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Introduction: Aging is characterized by gradual structural and functional changes

in the body over time, with intervertebral disc degeneration (IVDD) representing a

key manifestation of spinal aging and a major contributor to low back pain (LBP).

Methods: This study utilized bioinformatics and machine learning approaches to

identify aging-related biomarkers associated with IVDD in whole blood samples.

By analyzing GEO datasets alongside aging-related databases such as

GeneCards, HAGR, and AgeAnno, we identified 15 aging-related differentially

expressed genes (AIDEGs). Correlation and immune infiltration analyses were

conducted on these AIDEGs, and diagnostic models were developed using

WGCNA, logistic regression, random forest, support vector machine, k-nearest

neighbors, and LASSO regression to identify key genes.

Results: Among these, FCGR1A, CBS, and FASLG emerged as significant

biomarkers with strong predictive capabilities for IVDD. Further exploration of

biological pathways involving AIDEGs provided insights into their potential roles

in IVDD pathogenesis. To further validate these findings, we collected human

blood specimens and conducted in vitro experiments. ELISA assays confirmed

that CBS and FASLG are crucial biomarkers of IVDD, with distinct expression

patterns in patients with moderate versus severe degeneration.

Discussion: These results highlight the diagnostic potential of AIDEGs and

provide a new perspective for early intervention and treatment strategies in IVDD.
KEYWORDS

intervertebral disc degeneration, aging-related biomarkers, bioinformatics, machine
learning, immune infiltration analysis, whole blood samples
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1 Introduction

Low back pain (LBP) is a prevalent global public health issue

that severely impacts patients’ quality of life. Intervertebral disc

degeneration (IVDD) is a leading cause of LBP (1), accounting for a

significant portion of disability-adjusted life years related to

musculoskeletal conditions. The pathogenesis of IVDD involves

multiple factors, including cell death, immune activation,

inflammation, and mechanical stress.

Aging, as an inevitable consequence over time, is often

accompanied by changes in various biological processes, such as

cellular senescence, mitochondrial dysfunction, and chronic

inflammation (2), which further influence the progression of

IVDD. In older adults, IVDD is a common form of lumbar

degenerative disease, posing significant physical and psychological

harm to this population (3).

Despite advances in understanding the pathological

mechanisms of IVDD, early diagnostic biomarkers that can

accurately reflect disease progression remain lacking. Current

studies have predominantly focused on localized intervertebral

disc tissues, which are challenging to access and often require

invasive procedures. This has limited the development of

diagnostic and therapeutic strategies applicable to broader clinical

settings. In contrast, whole blood samples represent a more

accessible and less invasive source for biomarker identification,

enabling the detection of systemic molecular changes associated

with IVDD progression.

Recent studies have identified aging-related genes within the

nucleus pulposus (NP) tissue of degenerated discs (4). However, the

relationship between aging-related genes and IVDD in whole blood

samples remains largely unexplored. Given the immune-privileged

nature of intervertebral discs, the rupture or degeneration of disc

tissue can activate systemic immune responses, resulting in the

release of biomarkers into the peripheral blood (5, 6). Therefore, by

detecting aging-related genes and immune factors in whole blood, it

is possible to indirectly reflect the biological changes occurring

during the process of IVDD. This underscores the potential utility

of blood-based aging-related biomarkers in reflecting biological

changes during IVDD progression and informing early

intervention strategies.

Since its emergence, bioinformatics has been extensively applied

in the analysis of public biological data, facilitating the identification

of potential disease targets and supporting the development of novel

therapeutics (7). At the same time, the expansion and increasing

complexity of biological data have driven the application of

machine learning in biology, such as the use of various

algorithms to establish predictive models and identify potential

key genes (8).

To address these gaps, this study aimed to identify aging-related

biomarkers of IVDD using whole blood samples. By combining

bioinformatics and machine learning approaches, we sought to

uncover aging-related differentially expressed genes (AIDEGs) and

evaluate their potential as diagnostic markers. Furthermore, we

validated our findings through in vitro experiments on human

specimens, providing a comprehensive framework to understand
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the molecular mechanisms underlying IVDD. This approach not

only advances the identification of non-invasive biomarkers, but

also lays the groundwork for future therapeutic strategies

targeting IVDD.
2 Materials and methods

2.1 Data source and processing

We collected data from GSE150408 and GSE124272 in the Gene

Expression Omnibus (GEO) database, both of which include gene

expression data from whole blood samples of patients with IVDD.

The GSE150408 dataset contained 59 samples; after excluding 24

treatment samples, we retained 17 healthy and 17 IVDD samples.

The GSE124272 dataset included eight healthy and eight IVDD

samples. The average age was 23 years in the healthy group and 40

years in the IVDD group. All included samples were free from other

spinal, cardiovascular, metabolic, rheumatic, immune, or infectious

diseases, aside from IVDD (9). After obtaining platform annotation

files, we annotated probes for each dataset. We then performed

normalization of expression profiles within each dataset using the

normalizeBetweenArrays function from the “limma” package. Next,

we merged GSE124272 and GSE150408 and applied the ComBat

function from the “sva” package to eliminate batch effects between

the two datasets.
2.2 Differentially expressed gene (DEG)
extraction

We used the “limma” package to identify DEGs. First, we

selected genes with non-zero expression in over 75% of the

samples. DEGs were then filtered based on criteria of |logFC| > 0

and p < 0.05, categorizing them into upregulated, downregulated,

and non-significantly changed genes. We visualized the DEGs with

a volcano plot using the “ggplot2” package.
2.3 Acquisition of aging-related genes

