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Construction of a novel
inflammatory-related prognostic
signature of acute myelocytic
leukemia based on conjoint
analysis of single-cell and bulk
RNA sequencing
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Yongqin Cao1, Jingbo Lu1, Kun Fang2,3*, Yuexin Cheng1*

and Yuqing Miao1,4*

1Department of Hematology, Yancheng No.1 People’s Hospital, Yancheng, China, 2Department of
Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China, 3Kindstar
Global Precision Medicine Institute, Wuhan, China, 4Yancheng Clinical College, Xuzhou Medical
University, Yancheng, China
Introduction: The prognostic management of acute myeloid leukemia (AML)

remains a challenge for clinicians. This study aims to construct a novel risk model

for AML patient through comprehensive analysis of scRNA and bulk RNA data to

optimize the precise treatment strategies for patients and improve prognosis.

Methods and Results: scRNA-seq classified cells into nine clusters, including

Bcells, erythrocyte, granulocyte-macrophage progenitor (GMP), hematopoietic

stem cell progenitors (HSC/Prog), monocyte/macrophagocyte (Mono/Macro),

myelocyte, neutrophils, plasma, and T/NK cells. Functional analysis

demonstrated the important role of inflammation immune response in the

pathogenesis of AML, and the leukocyte transendothelial migration and adhesion

in the process of inflammation should be noticed. ssGSEA method identified four

core cells including GMP, HSC/Prog, Mono/Macro, and myelocyte for subsequent

analysis, which contains 1,594 marker genes. Furthermore, we identified AML-

associated genes (2,067genes) and DEGs (1,010genes) between AML patients and

controls usingGSE114868dataset. After performing intersection, univariate Cox,

and LASSO analysis, we obtained a prognostic model based on the expression

levels of five signature genes, namely, CALR, KDM1A, SUCNR1, TMEM220, and

ADM. The prognostic model was then validated by two external datasets. Patients

with high-risk scores are predisposed to experience poor overall survival. Further

GSEA analysis of risk-model-related genes revealed the significant differences in

inflammatory response between high-and low-risk groups.
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Conclusion: In conclusion, we constructed an inflammation related risk model

using internal scRNA data and external bulk RNA data, which can accurately

distinguish survival outcomes in AML patients.
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Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous

malignant clonal disease derived from myeloid hematopoietic stem

cells and progenitor cells characterized by abnormal proliferation of

blast cells and leukemia cells in the bone marrow, thus leading to

hematopoietic dysfunction. It is the most common subtype of

leukemia, with 20,800 new cases and 11,220 deaths in 2024 in the

United States (1). In the past 5 decades, AML therapy primarily

depended on one poorly tolerated and modestly effective standard of

care: the cytarabine combined with anthracyclines (2). Despite the

advances in strategies containing high-dose cytarabine, targeted

therapy, allogeneic hematopoietic stem cell transplantation, and

immunotherapy, its 5-year overall survival (OS) is only 30% and

<10% in patients older than 60 years (2, 3). Therefore, it is of great

significant to discover novel therapeutic target and prognostic

signature to guide treatment, thereby improving outcome of patients.

Bulk transcriptome sequencing (bulk RNA-seq) is an effective

tool to profile average gene expression in cell populations, identifying

abnormal expressed genes as potential therapy targets for diseases,

including AML. Li et al. identified METTL3 as a biomarker of AML

chemoresistance, providing a novel target for AML therapy (4). In

contrast to bulk RNA-seq, single-cell RNA-seq (scRNA-seq) reveals

the cell-type heterogeneity and genetic information by elucidating the

transcriptomic diversity among individual cells, beneficial to specify

personalized therapeutic schedule and disease diagnosis (5, 6). As

reported by Bijender Kumar, contact between AML blasts and NK

cells activated TGF-b and, in turn, contributing to NK cell

exhaustion. BATF was identified as a key transcription factor that

mediates NK-cell dysfunction in AML, implying that the adoptive

transfer of allogeneic healthy NK cells in combination with TGF-b
inactivation or BATF suppression might be a promising method for

AML immunotherapy (7). Tian et al. suggested ENO1 as a plausible

candidate for AML therapy and prognostic assessment using scRNA-

seq, due to its specific function in self-renewal of leukemia stem cell

(8). Given these advantages, bulk RNA-seq and scRNA-seq are

frequently employed in combination for patient stratification and

therapy (9, 10).

