerative disorders, and its inhibition has shown promise in

improving cognitive deficits in Alzheimer’s disease models,

suggesting a potential therapeutic avenue (32, 33). Moreover,

EIF2AK2 is essential for CD4 T cell survival and function, with its

absence exacerbating autoimmune conditions associated with Th17

cells (34). PARP9 is involved in DNA damage repair, transcription
FIGURE 6

GSEA analysis of model feature genes in stroke and SLE. (A-C) GSEA analysis illustrates the enrichment of gene sets associated with EIF2AK2, PARP9,
and IFI27 in the stroke-GSE58294 dataset. The running enrichment scores (RES) are plotted against the rank in ordered dataset. The blue and red
lines represent different gene sets. The bar graphs at the bottom show the position of individual genes within the ranked list. (D-F) GSEA analysis
similarly shows the enrichment of gene sets associated with EIF2AK2, PARP9, and IFI27 in the SLE-GSE81622 dataset, maintaining the same format
as the stroke dataset analysis.
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regulation, and immune responses, particularly in the enhancement

of interferon-mediated antiviral defenses (35, 36). Elevated PARP9

expression is associated with poor prognosis in glioblastoma (37),

indicating its role in central nervous system diseases, where excessive

DNA damage response may contribute to neuronal apoptosis
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following a stroke. IFI27, an interferon-inducible gene, plays a

pivotal role in regulating cellular responses to interferons, and its

closely related family member IFI27L2A is upregulated in microglia

after a stroke (38). This IFI27 gene may influence Th1 cell

development and immune responses, while its regulation could
FIGURE 7

Characterization of ischemic brain injury and changes of hub genes in the stroke model. (A) Schematic representation of a coronal brain section
from a mouse brain atlas. (B) T2 mapping derived from 9.4T MRI data. The right hemisphere exhibits higher T2 values (green area), indicative of
edema compared to the left hemisphere. (C, D) H&E (C) and Nissl staining (D) of the ischemic cerebral cortex. Green squares indicate normal tissue,
red squares denote ischemic regions, and white dashed lines outline edematous areas. Insets show higher magnification views of these regions.
(E) The expression of proinflammatory cytokines IL-6, IL-1b and TNFa in the ischemic cerebral cortex. (F-H) The mRNA expression of EIF2AK2,
PARP9 and IFI27 in the ischemic cerebral cortex. **p < 0.01, ***p < 0.001.
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impact inflammation and recovery processes (39). Notably, IL-27,

associated with IFI27, has been linked to the inhibition of Th17 cells,

which are critical in SLE pathogenesis (40). Together, these hub genes

(EIF2AK2, PARP9, and IFI27) are integral to the regulation of

autoimmune and inflammatory responses, representing potential

biomarkers for SLE with concomitant stroke. Their involvement in

both pathologies highlights their significance as therapeutic targets

and diagnostic indicators. Future studies should delve deeper into

their functional roles and explore clinical applications.

In assessing immune cell infiltration patterns in stroke and SLE

using CIBERSORT, we found similarities, notably a decrease in

monocytes and resting NK cells. Previous findings indicate that SLE

patients have reduced NK cell counts and cytotoxicity, possibly due

to IFN-a-mediated cell death (41). This deficiency correlates with

the progression of lupus nephritis. Similarly, NK cells can mitigate

brain inflammation and assist in the clearance of pathological

proteins, but they are also functionally impaired in stroke, which

compounds inflammation through increased cytokine release (42,

43). Furthermore, macrophage polarization and activation are

critical in both stroke and SLE pathogenesis, as they secrete pro-

inflammatory factors that contribute to blood-brain barrier

disruption and neuronal damage in ischemic stroke (44, 45). This

highlights the crucial role of immune dysregulation and

inflammatory responses in these conditions.

Validation of the expression of the three core genes at the

animal level in a MACO model indicated significant increases in

inflammatory factors and core gene expression. This study marks

the first exploration of hub genes in the context of stroke and SLE,

suggesting EIF2AK2, PARP9, and IFI27 as potential biomarkers for

further investigation into the mechanistic underpinnings of their

comorbidity. While our findings offer significant insights,

limitations exist, particularly the reliance on bioinformatics

without experimental validation. Future investigations should

include experimental studies of these genes in relevant disease

models and larger clinical cohorts to fully understand their roles

as biomarkers. To enhance the precision of immune cell infiltration

data, subsequent experiments will incorporate advanced techniques

such as flow cytometry and single-cell RNA sequencing. These

methods offer high-resolution insights into immune cell

heterogeneity and dynamics, which are essential for unraveling

the complex immunological landscapes in stroke and SLE. By

integrating these techniques, we aim to provide a more detailed

characterization of immune cell subsets and their roles in

disease pathogenesis.
5 Conclusion

In this study, we found that the upregulation of inflammatory

responses could represent a shared etiological pathway in both stroke

and SLE. Furthermore, we have identified EIF2AK2, PARP9, and

IFI27 as significant biomarkers for diagnostic purposes. Additionally,

the analogous patterns of immune cell infiltration observed in stroke

and SLE suggest potential avenues for therapeutic intervention.
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