We obtained aging-related genes (ARGs) from GeneCards and

selected those with a relevance score > 7. Additionally, we

incorporated ARGs from the Human Ageing Genomic Resources

(HAGR) database based on the study by Zhou et al. (10), and

retrieved ARGs from the AgeAnno database (11), filtering for genes

sourced from “Blood.” We removed duplicates among the genes

from these three sources and included the consolidated set of ARGs

for further analysis.
2.4 Biological pathway enrichment analysis

We uploaded the obtained DEGs and ARGs to the Xiantao

Academic Platform (https://www.xiantaozi.com) to generate a
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Venn diagram online, identifying intersecting genes as AIDEGs for

IVDD. Next, we imported AIDEGs into Sangerbox 3.0 (http://

www.sangerbox.com/) for gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses, setting the criteria as Benjamini–Hochberg adjusted

FDR < 0.1 and p < 0.05 (12). For GSEA enrichment analysis, we

used the “clusterProfiler” package on AIDEGs, setting the threshold

at p < 0.05. The gene set “c2.all.v2024.1.Hs.entrez” was downloaded

from the Msigdb database, with a minimum gene set size of 10 and a

maximum of 500. The “gseaplot2” function was used to visualize

the results.
2.5 Weighted gene co-expression network
analysis

For the merged dataset, we performed weighted gene co-

expression network analysis (WGCNA) using the applicable

package. First, we loaded the gene expression matrix and used the

“pickSoftThreshold” function to determine the optimal soft

threshold to construct a scale-free network. We then validated the

scale-free properties of the network. The “adjacency” function was

used to generate the adjacency matrix, which was transformed into

a topological overlap matrix (TOM) to measure gene connectivity

within the network. We calculated the dissimilarity (1 - TOM) and

performed hierarchical clustering based on this to generate a gene

clustering dendrogram. The “cutreeDynamic” function was used for

dynamic tree cutting, with a minimum of 30 genes per module, and

the clustering results were visualized.

To reduce network complexity, we merged modules with a

similarity greater than 0.75 and generated a clustering result plot.

Finally, we assessed the correlation between gene modules and

clinical phenotypes, identifying the modules most strongly

associated with IVDD and the genes contained within these modules.
2.6 Hub genes identification and gene
correlation analysis

We imported the AIDEGs and module genes obtained from

WGCNA into the Xiantao Academic Platform to create a Venn

diagram, identifying the intersecting genes as hub genes. We then

used the “pheatmap” package in R to generate a heatmap of gene

expression. Differential analysis was conducted using the “ggpubr”

package to create grouped comparison plots. Finally, a correlation

analysis was performed using the “PerformanceAnalytics” package.
2.7 Immune infiltration analysis and
protein–protein interaction (PPI) network
construction

We performed immune infiltration analysis on the merged

dataset using the “CIBERSORT” package and visualized the results

to observe the expression of immune-related cells in the whole blood
Frontiers in Immunology 03
samples of patients with IVDD. Additionally, we conducted

Spearman correlation analysis between the hub genes and immune

cells to explore their relationships. Finally, we imported all hub genes

into String (www.string-db.org) to construct a PPI network,

selecting Homo sapiens with high confidence.
2.8 Construction and optimization of the
diagnostic model

The samples were randomly divided into a training set and a

validation set, with the training set comprising 70% of the total

samples. To ensure the comparability between the two datasets, we

compared the gene expression profiles of patients in both groups.

No statistically significant differences observed in gene expression

between the two groups indicated that the datasets were suitable for

model construction and validation.
2.9 Logistic regression

For all the hub genes, we performed univariate logistic

regression analysis and included genes with a p-value < 0.2 in the

multivariate logistic regression analysis. The stepwise regression

method was used to select key variables. To visualize the

performance of the predictive model, we generated calibration

curves, decision curve analysis (DCA) plots, and nomograms. We

assessed the model’s discrimination and calibration ability using the

C-index and Hosmer–Lemeshow test. Finally, we plotted the ROC

curve to evaluate the diagnostic performance of the key genes.
2.10 Random forest

We constructed a random forest (RF) classification prediction

model using the expression profile data from the training set. An

out-of-bag (OOB) error curve was generated to visualize how the

error rate changes as the number of trees increases in the model.

The “varImpPlot” function was used to create a feature importance

plot to assess the contribution of each gene in the model. Finally, the

validation set was used to evaluate the predictive ability of the

model, and the area under the curve (AUC) value was calculated to

assess the performance of the final model.
2.11 Support vector machine (SVM)-RFE
feature selection and SVM model
construction

To optimize the prediction performance and generalization ability

of the SVMmodel, we first used the SVM-RFEmethod to select feature

genes. We downloaded the “msvmRFE” package by John Colby and

applied 10-fold cross-validation to extract feature genes. Next, we used

the “FeatSweep.wrap” function to perform iterative testing on the 15

hub genes to evaluate the impact of different feature quantities on the
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model’s performance. Finally, we calculated the error values for each

feature selection step, plotted error curves, and accuracy curves, and

selected the feature genes based on these results.