In this work, we mapped the immune microenvironment

landscape and determine how it contributes to the progression of

AML using scRNA-seq. In addition, we conducted comprehensive

bioinformatics analyses using scRNA-seq and bulk RNA-seq data to
02
obtain a prognostic signature of AML patients, with two online

validation sets to verify its reliability for risk stratification.
Materials and methods

Participants

A total of 11 patients diagnosed as AML were eligible in this

study and divided into favorable (group 1), intermediate (group 2),

and unfavorable (group 3) prognosis groups according to risk

stratification. The baseline characteristics of included AML

patients are shown in Table 1. Two matched individuals with

monophyletic reduction were involved as control. Bone marrow

(BM) of all included patients was obtained for scRNA-seq. Human

experimental procedures in this study were reviewed and approved

by the ethics committee of Yancheng No. 1 People’s Hospital, and

all participants provide written informed consent.
Single-cell library preparation, sequencing,
and data analysis

The BM sample were first prepared as single-cell suspension at a

concentration of 700–1,200 cell/m, followed by single-cell capture,

mRNA reverse transcription, cDNA amplification, and 3′ sc-RNA-
seq library construction using the 10X Genomics platform according

to the manufacturer’s instructions. After quality inspection, the

library was sequenced using Illumina platform. The obtained data

were quantified using cellranger software to generate cell–gene

expression matrix, followed by quality control. The umap

algorithm was employed for dimensionality reduction analysis. The

“singleR” package in R software with HumanPrimaryCellAtlasData,

BlueprintEncodeData, and ImmuneCellExpressionData as reference

was used for cell annotation based on marker genes finding from the

CellMarker database and previous studies. By using the

FindAllMarkers function of Seurat package, the marker genes for

each cell type were obtained, and significantly different marker genes

of each cluster were identified according the metrics of: logFC > 1 and

adj.P.Val < 0.05. Then, these differently expressed marker genes and

ssGSEA were used to calculate ssGSEA scores of each cell to acquire

the different cells between AML patients and control individuals. GO
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and KEGG enrichment analysis of differently expressed marker genes

and GSEA enrichment of all marker genes of selected cells were

performed using clusterProfiler package in R software. CellPhone DB

v2.0 was used to explore the potential interactions between

different cells.
Bulk RNA-seq datasets acquisition and
processing

Bulk RNA-seq data of GSE114868 were downloaded from GEO

database, containing 194 AML patients and 20 healthy donors. The
Frontiers in Immunology 03
differently expressed genes (DEGs) between AML and healthy