After feature gene selection, we processed the training and

validation sets. Based on the training set, we used a linear kernel

SVM model, optimizing the model by adjusting different cost

parameters to select the best model. The training set was input

into the optimal SVM model to obtain prediction results, which

were compared with the actual groupings. A box plot was drawn to

visualize the differences and perform significance testing. Next, the

validation set was input into the optimal SVM model to obtain

prediction results, and a box plot was drawn to assess the model’s

performance. Finally, ROC curves for both the training and

validation sets were plotted, and the AUC value was calculated to

evaluate the model’s discrimination and generalization ability.
2.12 K-nearest neighbor (KNN) algorithm

We employed KNN algorithms to conduct predictions on the

validation set. By computing the KNN of each sample in the validation

set and determining their class labels, the prediction outcomes were

obtained. To enhance the model’s robustness and generalizability, five-

fold cross-validation was employed. Subsequently, a confusion matrix

was generated to analyze the specific performance of the classification

results, encompassing indicators such as accuracy, precision, etc., to

comprehensively assess the classification efficacy of the model. Finally,

based on the prediction results of the validation set, an ROC curve was

plotted and the AUC value was calculated to evaluate the

discriminatory capacity of the model.
2.13 Least absolute shrinkage and selection
operator (LASSO) regression

A LASSO regression model was employed with 10-fold cross-

validation, and a cross-validation curve for l was generated to

illustrate the model’s performance across different l values,

facilitating the selection of the optimal penalty parameter.

Additionally, a LASSO coefficient trajectory plot was constructed,

providing a visual representation of the changes in regression

coefficients for individual genes at varying l values. Finally, by

analyzing the regression results, genes with non-zero regression

coefficients were identified and extracted as key genes.
2.14 Ethical statement

This study involving human participants was approved by the

Medical Ethics Committee of Suzhou Traditional Chinese Medicine

Hospital (Approval No. 2023 LUNYANPI 020) and adheres to the

ethical principles outlined in the Ministry of Health’s “Ethical

Review Measures for Life Science and Medical Research Involving

Humans (2023),” SFDA’s “Good Clinical Practice for Drug Trials

(2020)”, “Regulations on Clinical Trials of Medical Devices (2016)”,
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WMA’s “Declaration of Helsinki”, and CIOMS’ “International

Ethical Guidelines for Biomedical Research Involving Human

Subjects.” All participants provided written informed consent

prior to inclusion in the study, and measures were taken to

ensure confidentiality and anonymity of their data.
2.15 Enzyme-linked immunosorbent assay
(ELISA)

An ELISA was performed to assess the protein expression levels

in human serum according to standard protocols. Morning fasting

blood samples were collected from hospitalized patients with lumbar

disc herniation in the Department of Orthopedics, Suzhou Hospital

of Traditional ChineseMedicine. Patients were instructed to fast from

food and water starting at 10:00 PM the previous day, and venous

blood samples were drawn the following morning at 7:00 AM after an

overnight fast. All included patients did not have any other spinal

disorders (e.g., lumbar spondylolisthesis, spinal fractures) or chronic

diseases (e.g., hypertension, diabetes). Additionally, patients included

in the study had not received anti-inflammatory drugs, steroids, or

other pharmaceutical interventions for at least 1 week prior to

treatment. The serum samples were allowed to stand at 25°C ± 3°C

for 15 minutes, followed by centrifugation at 15,000 rpm for 15

minutes. The resulting supernatant (SN) was collected for ELISA

analysis. The levels of Cystathionine-beta-synthase (CBS) (CUSABIO,

China, CSB-E13314h), Fas/TNFRSF6/CD95 (MULTI SCIENCES,

China, EK1F01-AW1), and CD64 (CAMILO BIOLOGICAL,

China, 2H-KMLJh312569) were quantified using corresponding

ELISA kits, with procedures carried out strictly according to the

manufacturer’s instructions to ensure accuracy and reproducibility.
2.16 Statistical analysis

All statistical analyses were performed using R (version 4.4.1).

The differences in hub genes between the groups and the immune

infiltration analysis were assessed using the Wilcoxon test. The

accuracy of the model was evaluated by the AUC. ELISA results

were analyzed using GraphPad Prism 9.10. Comparisons between

the CON, M-IVDD, and S-IVDD groups were conducted using

either one-way ANOVA or Brown–Forsythe and Welch’s ANOVA,

depending on the homogeneity of variance. Furthermore, Tukey’s

multiple comparisons and unpaired t-tests with Welch’s correction

for pairwise group comparisons were used accordingly. A p-value <

0.05 was considered statistically significant, with *P < 0.05, **P <

0.01, and ***P < 0.001.
3 Results

3.1 Microarray data

Microarray datasets GSE150408 and GSE124272 were obtained

from the GEO database, with no logarithmic transformation
frontiersin.org
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required. After merging GSE124272 and GSE150408, batch effects

were removed (Figures 1A, B). A total of 3,813 DEGs were

identified, including 1,875 upregulated and 1,938 downregulated

genes. Visualizations included a volcano plot and heatmaps for the

top 10 upregulated and downregulated DEGs (Figures 1C, D).

Subsequently, genes obtained from GeneCards, AgeAnno, and

HARG were deduplicated and intersected with the DEGs,

resulting in 524 aging-related DEGs (AIDEGs), as depicted

in Figure 1E.
3.2 Enrichment analysis results

KEGG and GO analyses were performed on the identified

AIDEGs. The results revealed that the AIDEGs were associated

with 97 KEGG pathways (Supplementary Data S5), with key
Frontiers in Immunology 05
pathways such as MAPK, PI3K-Akt, osteoclast differentiation,

apoptosis, necroptosis, and IL-17 signaling identified as potentially

involved in the progression of IVDD (Figure 2A). The top 10

enriched GO terms (Supplementary Data S4) were visualized using

circos plots (Figures 2B–D), indicating that aging-related IVDD genes

are primarily associated with immune response, stress response,

protein and cytokine binding, vesicle-mediated cellular transport,

and secretion processes. Separate enrichment analyses were

conducted for upregulated and downregulated AIDEGs, with the

results presented in Figures 2E, F. GSEA results (Supplementary Data

S8) are shown in Figures 3A–D, demonstrating activation of

pathways such as neutrophil degranulation, and response to LPS

with mechanical ventilation during the aging-related progression of

IVDD. Pathways like aerobic respiration and electron transport chain

were suppressed. In summary, the enrichment analysis underscores

the critical roles of AIDEGs in multiple key biological pathways.
FIGURE 1

GSE data integration and analysis. (A) Results before batch effect removal for GSE150408 and GSE124272. (B) Results after batch effect removal for
GSE150408 and GSE124272. (C) Volcano plot of DEGs. (D) Heatmap of top 10 upregulated and downregulated DEGs. (E) Intersection of DEGs with
aging-related genes, resulting in aging-related DEGs (AIDEGs).
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3.3 WGCNA results