donors were filtered based on the categories of logFC > 1 and

adj.P.Val < 0.05, and genes associated with AML were screened

using the R package WGCNA to find out overlapped genes of

scRNA-seq. GSE37642 dataset, including 417 AML patients, was

downloaded from GEO database and termed as training set to

construct the prognostic signature of AML patients based on the

overlapped genes. TCGA_LAML dataset (containing 130 AML

patients) downloaded from TCGA database and GSE106291

dataset (containing 250 AML patients) downloaded from GEO

database were termed as validation set to validate the constructed

prognostic signature.
Prognostic signature construction and
validation

The overlapped genes of differently expressed genes between

AML and healthy donors in GSE114868 dataset, AML-linked genes

in GSE114868 dataset, and selected marker genes of scRNA-seq

were considered as candidates. Univariate Cox regression analysis

was employed on these candidates in the training set to filtered out

informative genes correlated with prognosis. Genes with p < 0.05

were included in the least absolute shrinkage and selection operator

(LASSO) regression analysis to resolve the final variables in

prognostic model. The risk model was constructed based on the

formula: risk score = gene exp1 × b1 + gene exp2 × b2 + … + gene

expression n × bn, where gene expression represents the gene

expression value and b represents the corresponding coefficient of

LASSO regression. Patients were classified into high- and low-risk

groups according to the median value of risk score. Subsequent

prognostic model validation was performed on external datasets

TCGA_LAML and GSE106291. Kaplan–Meier curves visualized by

“survminer” package was utilized to analyze prognostic value of the

two groups and the final remaining genes. The risk map of patients

was visualized using “ggrisk” package in R software. The difference

in risk scores among available subtypes was determined using the

Kruskal–Wallis test or the Wilcoxon rank test. The receiver

operating characteristic (ROC) curves were plotted using the

“survROC” package to evaluate the performance of risk scores in

predicting overall survival at 1, 2, 3, and 4 years in AML patients. In

add i t ion , a s t ra t ified surv iva l ana lys i s o f ava i l ab l e

clinicopathological characteristics was carried out for high- and

low-risk groups. In addition, the functional enrichment of the risk

model associated genes was predicated using GSEA.
Immune microenvironment analysis and
chemotherapy drug sensitivity analysis

Immune microenvironment-related scores containing

ImmuneScore, StromalScore, and ESTIMATEScore were

calculated per AML patients in TCGA-LAML dataset using

corresponding algorithm. The difference in each score between

high- and low-risk AML samples was determined using the

Wilcoxon rank sum test, and Pearson correlation analysis was
TABLE 1 The baseline characteristics of 11 AML patients collected for
single-cell sequencing.

Characteristic AML patients

Age (median, range) 70 (60–87)

Sex (n, %)

Male 6 (55%)

Female 5 (45%)

WBCs (×10 9/L, median, range) 3.02 (0.66–53.94)

Cytogenetic risk (n, %)

Favorable 1 (9%)

Intermediate 4 (36%)

Unfavorable 6 (55%)

Mutation (n, %)

ASXL2 1 (9%)

ASXL1 2 (18%)

RUNX1 3 (27%)

DNMT3A 1 (9%)

TET2 2 (18%)

KIT 1 (9%)

IDH2 3 (27%)

IDH1 2 (18%)

Negative 1 (9%)

Missing 1 (9%)

Extramedullary infiltration (n, %)

Yes 0

No 10 (100%)

Fusion gene (n, 10%)

CBFb-MYH11 1 (9%)

AML1-ETO 1 (9%)

EVI1 1 (9%)

Negative 7 (64%)

Missing 1 (9%)
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performed to evaluate the correlation between our constructed

prognostic signature and immune microenvironment status.

Furthermore, we predicted the sensitivity of 198 drugs for the

high- and low-risk groups using the oncoPredict package in R

software, and drugs that are statistically different and potentially

useful for AML treatment were selected for correlation analysis with

target gene.
Statistical analysis

All statistical computations and graphical representations were

executed in R statistical software. Inter-group comparisons were

conducted using t-tests and Wilcoxon rank-sum tests. For multi-

group analyses, the Kruskal–Wallis test was systematically applied.

Survival outcomes were evaluated through Kaplan–Meier

estimators with between-curve differences quantified by log-rank

testing. Prognostic biomarkers were identified using univariate Cox

regression model. Bivariate associations were examined through
Frontiers in Immunology 04
Spearman’s rank correlation analysis. All inferential analyses

maintained a predetermined p level of 0.05 for statistical

significance determination.
Results

Cell subtype identification of included
individuals

A total of 97,531 core cells were obtained for subsequent

analysis after quality control (Figure 1A), and classified into 21

independent clusters using the umap algorithm (Figures 1B, C).