The sample clustering dendrogram (Figure 4A) identified 18

outliers removed at a cut height of 110, leaving 32 samples for

analysis. The soft-thresholding power was determined as 5

(Figure 4B), and the network conformed to a scale-free topology
Frontiers in Immunology 06
(Figure 4C). Modules with similarity over 0.75 were merged into 12

modules, as shown in the merged dynamic tree cut diagram

(Figure 4D). The module eigengene network (Figure 5A) shows

correlations among eigengenes, with red indicating positive and blue

negative correlations. The gene network heatmap (Figure 5B) illustrates

co-expression among 400 genes, with brighter colors indicating
FIGURE 2

Enrichment analysis results. (A) KEGG pathway analysis results. (B) GO analysis of biological processes. (C) GO analysis of cellular components. (D)
GO analysis of molecular functions. (E) KEGG pathway analysis for upregulated AIDEGs. (F) KEGG pathway analysis for downregulated AIDEGs.
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stronger relationships. Sample clustering with trait heatmaps

(Figure 5C) distinguishes healthy from diseased samples. Finally, the

module-trait relationship heatmap (Figure 5D) shows a significant link

between the red module and IVDD (P = 0.0107), visualized further in a

scatter plot (Figure 5E), with 365 genes selected for further analysis.
3.4 Core gene selection and immune
infiltration analysis

The intersection of AIDEGs with WGCNA module genes

identified 15 hub genes (Figure 6A), with MMP9 and MME

showing the highest correlation, followed by GZMA-CD69 and

AGTRAP-PLAUR (Figure 6B). The PPI network reveals a highly

interconnected structure comprising 31 egdes with numerous

interactions (Supplementary Figure S1). Network analysis identified
Frontiers in Immunology 07
several hub genes, such as FCGR1A, CD69, FASLG, MMP9, GZMA,

and CBS, which exhibit high connectivity and occupy central

positions within their respective network clusters. These findings

suggest that these genes play crucial regulatory roles in the biological

processes under investigation. Figures 6C, D illustrate the expression

levels of hub genes in the original dataset and their differential

expression between the healthy and IVDD groups. FCGR1A

exhibited the most significant difference (P < 0.001), and all other

genes showed significant differences between the two groups (P <

0.05) (Supplementary Table S1). Immune cell infiltration analysis

revealed that neutrophils, monocytes, and activated CD4+ T cells

were the most highly expressed cell types (Figure 6E). Among them,

neutrophil expression was significantly elevated in the IVDD group,

while gd T cells were significantly downregulated (Figure 6F).

Figure 6G shows correlations between hub genes and immune cells,

with red for positive and blue for negative correlations.
FIGURE 3

GSEA partial results. (A) Neutrophil degranulation pathway. (B) Response to LPS with mechanical ventilation pathway. (C) Respiratory electron
transport chain pathway. (D) Aerobic respiration and respiratory electron transport chain pathways.
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3.5 Construction and validation of the
predictive model

Following random allocation, the training set comprised 36

samples, while the validation set included 14 samples. Comparative

analysis between the two datasets, as presented in Supplementary Table

S2, revealed no significant differences across all genes (P > 0.05),

demonstrating the comparability of the training and validation sets.
3.6 Logistic regression

Univariate logistic regression analysis was performed for all hub

genes, with results shown in Supplementary Table S3. Genes with P <

0.2 were included in multivariate logistic regression, and stepwise
Frontiers in Immunology 08
regression identified FCGR1A and CBS as key variables. FCGR1A

remained significantly associated with IVDD after adjustment,

suggesting its role as a key aging-related gene in IVDD. Collinearity

diagnostics showed no multicollinearity, with variance inflation factors

for FCGR1A and CBS being 1.002392. The multivariate logistic

regression model demonstrated good predictive performance, with a

ROC curve AUC of 0.889 (Figure 7A). A nomogram was constructed

to visually present individualized risk predictions (Figure 7B). The C-

index was 0.89 (95%CI: 0.79–0.99), and the Hosmer–Lemeshow test (P

= 0.478) confirmed good calibration, supported by a calibration curve

where the “Apparent” line aligned closely with the “Ideal” line.

However, slight deviations in the “Bias-corrected” line suggested

potential overfitting and calibration limitations in higher probability

ranges (Figure 7C). DCA showed the model provided a net positive

benefit for IVDD intervention (Figure 7D). Stepwise regression
FIGURE 4

Sample clustering and WGCNA. (A) Sample clustering dendrogram with a cut height of 110. (B) Soft-thresholding power selection. (C) Verification of
the scale-free network. (D) Merged dynamic tree cut after module merging.
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confirmed FCGR1A and CBS as significant predictors, with univariate