Then, the various clusters were annotated using corresponding

marker genes found in CellMarker database and previous

references (Figure 1D), classifying into nine cell clusters,

including B cells, erythrocyte, granulocyte-macrophage progenitor

(GMP), hematopoietic stem cell progenitors (HSC/Prog),

monocyte/macrophagocyte (Mono/Macro) , myelocyte ,
FIGURE 1

Quality control and cell type annotation of single-cell RNA sequencing. (A) Violin plot of filtered single-cell RNA sequencing data, showing a total of
97,531 cells meeting the criteria. (B) The umap algorithm was employed to classify the obtained cells, and 21 independent clusters were successfully
classified. (C) Classification of cell clusters in each group. (D) Expression levels of cell marker genes in each cell cluster. (E) Cell-type annotation
based on the corresponding marker genes, with nine cell clusters obtained. (H) The proportion of annotated cells in AML patients and
healthy donors.
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neutrophils, plasma, and T/NK cells (Figure 1E). The different

subtype demonstrated discrepant proportion in each group

(Figures 1F, G), and the ratios of GMP, HSC/Prog, Mono/Macro,

B cells, myelocyte, neutrophils, and T/NK cells in all cells are

significantly different between AML patients and controls

(Figure 1H), which were consistent with previous studies (11).
Frontiers in Immunology 05
Cell interaction and functional enrichment
analysis of various cellular marker genes

Intercellular interaction was predicted based on characteristic

ligand receptors and pathways. As shown in cell–cell

communication networks, there was more frequency and
FIGURE 2

Cell–cell communication analysis and function enrichment of marker genes based on nine cells clusters. (A) Number and strength of interactions
between major cells. (B) Differentially expressed cells in AML and controls were obtained by calculating the ssGSEA score of each cluster based on
the marker genes. (C) KEGG and GO enrichment analysis based on marker genes of differentially expressed cells. *p < 0.05, ** p < 0.01, *** p <
0.001, **** p < 0.0001.
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intensity of interaction between Mono/Macro and HSC/Prog,

Mono/Macro and plasma, and Mono/Macro and GMP. T/NK

cells demonstrated relatively poor communication with other cells

(Figure 2A). Moreover, the significantly different marker genes of

each cell subtype were identified using FindAllMarkers function of

Seurat, followed by calculating ssGSEA scores. We found that the

scores of all the identified cell clusters between AML patients and
Frontiers in Immunology 06
control individuals are significantly different, especially GMP, HSC/

Prog, Mono/Macro, and myelocyte that are obviously

downregulated in AML patients. Thus, these four cell types were

regarded as core cells for subsequent analysis. In addition, the

marker genes of these selected four clusters were enriched for

KEGG and GO functions (Figure 2C). In detail, the marker genes

for HSC/Prog, Mono/Macro, and B cells were associated with
FIGURE 3

Identification of AML-associated genes and differential expressed genes in AMP patients using GSE114868 dataset. (A) Analysis of the scale-free
index for various soft-threshold powers (b). (B) Gene cluster dendrogram and gene module colors. (C) Heatmap of correlations between modules
and AML. (D) Heatmap of AML-associated genes in MEblue model. (E) The volcano plot of differentially expressed genes between AML patients and
controls. Each blue dot represents a downregulated gene in AML patients, and each read dot represents an upregulated gene in AML patients. (F)
Heatmap of differential expressed genes between AML patients and controls.
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transcriptional misregulation in cancer. The marker genes of Mono/

Macro, T/NK cells, and B cells were notably enriched in Th17 cell

differentiation. In addition, the maker genes of B cells, myelocyte,

and neutrophils were enriched in leukocyte transendothelial

migration. In terms of GO enrichment, the marker genes of

Mono/Macro, T/NK cells, B cells, myelocyte, and neutrophils

were enriched in several immune-response-related terms at

BP category.
Frontiers in Immunology 07
AML-associated key modules and DEG
identification using bulk RNA-seq

The GSE114868 dataset was downloaded to identify major

modules associated with AML and DEGs between AML patients

and controls. In details, WGCNA was employed to analyze genes

associated with AML development and progression. The soft-

thresholding power was optimized for the network topology by
FIGURE 4

Construction of prognostic signature using GSE37642 dataset. (A) Intersection of AML-associated genes, DEGs in key cells, and DEGs between AML
and controls. (B) Univariate Cox regression analysis of OS. (C) LASSO regression of OS-related genes. (D) Kaplan–Meier curve of CALR, KDM1A,
SUCNR1, TMEM220, and ADM.
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balancing the criteria of mean connectivity and scale-free topology

fit, ensuring biologically interpretable network sparsity while

preserving scale-independent properties. Setting the scale-free

topology model fit index threshold to 0.85, we selected b = 7 as

the soft threshold, at which the scale-free network performed

optimally (Figure 3A). Highly similar modules were then

clustered, and a total of 20 modules were available after dynamic

hybrid cutting (Figure 3B). We then calculated the correlation

between AML and the genes modules. Based on the p-value and

correlation coefficient, we finally chose MEblue module (containing

2,967 genes) as the targeted module, which has the strongest

positive association with AML (Figure 3C). The clustering of

genes in MEblue module can separate AML patients from healthy

donors properly (Figure 3D). A total of 1,010 DEGs were filtered

based on the criteria of logFC > 1 and adj.P.Val < 0.05 (Figure 3E),

which classified AML patients and healthy donors into two

clusters (Figure 3F).
Construction and validation of prognostic
model

We selected the overlapped genes of core cell marker genes,

genes in MEblue module, and DEGs between AML patients and

controls in GSE114868 dataset as candidates, resulting in 35 genes
Frontiers in Immunology 08
(Figure 4A). Univariate Cox regression analysis was then performed

on these candidates in the training set to filter out genes

significantly correlated with prognosis, containing CALR, CDK6,

KDM1A, CYTL1, SUCNR1, TMEM220, and ADM (Figure 4B).

Final variables, including CALR, KDM1A, SUCNR1, TMEM220,

and ADM, that were used for prognostic model construction were

screened using LASSO regression analysis (Figures 4C, D).

Prognostic risk stratification in AML patients was mathematically

derived through weighted integration of multivariate regression

coefficients and normalized expression values for five feature-

selected genes. The detailed formula is shown below: Risk score =

−0.44751 * CALR + 0.28535 * KDM1A + 0.11832 * ADM −

0.20546*TMEM220 − 0.06282 * SUCNR1. Patients were classified

into high- and low-risk groups according to the median value of risk

score. Further Kaplan–Meier curves analysis suggested that low

expression of CALR, SUCNR1, KDM1A, and TMEM220, and high

expression of ADM were associated with poor prognosis of AML

patients (Figure 4E). Moreover, the constructed prognostic model

was validated using TCGA_LAML and GSE106291 validation sets.

Patients in the TCGA_LAML dataset were categorized into high-

and low-risk groups. Kaplan–Meier curves analysis showed that

patients with low-risk score have more favorable prognosis than

those with high-risk score (Figures 5A, B). The ROC curve for

overall survival was inferred to further evaluate the availability of

prognostic signature, demonstrating that the area under the curve at
FIGURE 5

Validation of prognostic signature using TCGA_LAML dataset. (A) Kaplan–Meier curve result. (B) Risk survival status plot. (C) The AUC of the
prediction of 1-, 2-, 3-, and 4-year survival rates of AML patients. (D) Heatmap of risk model and clinical characteristics. (E) Risk score of AML
patients older than 60 years and younger than 60 years. (F) Scatter plot between immune score, StromalScore, and ESTIMATEScore in high- and
low-risk scores. (G) Correlation between immune score, StromalScore or ESTIMATEScore, and risk score.
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1, 2, 3, and 4 years were >0.6 (Figure 5C), implying the reliability of