ROC AUC values of 0.772 and 0.769, respectively, indicating moderate

predictive accuracy (Figures 7E, F) (13).
3.7 RF

The OOB error curve is presented in Figure 8A. As the number

of trees increases, the error rate initially fluctuates but stabilizes

when the number of trees exceeds approximately 200. Subsequently,
Frontiers in Immunology 09
gene importance was assessed (Figure 8B). The x-axis represents the

increase in node purity, an indicator of each variable’s contribution

to classification accuracy. Higher values signify greater predictive

importance. The top five ranked genes identified were FCGR1A,

CBS, GZMA, MMP9, and FASLG. The constructed RF model was

validated using both the training set (Figures 8C, D) and the test set

(Figures 8E, F). Results indicate that the RF model achieves robust

predictive performance in both internal and external validations,

with an accuracy of 0.7857, a sensitivity of 0.7143, and a specificity

of 0.5871 on the validation set.
FIGURE 5

Gene network visualization and module-trait relationships in WGCNA. (A) Module eigengene network. (B) Gene network heatmap. (C) Sample
clustering dendrogram combined with a trait heatmap. (D) Heatmap of module-trait relationships. (E) Scatter plot showing the correlation between
genes in the red module and IVDD.
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3.8 Support vector machine

The results of feature selection using SVM-RFE are shown in

Figures 9A, B, where the model achieves the lowest error rate with six

features. Based on the feature importance ranking (Supplementary
Frontiers in Immunology 10
Table S4), the top six features were selected and used for the subsequent

SVM model construction. The performance of the resulting SVM

model was validated using both the training set (Figures 9C, D) and the

test set (Figures 9E, F). The results demonstrate that the constructed

SVMmodel exhibits strong predictive performance both internally and
FIGURE 6

Correlation between hub genes and immune infiltration patterns. (A) Venn diagram showing the intersection of AIDEGs with WGCNA module genes.
(B) Correlation analysis among hub genes. (C) Heatmap of hub gene expression. (D) Differential expression of hub genes between the healthy and
IVDD groups. (E) Immune cell infiltration in the healthy and IVDD groups. (F) Expression differences of various immune cells between the healthy and
IVDD groups. (G) Correlation between hub genes and immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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externally, with an accuracy of 0.8571, a sensitivity of 0.7143, and a

specificity of 1 on the validation set.

3.9 LASSO regression

The 10-fold cross-validation plot for l in the LASSO regression

model is shown in Figure 10A. The l value thatminimizes the deviation

is 0.08202, retaining three features: FCGR1A, FASLG, and CBS. The
Frontiers in Immunology 11
coefficient path plot (Figure 10B) illustrates the relationship between l
and feature coefficients. The x-axis represents the L1 norm (the scale of

the regularization path), showing how each feature coefficient changes

with varying l. The y-axis indicates the magnitude of the coefficients.

As the L1 norm increases from left to right (corresponding to a

decreasing l and weaker penalty), more features are incorporated

into the model, and their coefficient magnitudes progressively

increase, reflecting their growing influence on the model.
FIGURE 7

Construction and validation of the logistic regression prediction model. (A) ROC curve of the multivariate logistic regression prediction model, with an AUC
of 0.91. (B) Nomogram generated based on the logistic regression prediction model. (C) Calibration curve showing good performance of the model on the
training set. However, bias-corrected results indicate some calibration deviations in the mid-to-high probability range. The HL test (P=0.4783) suggests no
significant calibration issues. (D) Decision curve analysis (DCA). The x-axis represents the predicted probability threshold, and the y-axis indicates net benefit,
demonstrating the clinical utility of the model across varying thresholds. (E) ROC curve for univariate analysis of FCGR1A, showing a predictive performance
with an AUC of 0.772. (F) ROC curve for univariate analysis of CBS, showing a predictive performance with an AUC of 0.796.
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FIGURE 8

Construction and validation of the random forest model. (A) OOB error curve, showing that the overall error rate stabilizes when the number of
trees exceeds approximately 200. (B) Variable importance plot, highlighting the top five most important genes ranked by their contribution to model
performance. (C) Box plot of predicted values for different status groups in the training set, with Wilcoxon test p-value < 0.001. (D) ROC curve for
the training set, demonstrating an AUC of 1. (E) Box plot of predicted values for different status groups in the test set, with Wilcoxon test p-value <
0.05. (F) ROC curve for the test set, showing an AUC of 0.91.
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3.10 KNN

The KNN algorithm (K = 2) was used to classify and predict the

validation set samples by calculating the class labels of the two nearest

neighbors for each sample. To assess the stability and reliability of the

model, we performed five-fold cross-validation on the training set.
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The results thereof showed that the overall accuracy of the KNN

model on the validation set was 0.875 (Figure 10C), indicating that

the model has high accuracy in classification tasks. The confusion

matrix results showed a sensitivity of 0.750 and specificity of 1.000,

demonstrating that the KNN model constructed using hub genes has

high accuracy in sample classification.
FIGURE 9

SVM-RFE feature selection and SVM model construction and validation. (A) Feature selection cross-validation error based on the training set. (B) Feature
selection cross-validation accuracy based on the training set. (C) Boxplot of predicted values distribution for each status group in the training set, with p-
value < 0.001. (D) ROC curve for the training set, with AUC of 0.87. (E) Boxplot of predicted values distribution for each status group in the test set, with p-
value < 0.05. (F) ROC curve for the test set, with AUC of 0.86.
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3.11 Integration of machine learning results

The intersection of features identified by logistic regression, RF,

SVM, and LASSO revealed FCGR1A as a common feature across all

methods, while CBS and FASLG were identified by three methods

each (Figure 10D). These three key genes were selected for further

experimental validation.
3.12 ELISA

The demographic and clinical information of all patients

included in the study is presented in Supplementary Table S5. A

total of 17 patients were enrolled, with patients with IVDD further

stratified into subgroups based on the Pfirrmann grading system:

the control group (healthy) comprised 7 individuals, the moderate
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IVDD group included 5 patients, and the severe IVDD group

consisted of 5 patients. The Pfirrmann grading was independently

assessed by at least two spine surgeons to ensure consistency and

reliability in the classification process. The representative MRI

images of typical subjects from each group are presented in

Supplementary Figure S2. ELISA results are shown in

Supplementary Table S6. First, we compared the healthy control

group with all patients with IVDD. The results demonstrated that

CBS expression was significantly upregulated in these patients (P =

0.0123), while FASLG expression was significantly downregulated

(P = 0.0185). No significant difference was observed in FCGR1A

expression between the two groups (P = 0.4747) (Figures 11A–C).