the prognostic signature. Available clinicopathological

characteristic analysis revealed the significant difference of risk

score between patients older than 60 and patients younger than

60 (Figures 5D, E). In addition, we observed that patients with high-

risk score demonstrate higher ImmuneScore, StromalScore, and

ESTIMATEScore than those with low-risk score (Figure 5F), and

patients’ risk score is positively correlated with ImmuneScore,

StromalScore, and ESTIMATEScore (Figure 5G). Furthermore, we
Frontiers in Immunology 09
validated the risk model using the GSE106291 dataset. The results

showed the analogous outcome of TCGA_LAML dataset that

patients with low-risk score have more favorable prognosis than

those with high-risk score (Figures 6A, B). Patients who were drug

resistant and older than 60 showed higher risk score than those who

were drug sensitive and younger than 60, respectively (Figure 6C).

GSEA analysis of risk-model-related genes in both TCGA_LAML

and GSE106291 datasets revealed the significant differences in

inflammatory response between high- and low-risk groups
FIGURE 6

Validation of prognostic signature using GSE106291 dataset. (A) Kaplan–Meier curve result. (B) Risk survival status plot. (C) Risk score of AML patients
who were drug resistant and sensitive, and AML patients older than 60 years and younger than 60 years. (D) GSEA analysis of risk-model-related
genes in TCGA_LAML dataset. (E) GSEA analysis of risk-model-related genes in GSE106291 dataset. (F) Correlation analysis between five identified
signature genes and inflammatory-related using TCGA-LAML dataset. (G) Correlation analysis between five identified signature genes and immune
cells using TCGA-LAML dataset. *p < 0.05, ** p < 0.01, *** p < 0.001.
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(Figures 6D, E). We further analyzed the correlation between five

identified signature genes and inflammatory-related cytokines using

TCGA-LAML dataset, showing that CALR, KDM1A, SUCNR1, and

TMEM220 were negatively correlated with IL10 and ADM was

positively correlated with IL10. In addition, we observed that CALR,

SUCNR1, and TMEM220 were negatively correlated with IL6, and

ADM was positively correlated with IL6 (Figure 6F). Subsequent

analysis demonstrated that all five identified signature genes were

significantly correlated with numerous immune cells, indicating the

immune cor re l a t ion o f our cons t ruc ted prognos t i c

model (Figure 6G).
Expression of prognostic-model-related
genes in cell clusters

We then went back to the data of scRNA-seq to access the

expression of genes in risk model, demonstrating that CALR and

KDM1A were primary expressed in Mono/Macro, GMP, and HSC/

Prog. SUCNR1, TMEM220, and ADM were primary expressed in

GMP, HSC/Prog, and Mono/Macro, respectively (Figures 7A, B).

The expression of both CALR and KDM1A in Mono/Macro, GMP,

and HSC/Prog decreased gradually across patients from group 0 to

group 3 (Figure 7C).
Frontiers in Immunology 10
Drug sensitivity analysis based on high−
and low−risk groups

Drug sensitivity analysis of the prognostic signature showed

that nine types of drugs represent significant IC50 differences

between the high- and low-risk groups, including Vinblastine,

Dactolisib, AZD8055, Paclitaxel, Dinaciclib, Bortezomib, CDK9,

Vincristine, and Foretinib (Figure 8A). Notably, we observed that

ADM are positively correlated with Foretinib, Bortezomib, and

Paclitaxel, whereas KDM1A are negatively associated with

Vincristine, Bortezomib, Dinaciclib, and Vinblastine (Figure 8B).
Discussion

The current study sought to construct a novel risk model for

AML patient through comprehensive analysis of internal scRNA

data and external bulk RNA data to optimize the precise treatment

strategies for patients and improve prognosis. The cells detected

using scRNA-seq were classified and annotated into nine clusters,

including B cells, erythrocyte, GMP, HSC/Prog, Mono/Macro,

myelocyte, neutrophils, plasma, and T/NK cells. The significantly

different marker genes of each cell subtype were identified and were

subjected to KEGG and GO enrichment. KEGG analysis showed
FIGURE 7

CALR, KDM1A, SUCNR1, TMEM220, and ADM expression distribution in cells identified using scRNA-seq. (A) Bubble diagram of CALR, KDM1A,
SUCNR1, TMEM220, and ADM expression in cells. (B) The umap algorithm was employed to analyze the expression distribution of CALR, KDM1A,
SUCNR1, TMEM220, and ADM. (C) The expression of CALR and KDM1A in immune cells.
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that the maker gene of B cells, myelocyte, and neutrophils were