Subsequently, the patients with IVDD were divided into

moderately degenerated (M-IVD) and severely degenerated (S-

IVD) groups, and an analysis of variance (ANOVA) with post hoc

pairwise comparisons was performed. The results revealed
FIGURE 10

Lasso regression, K-NN and integration of machine learning results. (A) Ten-fold cross-validation curve of l in the LASSO regression model. (B) Coefficient
path diagram of the LASSO regression model, illustrating that as the L1 norm increases, more features are incorporated into the model. (C) ROC curve of the
K-NN model, with an AUC of 0.875. (D) Integration of feature genes identified through multiple machine learning approaches.
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significant differences in the expression levels of CBS (P = 0.0365)

and FASLG (P = 0.0437) among the three groups, while FCGR1A

showed no significant differences (P = 0.6311). Specifically, CBS

expression was significantly upregulated (P = 0.0380) and FASLG

expression significantly downregulated (P = 0.0470) in the M-IVD

group compared to the control group. However, no significant

changes in the expression of the three key genes were observed in

the S-IVD group.

To explore the relationship between age and the expression of

these key genes, a linear regression analysis was conducted, with age

included as a variable. The results, presented in Supplementary

Table S7, showed significant differences in CBS and FASLG

expression levels under different subgroup conditions. Compared

to the control group, CBS expression was significantly elevated in

the M-IVD group (b = 249.8, P = 0.0021), while FASLG expression

was significantly reduced (b = -664.2, P = 0.0241). When age was

included as a covariate, it exerted a slight downregulatory effect on

CBS and FASLG expression (bCBS = -5.016, bFASLG = -2.046), while

FCGR1A expression exhibited a weak upward trend with age

(bFCGR1A = 1.959). However, these effects were not statistically

significant (PCBS = 0.1838, PFASLG = 0.8881, PFCGR1A = 0.9645),
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indicating that the variations in key gene expression were primarily

driven by degeneration grade, with age playing a minor regulatory

role (Figures 11D–F).

In summary, CBS and FASLG exhibit significant expression

differences in the blood of patients with IVDD, particularly in those

with moderate degeneration, while no significant changes were

observed in patients with severe degeneration. The role of

FCGR1A in the pathological process of IVDD requires

further investigation.
4 Discussion

As the population ages, more elderly patients suffer from LBP

due to IVDD, posing substantial physical, psychological, and

economic burdens (3). Consequently, an exhaustive exploration

of the molecular biological mechanisms that underpin IVDD is

essential to enhance existing clinical diagnostic and therapeutic

strategies. Many studies have shown that the onset and

advancement of IVDD are intricately linked to factors including

inflammatory responses, immune modulation, cellular aging, and
FIGURE 11

ELISA results of key genes. (A-C) Comparisons of the expression of three key genes between the control group and the IVDD group. (D-F)
Expression of three key genes among IVDD patients with different Pfirrmann degeneration grades. *P<0.05. ns, not statistically significant (p ≥ 0.05).
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metabolic dysregulation (4, 14). However, at present, no research

has pinpointed early aging-related biomarkers of IVDD in complete

blood samples. Consequently, this study utilizes bioinformatics

analysis to uncover AIDEGs in the whole blood of patients with

IVDD. Machine learning algorithms were employed to develop

diagnostic models that evaluate the predictive capability of the

chosen AIDEGs and further identify crucial genes. The objective

was to furnish novel targets for the diagnosis and treatment

of IVDD.

By analyzing two IVDD whole blood samples from the GSE

datasets, we identified a total of 3,813 DEGs. We then integrated

ARGs from multiple databases, and the intersection of these

datasets yielded 524 AIDEGs. Enrichment analysis revealed that

these genes are primarily involved in apoptosis, inflammatory

response, immune response, and oxidative stress. Mitochondria

are the primary sites for aerobic respiration in most eukaryotic cells,

and mitochondrial dysfunction and aging are bidirectionally related

and mutually reinforcing (15). In skeletal muscle, the

phosphorylation of mitochondrial respiration declines with aging

(16). In this study, the GSEA results suggest that aerobic respiration

and electron transport processes may be inhibited during the aging-

related development of IVDD. However, we cannot rule out the

possibility that this result is related to the structural characteristics

of the intervertebral disc itself, as the disc lacks blood vessels, and

oxygen supply is achieved through diffusion via the endplate,

because intervertebral disc cells tend to rely on anaerobic

metabolism (17).

IVDD is closely associated with various immune cells, including

macrophages, B cells, and T cells. Immune infiltration analysis

revealed that neutrophils were significantly elevated in the whole

blood samples of patients with IVDD, consistent with previous

studies (18, 19). Neutrophils, as a critical component of innate

immunity, are among the first white blood cell populations

recruited to sites of inflammation in human blood. They play a

pivotal role in the initiation and progression of inflammatory

responses. Additionally, neutrophils contribute to tissue repair by

clearing cellular debris, promoting angiogenesis (20), and inducing

anti-inflammatory responses (21). Neutrophils may contribute to

the pathogenesis and progression of IVDD through multiple

mechanisms. Neovascularization has been identified as a critical

factor in the onset and exacerbation of IVDD (22). Neutrophils are

a significant source of vascular endothelial growth factor (VEGF)

(23), as evidenced by impaired neovascularization observed in

neutrophil-depleted mouse models of muscle injury (20).

Extracellular matrix (ECM) degradation is another key

contributor to the progression of IVDD and is closely associated

with various matrix metalloproteinases (MMPs) (24). Neutrophils

are the sole cellular source of MMP-9, which induces disc

degeneration by promoting the loss of type II collagen (25).

Conversely, modic changes are highly associated with IVDD (26)

and represent a significant specific feature in vertebral bodies of

patients suffering from LBP (27). With the aging population, modic

changes are becoming increasingly prevalent (28). The formation of

neutrophil extracellular traps (NETs) may exacerbate modic

changes by activating the complement system (29, 30), ultimately
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contributing to the progression of IVDD. Additionally, complement

system activation is associated with angiogenesis and neurogenesis

(31). Whether the ingrowth of nerves and blood vessels within the

intervertebral disc is related to NET-mediated complement

activation remains to be further investigated.

In various IVDD animal models, increased T-cell expression

has been observed in NP tissues (32). gdT cells, a unique subset of

regulatory T cells (Tregs), constitute a minor proportion of human

peripheral blood. Based on the usage of their T-cell receptor variable

(V) gene segments, they can be categorized into Vd1 and Vd2 T

cells. These T-cell subsets are highly enriched in peripheral organs

such as the skin, intestine, and lungs (33). They exert anti-

inflammatory effects by secreting IL-10, IL-4, and TGF-b,
expressing membrane-bound TGF-b complexes, or indirectly

attracting myeloid-derived suppressor cells through IL-17 (34).

Aging can lead to a reduction in naïve Tregs and an

accumulation of memory Tregs, resulting in decreased T-cell

immune diversity. This age-related imbalance in T-cell

homeostasis is strongly associated with tumors, chronic

inflammation, and autoimmune diseases (35). The role of gdT
cells in the aging process remains unclear, and no studies have

yet explored the relationship between this subset of T cells and

IVDD. Our study found that gdT cells were downregulated in the

peripheral blood of patients with IVDD. In skeletal system

disorders, gdT cells—primarily Vg6+ gdT cells—produce IL-17,

which stimulates the proliferation of mesenchymal progenitor

cells and the differentiation of osteoblasts, ultimately promoting

fracture healing (36). Our findings revealed a significant reduction

in gdT cells in the blood samples of patients with IVDD, while their

expression was markedly elevated in degenerated NP tissue

compared to normal intervertebral discs (4). This discrepancy

may be attributed to the chemotactic recruitment of gdT cells to

the degenerated disc or could result from individual differences

among samples or variations in detection methods (37).

Subsequently, we identified three key genes, FCGR1A, CBS and

FASLG, using multiple machine learning algorithms. The FCGR1A

gene encodes the functional high-affinity IgG Fc receptor CD64 (or

FcgR1A), which mediates various immune functions (38). Under

normal conditions, CD64 is primarily expressed on monocytes and

macrophages. During infection or inflammation, CD64 expression

increases significantly, particularly on the surface of neutrophils,

where its levels can rapidly escalate within a short period (39). In

transgenic mice, CD64-induced allergic reactions are predominantly

mediated by neutrophils (40). In addition, M1 macrophage

polarization is one of the key factors in the pathogenesis of IVDD,

leading to the release of various inflammatory mediators (5). CD64 is

significantly upregulated in M1 macrophages, while it is typically

downregulated in M2macrophages. This expression difference makes

CD64 a distinctive marker for identifying M1 pro-inflammatory

macrophages and suggests its potential clinical application in

regulating chronic inflammation resulting from M1 macrophage

dysregulation (41, 42). In the synovium of patients with

rheumatoid arthritis, FCGR1A expression is upregulated and

positively correlated with the expression of various matrix

metalloproteinases (43), a trend consistent with changes observed
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in degenerated intervertebral discs. In summary, FCGR1A may

promote the progression of IVDD through multiple pathways.

However, current related research is limited, and factors such as

detection methods and sample collection may influence the final

experimental validation. Further experimental studies are needed in

the future.

CBS is the first rate-limiting enzyme in the transsulfuration

pathway. It catalyzes the condensation of cysteine and

homocysteine to produce hydrogen sulfide (H2S), which mediates

various physiological and pathological processes in the body (44).

CBS deficiency has been linked to various diseases, including

osteoporosis, lens dislocation, and thrombosis (45). Research by

Saha et al. revealed that silencing CBS, resulting in reduced H2S

expression, inhibits Sp1-mediated expression of vascular

endothelial growth factor receptor 2 (VEGFR-2) and neuropilin-1

(NRP-1), ultimately leading to endothelial dysfunction (46). Song

et al. identified a critical role for Sp1 in IVDD through

bioinformatics and experimental approaches (47). Sp1, as a trans-

activator, mediates the growth factor-regulated expression of CBS.