enriched in leukocyte transendothelial migration. In terms of GO

enrichment, the marker genes of Mono/Macro, T/NK cells, B cells,

myelocyte, and neutrophils were enriched in several immune-

response-related terms and leukocyte cell–cell adhesion.

Leukocyte transendothelial migration is one of the most key steps

in the initiation of an inflammatory immune response, which

involves the rapid and transient delivery of preformed soluble

elements in the blood to the site of injury, followed by a longer

period of leukocyte delivery (12). Because leukocytes cannot swim,

they are locally recruited to the site of inflammation through a series

of adhesion steps that allow them to attach to the vessel wall, move
Frontiers in Immunology 11
along the wall to the endothelial border, cross the endothelial and

subendothelial basement membranes, and migrate through

interstitial tissues (13, 14). A previous study has suggested that

inflammation is associated with development from myelodysplastic

syndrome to AML (15). It has been considered as a global

pathogenic factor in AML, which may involve in various aspects

of AML, such as myelosuppression, chemoresistance, and disease

progression (16). Inflammation that plays a vital function in the

shaping of bone marrow microenvironment is a fundamental

constituent of leukemogenesis in AML (17). An inflammation-

related gene signature represented by Lasry et al. holds promise

for defining risk stratification of AML patients (18). Collectively,
FIGURE 8

Drug sensitivity analysis. (A) Estimated IC50 for different drugs in high- and low-risk groups. (B) The correlations between ADM or KDM1A and drugs.
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our findings suggest the important role of inflammation immune

response in the pathogenesis of AML, and the leukocyte

transendothelial migration and adhesion in the process of

inflammation should be noticed.

ssGSEA scores calculated showed that the scores of all the

identified cell clusters between AML patients and control

individuals are significantly different, especially GMP, HSC/Prog,

Mono/Macro, and myelocyte, which are obviously downregulated

in AML patients. Thus, these four cell types were regarded as core

cells for subsequent analysis, which contains 1,594 marker genes.

Furthermore, we identified AML-associated genes (2,067 genes)

and DEGs (1,010 genes) between AML patients and controls using

GSE114868 dataset. The overlapping genes of nuclear marker genes,

AML-associated genes, and DEGs between AML patients and

controls were selected as candidates. The final variables that were

used for prognostic model construction were screened in the

training set using univariate Cox regression analysis and LASSO

regression analysis, including CALR, KDM1A, SUCNR1,

TMEM220, and ADM. CALR is a highly conserved chaperone

protein that resides primarily in the endoplasmic reticulum and is

associated with various biological processes, among them, tumor

calcification (19), cell adhesion (20), and immune response (21).

Numerous studies have demonstrated the value of CALR in cancer

prognostic evaluation. A risk model reported by Chen et. al., which

contains CALR, IFNB1, and IFNG, showed a powerful function in

bladder urothelial carcinoma prognosis and immune landscape

determination (22). Fucikova et al. described that CALR exposure

promotes the initiation of antitumor immunity in patients with

AML, and it is a reliable prognostic biomarker for AML patients

(23). KDM1A is a type of histone lysine demethylase, which has

already been found to be associated with a variety of biological

processes, such as epithelial–mesenchymal transformation (24, 25)

and inflammatory response (26). KDM1A dysfunction was linked

to the progression of AML, and inhibitors of KDM1A showed

promising therapeutic effect in AML patients (27, 28). SUCNR1 is

found in the plasma membrane of multiple cells types, and its

activation has been associated with energy metabolism (29) and

anti-inflammatory responses (30). Studies of TMEM220 are

relatively rare. Limited coverage revealed that TMEM220 is

downregulated in hepatocellular carcinoma, and several

prognostic signatures contrasted by markers including TMEM220

displayed excellent prognostic prediction effect for hepatocellular

carcinoma (31–33). ADM belongs to the amylin/calcitonin gene-

related peptide super-family, which has been involved in multiple

physiological processes, containing cell migration (34),

differentiation (35), and apoptosis (36), and angiogenesis (34).

ADM can exert local and systemic anti-inflammatory actions

through modulating immune system properties and cytokine

secretion (37). As reported by Simonetti et al., the secretion of

ADM contributed to the maintenance of an inflammatory

phenotype in leukemic cell, therefore leading to relapse and drug

resistance of AML patients (38). Moreover, we constructed a

prognostic signature based on CALR, KDM1A, SUCNR1,
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TMEM220, and ADM, which demonstrated a remarkable

prognostic value. Further GSEA analysis of risk-model-related

genes revealed the significant differences in inflammatory

response between high- and low-risk groups. Further correlation

analysis revealed significant correlations between hub genes and

IL6, IL10, and multiple immune cells. IL-6 has been considered as

key pro-inflammatory cytokines impacting the function of

hematopoietic cells and promoting inflammatory diseases. IL-6

plays a central role in AML progression by directly stimulating

leukemogenic processes, reshaping the inflammatory tumor

microenvironment, and orchestrating immunosuppressive

mechanisms (39, 40). Its levels serve as a prognostic biomarker,

while targeting the IL-6 signaling pathway offers novel therapeutic

directions for improving AML treatment (41, 42). IL-10, a key

immunomodulatory cytokine secreted by activated immune cells,

functions as a regulatory checkpoint, exerting negative feedback

regulation to maintain immunological homeostasis and suppress

excessive inflammatory activation (43). IL-10 drives AML

progression through dual mechanisms. On the one hand, IL-10

suppresses innate immune responses by inhibiting macrophages

from releasing pro-inflammatory cytokines (e.g., TNF-a, IL-6) and
reducing their antigen-presenting capacity (44). In the AML

microenvironment, IL-10 increases the proportion of Breg cells,

promotes the secretion of immunosuppressive factors (including

IL-10 itself and TGF-b), and suppresses effector T-cell function,

thereby facilitating tumor immune escape (45). On the other hand,

elevated IL-10 levels in the bone marrow microenvironment of

AML patients correlate with increased Treg cell infiltration. These

Treg cells further sustain the stemness of leukemia stem cells (LSCs)

through IL-10 secretion, driving disease progression and poor

prognosis (46). IL-10 levels can serve as a prognostic biomarker

and are emerging as a critical therapeutic target for novel

immunotherapies, such as CAR-T and IDO1 inhibitors (45, 47).

Collectively, the hub genes identified in this study may influence

AML patient prognosis by modulating inflammatory responses

through complex regulatory interactions with IL-6, IL-10, and

immune cells.

In conclusion, our current results emphasized the important

function of inflammation immune response in the pathogenesis of

AML, and the leukocyte transendothelial migration and adhesion in

the process of inflammation should be noticed. In addition, we

constructed an inflammation-related risk model that can accurately

distinguish survival outcomes in AML patients. However, we have

only generalized the role of inflammation in the development of

AML, and the specific molecular mechanisms need to be further

investigated. Additionally, although the prognostic signature was

validated using online dataset, further validation with a large,

independent patient cohort is warranted to strengthen the

reliability of the prognostic model. The development of novel

prognostic signatures is critical for enhancing auxiliary diagnosis

and optimized management in cancer patients (48–50). In summary,

our current study not only complements the existing prognostic

evaluation framework for AML but also extends its applicability.
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