Moreover, in the GO analysis presented in our study, both Sp1 and

CBS were found to be involved in the hydrogen sulfide biosynthetic

process, suggesting that the Sp1/CBS pathway may play an

important role in the development of IVDD. Meanwhile, H2S is

crucial for protecting cells against apoptosis, mitochondrial

damage, and endoplasmic reticulum (ER) stress, which further

underscores the significant role of CBS in numerous physiological

processes. Alterations in CBS and H2S activity are associated with

IVDD. Notably, in herniated disc tissues, especially in cases of

ruptured disc extrusion, CBS and H2S expression are significantly

upregulated (48). On one hand, H2S may alleviate disc degeneration

by improving mitochondrial function, inhibiting ER stress, and

activating protective cellular signaling pathways (49). On the other

hand, the high rate of H2S generation could promote NP cell

apoptosis, contributing to the progression of degeneration (48). In

terms of immunity, H2S demonstrates anti-neutrophil properties

(50). However, high concentrations and rapid release of H2S can

promote neutrophil apoptosis and inhibit chemotactic responses

(51–53). Furthermore, Tregs express higher levels of CBS compared

to other CD4+ T-cell subsets (54). In this study, we observed an

upregulation of CBS expression in the whole blood samples of

patients with IVDD. CBS expression peaked in M-IVDD patients

but declined in S-IVDD patients, aligning with the findings of Xu

et al. in intervertebral disc tissues (49). This suggests that the anti-

inflammatory activity of H2S mediated by CBS may gradually

diminish as IVDD progresses. Overall, CBS may facilitate the

advancement of IVDD by reducing inflammation and engaging in

angiogenesis, although this is predominantly driven by H2S;

however, this necessitates additional experimental confirmation.

Fas ligand (FASLG), or FasL, is a type II transmembrane protein

belonging to the tumor necrosis factor superfamily. It is primarily

expressed by T cells and other lymphocytes, and induces apoptosis

by binding to the Fas receptor, thereby helping to regulate T-cell

numbers and maintain immune system balance (55). The Fas ligand

system plays a crucial role in maintaining the immune privilege of

the intervertebral disc. During the progression of IVDD, many
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studies have reported that FASLG expression is predominantly

upregulated, promoting IVDD by inducing apoptosis of NP cells

via the Fas system. However, there are also studies reporting

decreased FASLG expression and functional impairment in IVDD

(56). For example, Liu et al. observed that the expression of Fas in

degenerative NP cells was significantly lower than that in normal

NP cells, which compromised their immune privilege. Moreover,

the upregulation of Fas in normal NP cells could induce the

apoptosis of co-cultured macrophages and CD8+ T cells (57).

This imbalance interaction between NP cells and immune cells

mediated by Fas would trigger an enhanced immune response and

aggravate IVDD. In our study, a significant down-regulation of

FASLG expression was observed in the whole blood samples of M-

IVDD patients, potentially indicating activation of FASLG-related

immune mechanisms in these individuals.

Due to the unique structural characteristics of intervertebral

discs, gene expression levels may vary between different sample

sources, such as blood and NP. To address this issue, our study

utilized datasets with consistent sample origins, ensuring that the

results were not influenced by discrepancies in sample sources.

Finally, we validated the expression of three key genes in the

peripheral blood of IVDD patients using ELISA. The results

confirmed that CBS and FCGR1A exhibit significant expression

changes in cases of moderate degeneration, while these changes

gradually diminish as degeneration progresses further. The

underlying mechanisms require further investigation.

Based on whole blood samples from patients with IVDD, we

identified AIDEGs as key contributors to the initiation and

progression of IVDD through various biological pathways.

Through the application of multiple machine learning algorithms,

FCGR1A, CBS, and FASLG were identified as three key genes, and

in vitro ELISA experiments validated that CBS and FASLG exhibit

significant differential expression in the peripheral blood of patients

with moderate IVDD. These findings provide strong evidence for

the potential use of CBS and FASLG as non-invasive biomarkers for

IVDD diagnosis and prognosis.

Beyond biomarker identification, this study highlights the

utility of integrating bioinformatics and machine learning to

uncover molecular mechanisms and diagnostic targets in

complex, multifactorial diseases like IVDD. By focusing on blood-

based biomarkers, our research addresses the critical need for

accessible, minimally invasive diagnostic tools, which could

facilitate early intervention and improve patient outcomes.

However, this study has some limitations. First, due to the

unique structural characteristics of the intervertebral disc, the

sensitivity and specificity of blood samples for the early detection

of IVDD require further experimental validation. Moreover, the

datasets used lack detailed clinical information, such as the specific

ages of participants and the severity of disc degeneration. In

addition, the clinical samples included in this study

predominantly consist of young and middle-aged individuals. The

integration of transcriptomic data from elderly populations could

enhance the precision and generalizability of the findings.

Consequently, age matching should be rigorously implemented in

future research to minimize confounding effects and improve the
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robustness of the results. Future studies should validate these

findings in larger, more diverse cohorts to reduce the potential

for false positives, using rigorous statistical methods and

independent validation. Investigating the longitudinal relationship

between biomarker expression and IVDD progression, along with

exploring the molecular mechanisms of CBS and FASLG in IVDD

pathogenesis, will be essential to confirm their therapeutic potential.
5 Conclusion

This study not only advances our understanding of the

molecular biology of IVDD, but also lays the foundation for the

development of blood-based diagnostic tools and targeted

therapeutic strategies. Such advancements could significantly

reduce the burden of IVDD by enabling earlier diagnosis and

more personalized treatment options.
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SUPPLEMENTARY FIGURE 1

PPI network of 15 hub genes. Each node represents a gene, with interactions

between them indicated by connecting edges. Nodes are colored based on

functional clusters. The interactions are visualized using various edge colors
to highlight different types of relationships.
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SUPPLEMENTARY FIGURE 2

Typical MRI findings for different groups: left to right—T2, T1 sagittal, and

axial images. (A–C) CON-1, male, 27, Pfirrmann grade 1. (D–F)M-IVDD-2,

male, 28, Pfirrmann grade 3. (G–I) S-IVDD-5, female, 40, Pfirrmann
grade 4.
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